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We study the phase diagram of the ionic Hubbard model (IHM) at half filling on a Bethe lattice of infinite
connectivity using dynamical mean-field theory (DMFT), with two impurity solvers, namely, iterated perturbation
theory (IPT) and continuous time quantum Monte Carlo (CTQMC). The physics of the IHM is governed by the
competition between the staggered ionic potential � and the on-site Hubbard U . We find that for a finite �

and at zero temperature, long-range antiferromagnetic (AFM) order sets in beyond a threshold U = UAF via
a first-order phase transition. For U smaller than UAF the system is a correlated band insulator. Both methods
show a clear evidence for a quantum transition to a half-metal (HM) phase just after the AFM order is turned
on, followed by the formation of an AFM insulator on further increasing U . We show that the results obtained
within both methods have good qualitative and quantitative consistency in the intermediate-to-strong-coupling
regime at zero temperature as well as at finite temperature. On increasing the temperature, the AFM order is lost
via a first-order phase transition at a transition temperature TAF (U,�) [or, equivalently, on decreasing U below
UAF (T ,�)], within both methods, for weak to intermediate values of U/t . In the strongly correlated regime,
where the effective low-energy Hamiltonian is the Heisenberg model, IPT is unable to capture the thermal (Neel)
transition from the AFM phase to the paramagnetic phase, but the CTQMC does. At a finite temperature T ,
DMFT + CTQMC shows a second phase transition (not seen within DMFT + IPT) on increasing U beyond
UAF . At UN > UAF , when the Neel temperature TN for the effective Heisenberg model becomes lower than T ,
the AFM order is lost via a second-order transition. For U � �, TN ∼ t2/U (1 − x2), where x = 2�/U and
thus TN increases with increase in �/U . In the three-dimensional parameter space of (U/t, T /t, and �/t), as
T increases, the surface of first-order transition at UAF (T ,�) and that of the second-order transition at UN (T ,�)
approach each other, shrinking the range over which the AFM order is stable. There is a line of tricritical points
that separates the surfaces of first- and second-order phase transitions.
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I. INTRODUCTION

The Hubbard model is a paradigm for studying electron
correlation effects in metallic systems in condensed-matter
physics. It has played an important role in understanding how
electron-electron interactions can give rise to many interesting
phases, including insulating, magnetic, and superconducting
phases. It is worthwhile to explore whether there are interesting
correlation effects in systems that would be band insulators
in the absence of electron-electron interactions. Perhaps the
simplest model in which one can carry out this exploration is an
extension of the Hubbard model, known as the ionic Hubbard
model (IHM), with a staggered on-site “ionic” potential �

added in. In the recent past the IHM has been studied in
various dimensions by a variety of numerical and analytical
tools [1–13]. In one dimension [1–3] it has been shown to have
a spontaneously dimerized phase, in the intermediate-coupling
regime, which separates the weakly coupled band insulator
from the strong-coupling Mott insulator. In higher dimensions
(d > 1), this model has been studied by many groups using
the dynamical mean-field theory (DMFT) [4,5,9,10,12,13],
determinantal quantum Monte Carlo [6,7], cluster DMFT [8],
and coherent potential approximation [11]. The solution of
the DMFT self-consistent equations in the paramagnetic (PM)
sector at half filling at zero temperature shows an intervening
correlation-induced metallic phase [5–7,9,11] for intermediate
values of the interaction U . When one allows for spontaneous
spin symmetry breaking the transition from PM band insulator

(PM BI) to AFM insulator generally preempts the formation
of the parametallic phase [8,10], except, as shown in a recent
paper coauthored by two of us [12] using DMFT with iterated
perturbation theory (IPT) as the impurity solver, for a sliver of
a half-metal (HM) AFM phase. Upon doping one gets a broad
ferrimagnetic HM phase [12] sandwiched between a weakly
correlated PM metal for small U and a strongly correlated
metal for large U .

In this paper, we provide a detailed discussion of the
properties of the half-filled IHM on the Bethe lattice of infinite
connectivity solved using DMFT, not only at T = 0, especially
the HM AFM phase, but also at the finite temperature at a
level much more extensive than explored before [13]. The
DMFT equations are solved allowing the possibility of an
antiferromagnetic (AFM) order. We show that at any finite T ,
the system shows two phase transitions as the Hubbard U is
tuned for a fixed value of the ionic potential �. As U increases,
first the AFM order turns on via a first-order phase transition
at UAF followed up by a continuous transition at UN > UAF at
which the staggered magnetization drops to zero continuously.
As T increases, UAF increases while UN decreases, due to
enhanced thermal fluctuations, such that the range in U over
which the long-range AFM order survives shrinks. At a certain
Ttcp, we have a tricritical point that separates the lines of the
first- and second-order phase transitions (for fixed �). In the
three-dimensional (3D) parameter space of U − � − T , there
is a line of tricritical points separating surfaces of first- and
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second-order transitions. We believe that these features of the
phase diagram of the IHM have not been pointed out earlier.

Our results come from a detailed study of the IHM model
using DMFT with two different impurity solvers, namely,
the IPT and the continuous time quantum Monte Carlo
(CTQMC, implemented using the TRIQS package [14]), which
also allows us to explore which is the interaction regime
where IPT, an approximate semianalytic impurity solver,
works well. We show that the zero-temperature phase diagram
obtained within DMFT + IPT matches well (see Fig. 2), both
qualitatively and semiquantitatively, with that obtained from
the DMFT + CTQMC (working at very low temperatures). In
both methods we find that at zero temperature, and for a finite
�, the long-range AFM order sets in beyond a threshold value
of U , which we denote UAF , via a first-order phase transition.
For U smaller than UAF the system is a correlated BI in which
the gap in the single-particle density of states (DOS) reduces
as U is increased. Both UAF and the jump in the staggered
magnetization at the transition point increase with �. Both
methods show clear evidence of the formation of a HM phase
just after the AFM order sets in, followed by the formation of an
AFM insulator (AFM I) on further increasing U . Note that the
HM AFM phase is missed out completely in the Hartree-Fock
theory.

For weak to intermediate (U ∼ 6t and thus moderately
strong) couplings, where the interesting metallic and HM
phases are realized in this model within DMFT + IPT, there is
a good quantitative consistency between the CTQMC and IPT
results. However, in the limit of extremely strong coupling,
where energetically it is favorable to project out the double
occupancies and the IHM maps onto the effective Heisenberg
model at half filling, one starts seeing deviation between the
CTQMC and IPT results. While DMFT + CTQMC correctly
captures the physics of the effective Heisenberg model (as
was also shown in [13]), perhaps not surprisingly, IPT fails to
do so. At any finite temperature, CTQMC shows two phase
transitions as the Hubbard U is tuned. First, with increasing
U , the long-range AFM order sets in via a first-order jump
in the staggered magnetization ms at UAF (T ). On increasing
U further, ms first increases, reaches a maximum, and then
starts decreasing with U , finally going to zero via a continuous
transition at U = UN (T ). This transition happens when T just
crosses TN , where TN is the Neel temperature of the effective
Heisenberg model obtained at U = UN .

Within DMFT + IPT, at any finite T , only the first phase
transition is seen as the Hubbard U is tuned. Within IPT also
the AFM order sets in with a first-order jump at UAF . However,
as U increases further, the AFM order saturates to unity and
never goes to zero again. Thus, the second phase transition
from the AFM I to PM phase at large U is not captured by IPT.

Consistent with this, the thermal phase transition for the
half-filled IHM is correctly captured within IPT only for weak
to intermediate U , but is correctly described by the CTQMC
for strong correlations as well. For all values of U > UAF ,
the thermal transitions to the PM phase shown by IPT are
always first order. On the other hand, CTQMC shows a first-
order transition only for small values of U/t . For U � 2�,
the staggered magnetization falls to zero across a continuous
transition with increase in T . From weak to moderately strong
values of U/t , the transition temperature increases with U/t

in both methods. However, for U > 2�, while the transition
temperature keeps increasing with U within IPT, it goes as
t2U/(U 2 − 4�2) within CTQMC, following the physics of
the Heisenberg model as it should.

The rest of this paper is organized as follows. In Sec. I we
present the details of the model and the calculational methods
used. Section II describes in detail the T = 0 phase diagram
of IHM at half filling within IPT and CTQMC. Here we see a
good qualitative and quantitative consistency between the two
methods for a large range of parameters. Section III has details
of the finite T phase diagram within IPT and its comparison
to that obtained using CTQMC. We focus specifically on
the regime of extreme correlations, where CTQMC works
well but IPT does not. We end this paper with conclusions
and discussions. In Appendixes A and C we present detailed
discussions on the nature of the phase transition at T = 0 while
Appendix B shows a comparison of results within the DMFT
and the Hartree-Fock (HF) theory.

II. MODEL AND METHODS

The model we consider has tight-binding electrons on
a bipartite lattice (sublattices A and B) described by the
Hamiltonian

H = −t
∑

i∈A,j∈B,σ

[c†iσ cjσ + H.c] + �
∑
i∈A

ni − �
∑
i∈B

ni

+U
∑

i

ni↑ni↓ − μ
∑

i

ni . (1)

Here t is the nearest-neighbor hopping, U the Hubbard
repulsion, and � a one-body staggered potential which doubles
the unit cell. The chemical potential is chosen to be μ = U/2,
so that the average occupancy per site is (〈nA〉 + 〈nB〉)/2 = 1,
corresponding to “half filling.”

A. Dynamical mean-field theory

Here we study this model using the DMFT approach. The
DMFT approximation is exact in the limit of large dimen-
sionality [15,16] and has been demonstrated to be successful
in understanding the metal-insulator transition [15,16] in the
usual Hubbard model, which is the � = 0 limit of Eq. (1). We
focus in this paper on the AFM sector of Eq. (1), for which it
is convenient to introduce the matrix Green’s function,

Ĝσ
αβ(k,iωn) =

(
ζAσ (k,iωn) −εk

− εk ζBσ (k,iωn)

)−1

, (2)

where α,β are sublattice (A,B) indices, σ is the spin index, k
belongs to the first Brillouin zone (BZ) of one sublattice, iωn =
(2n + 1)πT , and T is the temperature. The kinetic energy is
described by the dispersion εk, and ζA(B)σ ≡ iωn ∓ � + μ −

A(B)σ (iωn). Within the DMFT approach the self-energy is
approximated as purely local [15]. Thus, the diagonal self-
energies 
ασ (iωn) are k independent and the off-diagonal self-
energies vanish (since the latter would couple the A and B
sublattices).

The DMFT approach includes local quantum fluctuations
by mapping [15,16] the lattice problem onto a single-site
or “impurity” with local interaction U hybridizing with a
self-consistently determined bath as follows. (i) We start with
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a guess for 
ασ (ω+), ms , and δn and compute the local
Gασ (iωn) = ∑

k Gσ
αα(k,iωn) rewritten as

Gασ (iωn) = ζᾱσ (iωn)
∫ ∞

−∞
dε

ρ0(ε)

ζAσ (iωn)ζBσ (iωn) − ε2
, (3)

where, for α = A(B), ᾱ = B(A), and ρ0(ε) is the bare DOS
for the lattice considered (see below). We actually need to
solve the problem for only one sublattice and use the relations
GAσ (iωn) = −GBσ (−iωn) and 
Aσ (iωn) = U − 
Bσ (−iωn)
valid at half filling. (ii) We next determine the “host Green’s
function” [15,16] G0ασ from the Dyson equation G−1

0ασ (iωn) =
G−1

ασ (iωn) + 
ασ (iωn). (iii) We solve the impurity problem to
obtain 
ασ (iωn) = 
ασ [G0ασ (iωn)]. (iv) We iterate steps (i),
(ii), and (iii) until a self-consistent solution is obtained.

B. IPT as impurity solver

We use as our “impurity solver” in step (iii) a generalization
of the IPT [15,17] scheme, which has the merit of giving
semianalytical results directly in the real frequency (ω+ ≡
ω + i0+) domain. The IPT ansatz 
IPT

ασ (ω+) = 
HF
ασ +

Aασ 
(2)
ασ (ω+) is constructed to be (a) exact for U/t � 1, (b)

exact for t/U = 0, and (c) exact in the large ω limit for all U/t ,
which imposes various exact sum rules. Here 
HF

ασ = Unασ̄ is
the HF self-energy with

nασ = − 1

π

∫ 0

−∞
dωIm Gασ (ω+) (4)

and


(2)
ασ (ω+) = U 2

3∏
i=1

∫ ∞

−∞
dεi [ρ̃ασ (ε1)ρ̃ασ̄ (−ε2)ρ̃ασ (ε3)]

× [f (ε1)f (−ε2)f (ε3) + f (−ε1)f (ε2)f (−ε3)]

ω+ − ε1 + ε2 − ε3
.

(5)

This has the form of the second-order self-energy with
ρ̃ασ (εi) = −Im[G̃0ασ (ε+

i )]/π , where G̃−1
0ασ (ω+) = G−1

0ασ (ω+) −

HF

ασ is the Hartree corrected host Green’s function and
f (ε) is the Fermi function. From condition (c) above we
find that Aασ = nασ̄ (1 − nασ̄ )/[n0ασ̄ (1 − n0ασ̄ )], with n0ασ ≡
− 1

π

∫ 0
−∞ dωImG̃0ασ (ω+). Note that at half filling, since nAσ =

1 − nBσ , Aασ is same for both sublattices. For simplicity, here
we present the results for the solution of the DMFT equations
on a Bethe lattice of connectivity z → ∞. The hopping
amplitude is rescaled as t → t/

√
z to get a nontrivial limit,

and the bare DOS is then given by ρ0(ε) = √
4t2 − ε2/(2πt2),

which greatly simplifies the integral in Eq. (3).

C. CTQMC as impurity solver

In this section we describe briefly the state-of-the-art im-
purity solver, the CTQMC using the hybridization expansion
method [18], in the context of the IHM. The impurity model
(IM) at site α corresponding to the IHM can be written as

HIM,α =
∑
kσ

(εk − sα�)f †
kασ fkασ +

∑
kσ

Vkα[f †
kασ cασ + H.c.]

+Unα↑nα↓ − (μ − sα�)
∑

σ

c†ασ cασ , (6)

where sα = 1(−1) for α = A(B). HIM,α describes the “impu-
rity” in sublattice α coupled to the bath of f fermions through
the hybridization term Vkα . It is straightforward to show,
within a Grassmann functional integral formalism, that we
can integrate out the fermionic bath variables in the partition
function for the IM. After this step the partition function at site
α becomes

Zα =
∫

D[c†0ασ c0ασ ] e−Sα , (7)

where c
†
0ασ and c0ασ are Grassmann variables representing the

fermionic “impurity” degrees of freedom at a site belonging
to the α sublattice, and Sα is the functional,

Sα = −
∑

σ

∫ β

0
dτdτ ′c†0ασ (τ )G−1

0ασ (τ − τ ′)c0ασ (τ ′)

+
∫ β

0
dτUnα↑(τ )nα↓(τ ). (8)

Here G−1
0ασ (iwn), the host Green’s function at site α, is related

to the hybridization amplitude Vkα via the relation

G−1
0ασ (iwn) = iwn + sα� + μ − �ασ (iωn), (9)

where �ασ (iωn) ≡ ∑
k

|Vk |2
iωn−εkσ +sign(α)� is the hybridization

function. On the Bethe lattice of infinite connectivity, the
self-consistent hybridization function for the IHM is given
by �ασ (iwn) = t2Gᾱσ (iwn), giving a simple relation between
host Green’s function and lattice Green’s function as

G−1
0ασ (iwn) = iwn + sα� + μ − t2Gᾱσ (iωn). (10)

Hence, Sα can be reexpressed as

Sα = Sα
loc +

∑
σ

∫ β

0
dτdτ ′c†0ασ (τ )�ασ (τ − τ ′)c0ασ (τ ′)

≡ Sα
loc +

∑
σ

Sασ
hyb, (11)

where

Sα
loc =

∑
σ

∫ β

0
dτc

†
0ασ (τ )

(
∂

∂τ
− μ + sα�

)

× c0ασ (τ ) + U

∫ β

0
dτn0α↑(τ )n0α↓(τ ). (12)

The partition function, Zα given by Eq. (7) can then be
expanded as a power series in Sασ

hyb as

Zα = Z0α

∑
k

1

k!2

∫ β

0
dτ1 · · · dτk

∫ β

0
dτ ′

1 · · · dτ ′
kdet�α

× 〈
Tτ c0ασ1 (τ1)c†0ασ ′

1
(τ ′

1) · · · c0ασk
(τk)c†0ασ ′

k
(τ ′

k)
〉
Sα

loc

,

(13)

where

�α =

⎛
⎜⎝

�ασ1ασ ′
1 (τ1,τ

′
1) · · · �ασ1ασ ′

kσ
(τ1,τ

′
k)

· · · · · · · · ·
· · · · · · · · ·

�ασkασ ′
1 (τk,τ

′
1) · · · �ασkασ ′

k
(τk,τ

′
k)

⎞
⎟⎠ (14)
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FIG. 1. (Color online) A pictorial representation of a configura-
tion generated by the CT-HYB algorithm with one up-spin and one
down-spin electron. The total length of the segment in the τ space for
which an electron with spin σ lives is Lσ , and O↑↓ is the total length
of overlap (in τ space) for which electrons with both ↑ and ↓ spins
are present.

and

Z0α ≡
∫

D[c†0ασ c0ασ ]e−Sα
loc . (15)

In our case the matrix �α is block diagonal in “up” and “down”
spin labels. Then the above equation simplifies to

Zα

Z0α

=
∏
σ

∞∑
kσ =0

1

kσ !2

∫ β

0
dτσ

1 · · · dτσ
kσ

×
∫ β

0
dτ ′σ

1 · · · dτ ′σ
kσ

det�ασ

× 〈
Tτ c0ασ

(
τσ

1

)
c
†
0ασ

(
τ ′σ

1

) · · · c0ασ

(
τσ
k

)
c
†
0ασ

(
τ ′σ
kσ

)〉
Sα

loc

.

(16)

The CT-HYB algorithm generates “configurations” corre-
sponding to the terms in Eq. (16) with weights proportional
to their contributions to the partition function Z. One such
configuration is shown in Fig. 1.

The CT-HYB algorithm can calculate important quantities
such as the finite temperature imaginary-time Green’s func-
tion, the density, the double occupancy, etc. For example,
the occupancy nασ is estimated from the average length of
all the segments, nασ = 〈Lασ 〉MC/β; the double occupancy
is obtained from the overlap Oα↑↓ of segments as Dα =
〈Oα↑↓〉MC/β; etc. For details, see [18].

The DMFT self-consistency loop run as follows. (1) One
starts with a guess for the local Green’s function Gᾱσ (iwn),
where for α = A,B, ᾱ = B,A. (2) The host Green’s function
for the α sublattice, G0σα(iwn), is calculated using Eq. (10).
(3) Using the host Green’s function G0σα(iwn) the impurity
solver calculates Gασ (iwn). Then step (2) is invoked again,
and the process is repeated until GA(B),σ (iwn) converges. We
implement CT-HYB using the TRIQS package [14].

III. T = 0 PHASE DIAGRAM OF THE HALF-FILLED IHM

The zero-temperature phase diagram of the half-filled IHM
obtained from the DMFT + IPT study and the DMFT +
CTQMC study (at T = 0.02t) is shown in Fig. 2. With
increasing U there occurs a first-order transition between
the PM BI and an AFM phase, characterized by a nonzero

FIG. 2. (Color online) Phase diagram of the model in Eq. (1) at
half filling obtained using DMFT for the Bethe lattice with IPT at
T = 0 (solid lines) and CTQMC done at T = 0.02t (dashed lines).
A first-order transition takes place at UAF such that for U > UAF the
system has long-range AFM order, while for U < UAF it is a PM
BI. For UHM > UAF , the spectral gap in one of the spin components
vanishes, resulting in a HM AFM phase for U = UHM . For larger
values of U the system is an AFM I. Note that the transition points
obtained using the two methods are in fairly good agreement with
each other.

staggered magnetization ms , at some threshold U = UAF

(which is an increasing function of �). Inside the AFM phase,
a HM phase appears at U = UHM > UAF , where the gap in
the single-particle DOS vanishes for one spin component while
the other spin component has a nonzero spectral gap. When
U increases well above UHM , the system becomes an AFM
I, where the gap in the DOS for both spin components is
controlled by, and increases linearly with, U .

The phase diagram in Fig. 2 has been obtained from an
analysis of various physical quantities, which we describe in
detail below.

Single-particle density of states. In this section we discuss
the single-particle DOS ρα,σ (ω) ≡ −∑

k ImĜασ (k,ω+)/π ,
calculated using DMFT + IPT. Here α represents the sublat-
tice A,B and σ is the spin. Since at half filling ρAσ (ω) =
ρBσ (−ω), we focus only on the total DOS ρσ (ω) = ρAσ (ω) +
ρBσ (ω). Figure 3 shows how ρσ (ω) evolves as a function of U

for a fixed � = 1.0t . At small U < UAF (=3.0t for � = 1.0t),
there is spin symmetry in the DOS, and ρσ (ω) has a finite gap
which decreases as U/t increases, as shown in greater detail
and clarity in Fig. 4. We call this phase a PM BI as it is
adiabatically connected to the U = 0 BI.

For U > UAF , the spin symmetry in the DOS is lost, as seen
in the top two plots of Fig. 3. The spectral gap in the up-spin
component of the DOS is smaller than that for the down-spin
component, as can be seen more clearly in the inset of Fig. 4.
We note that at half filling, even in the symmetry-broken phase,
there is no net moment; i.e., n↑ = n↓ = 1/2. This is because
of the symmetry relations of the Green’s function (discussed
earlier), which implies that nAσ = 1 − nBσ and thus the total
density of particles with spin σ is nσ = 1

2 [nAσ + nBσ ] = 1/2,
although from the top two plots of Fig. 3 it might seem that
there is a net moment. The point is that Fig. 3 shows only
the low-ω DOS, where the area under the DOS for the up-spin
component is larger than that for the down-spin component due
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FIG. 3. (Color online) The single-particle DOS, ρσ (ω), calcu-
lated within DMFT + IPT, plotted as a function of ω for different
values of U/t for � = 1.0t at n = 1. The red curves are for the
up-spin component and the blue dotted curves are for the down-spin
component. For U < UAF = 3.0t , the DOS is the same for both
spin components, with a nonzero spectral gap which decreases as
U/t increases, and the system is a PM BI. For U > UAF , the DOS
becomes different for the two spin components. At U = 3.1t > UAF ,
the DOS for the up-spin component has a vanishingly small gap, while
the down-spin DOS still has a finite gap. This is in close vicinity of
the HM AFM point UHM . At larger U values, there is a finite gap
in the DOS for both spin components, and the system is an AFM I.

to smaller spectral gap for the up-spin component. However,
the weight loss for the down-spin component in the low-ω
regime is compensated by its large ω part and the condition
for no-net moment nσ = 1/2 holds. For U > UAF , what the
system has is a staggered moment, ms = nA↑ − nA↓ = nB↓ −
nB↑, as discussed in more detail below.

As U increases above UAF , the gap in the up-spin compo-
nent of the DOS decreases rapidly and becomes vanishingly
small at a critical value U = UHM (equal to 3.09t when

 0

 0.5

 1

 1.5

 2

 2.5

 1  1.5  2  2.5  3  3.5  4

E
g

U/t

↑
↓

 0.2

 0.4

 2.7  2.9  3.1

E g

U/t

FIG. 4. (Color online) The spectral gaps Eg↑ and Eg↓, obtained
from the DOS within DMFT + IPT, plotted as functions of U for
� = 1.0t at n = 1. The red points are for the up-spin component and
the blue points are for the down-spin component. For U < UAF in
the BI phase, Eg↑ = Eg↓ and both decrease with increasing U/t . At
U = UAF , there occurs a jump separating the two gaps, such that
Eg↑ is less than Eg↓. Eg↑ becomes vanishingly small (<0.01t) at
U = 3.1t , close to the HM AFM point. Both Eg↑ and Eg↓ increase
with increase in U/t in the AFM I phase (U > UHM ). The inset
shows Eg in the vicinity of the transition point.

FIG. 5. (Color online) (Top) Staggered magnetization ms plotted
as a function of U/t at half-filling. A first-order phase transition takes
place with the onset of ms at UAF . (Bottom) Staggered occupancy
δn plotted as a function of U/t at half filling. δn is nonzero for all
values of U/t and a discontinuity occurs in δn at UAF . In both panels
the points connected with solid lines represent the data obtained from
DMFT + IPT at T = 0 and the points connected with dashed lines
show data obtained within DMFT + CTQMC at T = 0.02t . There is
quantitative consistency between the two methods for a range of �

values. The phase transition is clearly first order in both methods.

� = 1.0t), while the down-spin component still has a finite
spectral gap (see Fig. 4). Thus, the IHM has a HM phase
at a quantum critical point UHM embedded within the AFM
regime. This prediction is further reinforced below from the
low-ω analysis of the spectral function. As U increases further,
the spectral gap in the DOS opens up again for the up-spin
component as well, with both spectral gaps increasing with
U/t . This is the AFM insulating (AFM I) phase.

Staggered magnetization and staggered occupancy. The
staggered magnetization ms , defined as ms = (mzA − mzB)/2,
calculated within both the DMFT + IPT (T = 0) and the
DMFT + CTQMC (at T = 0.02t), is shown in Fig. 5. For a
given value of �, the staggered magnetization ms is zero below
the corresponding UAF and becomes nonzero for larger U , with
a discontinuous jump at UAF corresponding to a first-order
phase transition between the PM BI and the AFM phase. Note
that in the presence of the staggered potential, which opens up
the gap in the DOS characteristic of the BI phase, the AFM
instability does not occur unless U exceeds a finite threshold
value UAF . The larger the value of �, the larger is the value
of U required to overcome the effect of � and turn on the
magnetization. Thus, both UAF and the jump in ms at UAF are
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increasing functions of �. The bottom panel of Fig. 5 shows
the staggered occupancy, i.e., the difference in filling factor on
the two sublattices, defined as δn ≡ (nB − nA)/2. Due to the
staggered on-site potential, this difference is always nonzero,
even though the Hubbard U tries to suppress it. For U < UAF ,
δn decreases monotonically and rapidly as a function of U .
At UAF , there occurs a discontinuity in δn. For U > UAF ,
δn decreases more slowly with increasing U , but eventually
becomes rather small in the AFM I phase, asymptotically
approaching zero (as t�/U 2) as U → ∞.

Note that for all the � values, ms obtained using the
CTQMC solver is slightly smaller than that from the IPT
solver, while the transition point UAF obtained using CTQMC
is larger than that within IPT. This is because CTQMC
captures the effects of quantum fluctuations better than IPT.
Overall, however, in the small-to-intermediate U/t regime,
there is good quantitative correspondence between the low-
temperature CTQMC data and the T = 0 data obtained within
DMFT + IPT. Also, the nature of the phase transition is the
same in both methods.

The results in Fig. 5 have been obtained by solving the
DMFT + IPT equations starting from a small U value and
increasing U slowly. When the DMFT equations are solved
starting from a large U guess and then decreasing U slowly,
one gets a different curve for ms (and also for δn) (Fig. 13).
A comparison of the ground-state energies of these two spin-
asymmetric solutions for the DMFT equation with the ground-
state energy of the PM sector shows that the real transition
point UAF is the one where ms becomes nonzero for the first
time coming from the small U side. The hysteresis analysis
discussed in Appendix A for � = 1.0t confirms the nature of
the transition from the PM to the AFM phase as being first
order. However, for very small values of �, where both the
transition point UAF and the jump in magnetization at the
transition point are very small, numerically it is difficult to
see the nature of the transition. Since in the small U regime
the HF theory also works well (as shown in Appendix B), we
have carried out a Ginzburg-Landau (GL) expansion of the
ground-state energy within the HF theory and confirmed that
the phase transition from the PM to the AFM phase is of first
order for any nonzero � (for details, see Appendix C).

Low-ω analysis of the spectral function. To understand the
trend of the spectral gap and to confirm the existence of the
HM AFM phase, we have carried out a low-ω analysis of
the self-energy and the single-particle spectral function. The
IPT self-energy 
ασ (ω+) ≡ 
′

ασ (ω) + i
′′
ασ (ω) has 
′′

α(ω)
vanishing for |ω| � 3Egσ in both insulating phases. This can
be understood from the imaginary part of 
(2)

ασ of Eq. (5), which
comes from a three-fermion intermediate state. However, this
is an artifact of the neglect of collective modes (spin waves) in
DMFT. In reality, since there are gapless spin waves that can
be excited, the imaginary part of self-energy will be zero only
for |ω| � Egσ and the phase-space constraints would make
the result for 
′′

ασ just above threshold quite small. In the
discussion below, we assume that 
′′

ασ (ω) = 0 for |ω| � Egσ .
In both insulating phases, 
′

ασ (ω) can be written at low ω

as a Taylor expansion 
′
ασ (ω) = 
′

ασ (0) + (1 − Z−1
σ )ω + · · · ,

where Zσ can be shown to be independent of α. The spectral
function is defined by Aαασ (ε,ω) = (−1/π )ImGαασ (ε,ω+).
Since 
′′

ασ = 0 for |ω| � 3Egσ , we find from Eq. (2)

FIG. 6. (Color online) �↑ and �↓ [see Eq. (18)] plotted as
functions of U/t for � = 1.0t . Points connected with solid lines are
obtained within DMFT + IPT (T = 0) and points connected with
dashed lines are obtained within DMFT + CTQMC (T = 0.02t).
Note that �↑ changes sign within the AFM phase for U > UAF and
crosses zero at UHM = 3.09t within IPT and UHM = 3.25t within
CTQMC for T = 0.02t .

that Aαασ (ε,ω) = δ(rσ (ω) − ε2), with rσ (ω) = [ω + μ − � −

′

Aσ (ω)][ω + μ + � − 
′
Bσ (ω)]. As ε is real, ω’s which

satisfy rσ (ω) < 0 lie within the gap. The energy gap is then
given by rσ (Egσ ) = 0, which, using the low-energy form of

′

ασ given above, leads to the result

Egσ = Zσ |� − U/2 + 
′
Aσ (ω = 0)|

= Zσ |� + U/2 − 
′
Bσ (ω = 0)|, (17)

where we have used the particle-hole symmetry. Let us write

′

ασ (ω = 0) = Sασ + Unασ̄ where the second term on the
right-hand side is the self-energy within the HF approximation.
Then one gets a more elaborate form for the expression of the
gap, which is given below:

Egσ = Zσ |� − U/2(δn + σms) + SA,σ |
= Zσ |� − U/2(δn + σms) − SB,σ | ≡ Zσ |�σ |. (18)

Figure 6 shows �σ as a function of U for � = 1.0t obtained
within DMFT + IPT and DMFT + CTQMC (T = 0.02t).
Within the CTQMC, the Green’s function can be calculated
only at Matsubara frequencies, and thus the single-particle
DOS and the spectral gaps cannot be obtained directly from the
CTQMC data. However, the low-energy part of the self-energy
can be used to get an estimate of the spectral gap even from
the CTQMC data. Specifically, in the CTQMC data, we have
extrapolated the self-energy to zero frequency and obtained
approximate values of Sασ .

For U < UAF , in the PM BI phase, �↑ = �↓ > 0 and
decreases as U/t increases for a given �. At UAF , �↑ becomes
different from �↓. As U/t increases further, within the AFM
phase, �↑ decreases and becomes negative for U > 3.1t

within IPT and U > 3.25t within CTQMC. Thus, it must pass
through a zero, making Eg↑ zero inside the AFM phase, at
UHM = 3.09t(3.25t) for � = 1.0t within IPT (CTQMC). On
the other hand, �↓ remains always positive, giving a nonzero
spectral gap for the down-spin component for all values of
U/t including UHM . Note that Zσ is always positive and less
than 1 by definition and that �σ obtained from CTQMC and
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FIG. 7. (Color online) The kinetic energy 〈K↑〉 and 〈K↓〉 plotted
as functions of U/t for � = 1.0t . The points connected with a
solid line are obtained within DMFT + IPT (T = 0) and those
connected with a dashed line are obtained within DMFT + CTQMC
(T = 0.02t). The kinetic energy decreases with increase in U/t

deep in the PM BI phase, which indicates states becoming more
extended with increasing U , while it increases in the AFM I phase,
suggesting localization. For UAF < U < UHM , 〈K̂↑〉 decreases with
U/t , reaching a minimum at UHM , while 〈K̂↓〉 increases with increase
in U/t as in the AFM I phase.

IPT show good quantitative correspondence for U < UAF . As
U increases further, |�σ | within IPT becomes much larger
than that within CTQMC. Within both methods, we do see
a HM AFM phase at UHM > UAF , inside the AFM phase of
the correlated BI. Note that the HM AFM phase is missed
out completely in a simple mean-field theory like HF theory,
though the BI to AFM transition is captured (see Appendix B).

Kinetic energy. We have also studied the spin-
resolved kinetic energy (KE) which is defined as 〈K̂σ 〉 =
− 2

π

∫ 0
−∞ dω

∫
dεερ0(ε)ImGσ

AB(ε,ω+). Figure 7 shows the

〈K̂σ 〉 obtained within DMFT + IPT (T = 0) and DMFT +
CTQMC (T = 0.02t). To calculate the KE within
DMFT + CTQMC, which gives the Green’s function at
fermionic Matsubara frequencies, we use T

∑
n Gσ

AB(iωn) =
− 1

π

∫
dωf (ω)ImGσ

AB(ω+), where f (ω) is the Fermi distribu-
tion function, and get a finite temperature version of the above
expression for the KE,

〈K̂σ 〉 = 2T

∫
dεερ0(ε)

∑
n

Gσ
AB(ε,iωn), (19)

where Gσ
AB(ε,iωn) is the off-diagonal element of the full

Green’s function defined in Eq. (3).
In the PM BI phase, as the spectral gap reduces with increase

in U , 〈K̂σ 〉 decreases until the correlation starts pushing the
spectral weight from low energy to higher energy region. Once
this happens, even though the spectral gap is decreasing within
the BI phase, there occurs a slight increase in 〈K̂σ 〉.

In the AFM I phase, the KE for both spin components
increases with increase in U due to the increase in the spectral
gap. In the regime for UAF < U < UHM , 〈K̂↑〉 decreases with
increase in U just like in small U limit of the BI phase.
On the other hand, 〈K̂↓〉 starts increasing with U like in the
AFM I phase. Note that the KE for the up-spin component

FIG. 8. (Color online) Average double occupancy Dα=〈nα↑nα↓〉
on sublattice α = A,B vs U for � = 1.0t . Points connected with
a solid line are calculated within DMFT + IPT (T = 0) and points
connected by a dashed line are calculated within DMFT + CTQMC
(T = 0.02t). Due to the staggered potential, DA � DB for all values
of U/t , with DB showing a monotonic decrease with U/t . Note that
Dα within both methods matches fairly well for U � 6t .

is minimum at UHM , where the spectral gap is zero for the
up-spin component and we have a HM AFM.

Double occupancy. Within IPT the average double occu-
pancy at site α, Dα = 〈nα↑nα↓〉 can be calculated using the
equation,

Dα = 〈nα↑nα↓〉 = 1

2U

[
T

∑
n,σ

iωnGασ (iωn) + μαnα − 〈K̂〉
]
,

(20)
with α = B,A and μα ≡ (μ + sα�). Within CTQMC we
calculated Dα by directly calculating the trace of nα↑nα↓.
Figure 8 shows Dα for � = 1.0t at T = 0 obtained within
IPT (T = 0) and CTQMC at T = 0.02t . For the IHM, since a
nonzero �/t prefers to put more holes on the A sublattice
and more double occupancies on the B sublattice, for all
values of U/t , DA � DB . As U/t increases DB shows a
monotonic decrease with a discontinuity at UAF . DA, on the
other hand, first increases slightly as U increases below UAF

and then starts decreasing with U . Figure 8 clearly shows that
up to moderately strong values of U/t , the average double
occupancy within IPT is quantitatively very close to that
obtained within CTQMC.

All of the above analysis shows clearly that for the U/t

range from weak to moderately strong, the IPT and CTQMC
results match well. In our discussions in the following sections
we focus on the differences between two approaches that arise
when one looks at the extremely correlated regime of the IHM.

IV. EXTREMELY CORRELATED REGIME OF THE IHM
AND FINITE T PHASE DIAGRAM

In this section we consider the extremely correlated regime
of the IHM, namely, U � t,�. In a regular Hubbard model
(� = 0), the limit of U � t effectively projects out doubly
occupied sites from the Hilbert space. For the IHM, at half
filling, the energy cost for having a double occupancy on the
A(B) sublattice is U ± 2�. Thus, it is only for U � t and
U � 2� that one obtains the extremely correlated regime of
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FIG. 9. (Color online) (Top) The staggered magnetization vs U/t

for T = 2t/35 and � = 1.0t calculated within DMFT + CTQMC.
As U increases, first the AFM order turns on at UAF with a jump in
ms . As U increases further, at UN � UAF , the AFM order goes to
zero continuously. (Bottom) The staggered magnetization ms vs U/t

for T = 0.4t and � = 1.0t calculated within DMFT + IPT. As U

increases, ms keeps increasing and finally saturates to its maximum
value.

the IHM where doubly occupied sites are projected out. In this
limit, at half-filling, the effective low-energy Hamiltonian for
the IHM is again the Heisenberg model,

Heff = J̃
∑
〈ij〉

[Si · Sj − ninj /4], (21)

but the spin-exchange coupling is now J̃ = J/(1 − x2), with
x = 2�/U and J = 4t2/U . The Neel temperature TN of
the Heisenberg model is proportional to J̃ , which therefore
depends upon U . In dimensions higher than 2, for temperatures
lower than TN , the system has AFM ordering, but the order
is lost via a continuous transition as T increases past TN . In
a finite T calculation for the half-filled IHM, as U increases
beyond 2�, J̃ reduces and eventually at some UN where the
corresponding TN (U = UN ) > T the magnetization is lost.
Thus, at any finite T , as one increases U , two phase transitions
should be seen for the half-filled IHM. First at UAF , where the
magnetization sets in via a first-order transition, typically, and
then at a larger UN > UAF , where the magnetization is lost via
a continuous phase transition.

This is exactly what we see in the CTQMC result, as
seen in Fig. 9, which shows the staggered magnetization vs
U/t for � = 1.0t and T = 2t/35. We see that the staggered
magnetization turns on with a first-order phase transition at

UAF , increases with increasing U initially and then starts
decreasing with further increase in U , finally vanishing at
UN � UAF . However, this second phase transition is not
captured within DMFT + IPT, for which the finite T the phase
diagram is basically similar to the T = 0 phase diagram. Once
the AFM order sets in at UAF , as we keep increasing U beyond
UAF , the staggered magnetization keeps increasing and never
becomes zero, as shown in Fig. 9. Thus, though the suppression
of double occupancy for large U is captured correctly to
some extent within IPT, spin physics and the physics of the
virtual hopping resulting in the effective Heisenberg model
is not captured. Hence, while IPT interpolates between the
weak-coupling and the strong-coupling regime (by satisfying
the atomic limit), at the end it does rely on a second-order
perturbation theory and, especially for issues that crucially
involve spin physics, its validity breaks down in the regime of
extremely strong correlations.

V. THERMAL PHASE DIAGRAM

Finally, we discuss how the AFM order is lost as the
temperature T/t increases for a fixed value of � and U . The top
panel of Fig. 10 shows the finite temperature results obtained
within DMFT + IPT for � = 1.0t and a few values of U/t .
As shown here, the staggered magnetization goes to zero via a
clear first-order phase transition at TAF . On the other hand, as
shown in the bottom panel of Fig. 10, within CTQMC the AFM
order goes to zero via a first-order transition, as the temperature
T/t increases, only for small values of U/t . For U � 2�, the
AFM order is lost continuously with a second-order phase
transition at TN .

Further, the transition temperature from the AFM phase to
the PM phase has a very different dependence on U and �

within IPT and CTQMC, especially for U � 2�. Within IPT,
the transition temperature increases with increase in U for a
fixed � irrespective of whether we are in the intermediate-
coupling regime or in the regime of extreme correlations. To
be more specific, it follows U , and does not follow J̃ for
U � t,�, whence the latter decreases with increase in U .
This shows clearly that IPT does not capture the spin physics
of extreme correlations correctly.

Within CTQMC, as is clear from Fig. 10 for � = 1.0t , as
U/t increases, first the transition temperature TAF increases
with increase in U/t for U/t < 5. This trend is similar to
what is seen within IPT. However, as U/t increases further,
the physics of the effective Heisenberg model starts playing
a role and the transition temperature starts decreasing with
further increase in U as it is governed by J̃ . For U � 2�, as
� increases, the spin-exchange coupling J̃ increases which is
reflected clearly in the behavior of TN in Fig. 11. These results
are consistent with earlier DMFT + CTQMC work [13].
Figure 11 shows the transition temperature TN as a function
of �/t for a few values of U/t . We have shown comparison
of TN obtained within CTQMC with that of the Heisenberg
model with spin-exchange coupling of J̃ . For U � 2�, J̃ /4
is a very good approximation to TN . However, for U ∼ 2�,
Heff is not the correct low-energy Hamiltonian of the model
and we do not expect TN to be given by J̃ /4. In fact, in
Fig. 11, we see that TN decreases as � increases beyond U/2
in contrast to what one would get from J̃ /4.
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FIG. 10. (Color online) (Top) The staggered magnetization ms vs
T/t for � = 1.0t and various values of U obtained within DMFT +
IPT. (Bottom) ms vs T/t obtained within CTQMC for � = 1.0t for
various values of U . Note that within IPT ms drops to zero via a
first-order phase transition at TAF , which increases monotonically
with U/t . However, within CTQMC, for small values of U , though
ms goes to zero via a first-order transition, for larger values of U/t

there is a clear continuous transition as a function of T , in contrast
to the IPT results. Also the transition temperature within CTQMC
shows an increase with U only up to U = 5.0t and starts decreasing
with further increase in U/t .

FIG. 11. (Color online) Neel temperature TN vs �/t obtained
within DMFT + CTQMC for the IHM at half filling for various
values of U/t . We see that for � � U , TN follows J̃ /4 very closely.
However, for U ∼ 2�, TN starts deviating from J̃ and decreases with
increase in �/U .

FIG. 12. (Color online) (Top) The left panel shows mS vs U/t for
� = 1.0t and various values of β. These results are obtained within
DMFT + CTQMC. The mS turns on via a first-order transition at
UAF (T ) (shown as blue points in the right panel) while it is lost
continuously at UN (T ) (shown as red points in the right panel). As T

increases, the U range, UN (T ) − UAF (T ), in which the system shows
AFM order, shrinks to zero. A tricritical point, shown as a black point
in the right panel, separates the lines of first- and second-order phase
transitions. (Bottom) Phase diagram for the IHM at half filling in
T − U − � space obtained within CTQMC. The surface made by
the points connected by solid lines is the first-order transition surface
from the PM to the AFM phase and the surface made by the points
connected by dashed lines is the second-order transition surface from
the AFM to a PM phase.

Finally, we present the full magnetic phase diagram within
DMFT + CTQMC inferred from calculations for a range of
parameter values in Fig. 12. As shown in the bottom panel
of Fig. 12, in the 3D T − U − � space, there is a surface of
first-order phase transitions from PM BI to AFM I. Also there
is a surface of second-order phase transition across which the
AFM order is lost continuously (although, as we have noted,
this surface does not show up in IPT). These two surfaces are
separated by a line of tricritical points. This can be seen more
clearly in the top panel of Fig. 12. Here the left panel shows
ms vs U/t for various values of T . As T increases, the value of
UAF corresponding to the first-order transition, where the AFM
turns on with a jump, increases. This is because there are more
thermal fluctuations and a larger U is required to stabilize the
AFM order. Also, for the same reason, the AFM order does not
survive for very small values of J̃ and thus the UN at which the
AFM order is lost by a continuous transition decreases. These
two transition points, namely UAF (point of first-order phase
transition) and UN (point of second-order phase transition),
come close as T increases. There is a tricritical point which
separates the two lines of first- and second-order transitions.
For � = 1.0t , from the CTQMC data we have generated, the
tricritical point seems to lie on the top of the dome of AFM
region shown by a black point in the top-right panel of Fig. 12,
but, to be certain about this, the calculations need to be done
on a finer mesh of U/t values.
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VI. DISCUSSION AND CONCLUSION

In conclusion, in this paper we have presented several new
results from a DMFT study of the IHM at half filling, i.e., the
Hubbard model in the presence of a staggered potential, which
makes the system a BI for U = 0. As we turn on the on-site
repulsion U in this BI, first an AFM order sets in via a first-
order transition at U = UAF . This is followed by a quantum
phase transition to a HM AFM phase at U = UHM > UAF . For
still larger values of U , this system becomes an AFM I. Up to
moderately strong values of U (e.g., U/t = 6.0 for � = 1.0t),
the IPT captures the effects of electron-electron correlations
quite well and yields essentially the same results as CTQMC.
However, in the extremely correlated regime, where U � �,t ,
DMFT + IPT does not work well, as becomes clear when one
does a finite temperature study. At any finite T , while the
IPT continues to show only one first-order phase transition
at which the AFM order turns on, the CTQMC shows, in
addition, a second, continuous transition back to a PM phase,
with its physics determined by the Heisenberg model. As T

increases, the values of U corresponding to the first- and the
second-order transitions approach each other, shrinking the U

range for which the long-range AFM order is stable. There is
a line of tricritical point Ttcp that separates the two surfaces
of first- and second-order phase transitions. To the best of our
knowledge, this feature of the IHM has not been discussed
earlier in the literature.

Recently there has been a DMFT + CTQMC study [19]
of the half-filled IHM within the PM sector, which shows a
first-order phase transition between Mott insulator and metallic
phases terminating at a critical point, just as in the Hubbard
model at half filling. However, this critical point lies inside the
dome of the AFM region shown in top right panel of Fig. 12 and
will be realized only if the AFM order is suppressed, either
by lowered dimensionality (e.g., quasi-2D systems) or due
to frustration (e.g., by the presence of next-nearest-neighbor
hopping, or a frustrated lattice). We hope to study these issues
in future work. At the end we would like to mention that
recently the IHM has been realized in ultracold fermions [20]
on a 2D honeycomb lattice and it can be extended to
higher dimensional layered honeycomb lattice by introducing
perpendicular hopping. Though our numerical study is on the
Bethe lattice of infinite connectivity, we expect the qualitative
physics to be the same for any bipartite lattice in d � 2, which
has a compact DOS like the DOS of the Bethe lattice of infinite
connectivity. By choosing a large-enough �, it might be
possible to realize an AFM phase for the IHM in experiments
where the AFM order turns on with a first-order transition
and is lost by a second-order transition by tuning U . It would
be interesting to look for signatures of the various effects we
have discussed, including the quantum phase transition, in the
experimental measurements in such systems.
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APPENDIX A

To characterize the nature of a phase transition, one
normally studies its hysteresis behavior. We have solved the
DMFT + IPT self-consistent equations, first starting from
small U value and increasing U (AF-I) and then starting
from large U value and decreasing U (AF-II). We see a
clear hysteresis in the behavior of staggered magnetization
ms and δn. In Fig. 13, we have shown results for the staggered
magnetization for � = 1.0t . We see that in the AF-I solution,
ms becomes nonzero for U > 3.0t . On the other hand, in
AF-II solution, ms remains nonzero up to U = 3.2t . To get the
transition point UAF , we compare the ground-state energy in
the PM phase with that in the AF-I solution and AF-II solution.

Figure 14 shows the ground-state energy for � = 1.0t as
a function of U/t . For U < 3.0t , the PM phase is stable. For
U > 3.0t , Egnd for the AF-I sector becomes lower than the
ground-state energy in the PM phase. Notice that the Egnd of
the AF-II sector becomes lower than the Egnd of the PM sector
for larger value of U/t . Thus, the AFM state becomes stable
when for the first time ms becomes nonzero coming from the
small U side. We call this point UAF , which gives the boundary
between PM BI and the AFM phase in Fig. 2.

APPENDIX B

For the model in Eq. [1] of the paper, the self-energy within
the HF approximation is given by


A,σ = U 〈nA,↓〉 = U

2
[1 − δn + σms],


B,σ = U 〈nB↓〉 = U

2
[1 + δn − σms]. (B1)

Here ms = (mzA − mzB)/2 is the staggered magnetization
with mzα = nα↑ − nα↓ and α = A,B is the sublattice index.
δn = (nB − nA)/2 is the staggered occupancy, i.e., the differ-
ence in the filling factor of the two sublattices.
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FIG. 14. (Color online) The ground-state energy Egnd plotted as
a function of U/t for � = 1.0t . The red curve is Egnd obtained by
solving the DMFT + IPT equation for the model in Eq. (1) in the spin-
symmetric sector while the blue and the green curves show the Egnd

obtained by solving the DMFT + IPT equations in the AFM sector.
The blue curve is obtained by solving the self-consistent equations
coming from the small U side and the green one is obtained coming
from the large U side. The AFM order sets in for U > UAF = 3.0t ,
for which the Egnd of the AFM sector is lower than that for the PM
sector.

Since the bare Green’s function (with U = 0) is given by

Ĝ0σ (k,iωn) =
(

iωn + � + μ −εk

−εk iωn − � + μ

)−1

, (B2)

the HF corrected Green’s function is given by

Ĝσ (k,iωn) =
(

iωn + gσ + μ̃ −εk

−εk iωn − gσ + μ̃

)−1

. (B3)

Here μ̃ = μ − U
2 = 0 is the chemical potential and gσ = � −

U
2 (δn + σms), which gives a gap Egσ = |gσ | in the single-
particle spectrum of σ spin component. Using this Green’s
function, one gets the following self-consistent equations for
the physical quantities defined above:

ms = 1

2

∫
dερ0(ε)

∑
σ

σgσ

Eσ (ε)
{f [Eσ (ε)] − f [−Eσ (ε)]},

(B4)

δn = 1

2

∫
dερ0(ε)

∑
σ

gσ

Eσ (ε)
{f [−Eσ (ε)] − f [Eσ (ε)]},

(B5)

n = 1

2

∫
dερ0(ε)

∑
σ

{f [Eσ (ε)] + f [−Eσ (ε)]}. (B6)

Here Eσ (ε) = √
ε2 + g2

σ , f [Eσ (ε)] = 1
exp{β[Eσ (ε)−μ̃]}+1 is the

Fermi function, and ρ0(ε) is the bare DOS of the lattice under
consideration.

We have solved the self-consistent equations for the Bethe
lattice of infinite connectivity and the results obtained at half
filling (n = 1) and zero temperature are as follows. For small
U/t the system is a BI with ms = 0 and a nonzero δn. At
U = UAF a first-order phase transition takes place with a jump
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m
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FIG. 15. (Color online) (Top) Plots of ms and δn vs U/t for � =
1.0t and n = 1 within the HF theory. (Bottom) Spectral gap Egσ for
the up- and down-spin components within the HF theory. As soon as
the magnetic order turns on, both Eg↑ and Eg↓ start increasing with
U/t . Thus, the HM phase, seen in the DMFT calculation just after the
onset of the AFM order, is missing here and the system is an AFM I
for all U > UAF .

in ms to a nonzero value as shown in Fig. 15. For U > UAF ,
the system is an AFM I. Figure 16 shows the phase diagram at
half filling within the HF theory. For comparison we have also
shown the phase diagram within DMFT + IPT at half filling.
The threshold UAF required to turn on the magnetization is
smaller in the HF theory as compared to its value within the
DMFT + IPT. This is because quantum fluctuations captured
in DMFT are missing in the HF theory; as an effect, the

 0
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FIG. 16. (Color online) Phase diagram at half filling at T = 0 for
Bethe lattice of infinite connectivity. Red circles are the data obtained
from DMFT + IPT study while the blue circles are the data obtained
from the HF theory.
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magnetic order survives up to smaller values of U . However,
the HF phase transition line approaches the DMFT line as �/t

gets smaller. The bottom panel of Fig. 15 shows the spectral
gaps Egσ . Just after the AFM order sets in, the spectral gaps
for both spin components start increasing with U/t , which is
in contrast to what is seen in the DMFT calculation, where the
gap for one of the spin components keeps decreasing with U/t

even for U > UAF , leading to a HM point at UHM > UAF .
Thus, within the simple HF theory, where the self-energy is
independent of ω, there is no HM phase at half filling.

APPENDIX C

The ground-state energy within the HF theory is

Egnd = −
∑

k

E↑(εk) −
∑

k

E↓(εk) − U
∑

α=A,B

〈nα↑〉〈nα↓〉,

(C1)

where, as before, Eσ (εk) =
√

g2
σ + ε2

k with gσ = � − U
2 (δn +

σms). The last term in Egnd can be reexpressed as U
2 (δn2 −

m2
s ). Following the GL theory, we do the Taylor series

expansion of Egnd for small ms :

Egnd ∼ E0 + m2
sE

′′(ms = 0) + m4
sE

′′′′(ms = 0) + · · ·

= E0 + a

2
m2

s + b

4
m4

s + c

6
m6

s + · · · . (C2)

Here E′′ is second derivative of Egnd and so on. To decide
about the nature of the phase transition, it is sufficient to
look at the signs of the coefficients a, b, and c [21]. For
b,c > 0, if a > 0, ms = 0 is the only point of minima of the
ground-state energy. As a changes sign, the system undergoes
a second-order phase transition to the magnetically ordered
phase with m2

s = 1
2c

(−b + √
b2 − 4ac). For c > 0 and b < 0,

we have a first-order phase transition at b = −4
√

ca/3, where
the magnetization ms changes discontinuously by the amount
( 3a

c
)1/4.
Expressions for the GL coefficients in the Taylor series

expansion of the ground-state energy in Eq. (C2) are given
below:

E0 = −2
∑

k

E(εk) − U

2
δn2,

a

2
= U + 2

(
U

2

)2 ∑
k

1

E(εk)
[r2 − 1],

b

4
= 6

(
U

2

)4 ∑
k

1

[E(εk)]3
[1 − 6r2 + 5r4],

c

6
= 90

(
U

2

)6 ∑
k

1

[E(εk)]5
[−1 + 15r2 − 35r4 + 21r6].

Here E(εk) = Eσ (εk)|ms=0 =
√

ε2
k + g2, with g = gσ |ms=0 =

� − U
2 δn and r = g

E(εk) .
We have numerically calculated the coefficients a, b, and

c and found that for all values of � and U/t studied, c

is always positive, while b is always negative. a > 0 for
U < U1 and becomes negative for U > U1, where the value

of U1 depends upon �/t . For the Bethe lattice of infinite
connectivity, the integrals involved in the above equations can
be done analytically and we get the following expressions for
the GL coefficients

a

2
= U+ (U/2)2

πt2

[
4gE

(
− 4t2

g2

)
−4

(2t2 + g2)

g
K

(
− 4t2

g2

)]

b

4
= 8(U/2)4

πt2g(4t2 + g2)

[
(g2 − 4t2)E

(
−4t2

g2

)

− (g2 + 4t2)K
(

−4t2

g2

) ]
,

c

6
= 96(U/2)6

πt2g3(4t2 + g2)4

[
c1(g)E

(
−4t2

g2

)

− c2(g)K
(

−4t2

g2

) ]
, (C3)

with c1(g) = 32 + 32g2 + 18g4 − g6 and c2(g) = 16 +
24g2 + g4 − g6. Here K(x) = ∫ π/2

0 [1 − xsin2(θ )]−1/2dθ is
the complete elliptic integral of the first kind and E(x) =∫ π/2

0 [1 − xsin2(θ )]1/2dθ is the complete elliptic integral of
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FIG. 17. (Color online) Plots of the GL coefficients a, b, and c

vs g for U = 2.0t . One can see that a changes sign as g increases,
while b < 0 and c > 0 for all values of g.
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the second kind. Figure 17 shows the plots of GL coefficients
a, b, and c [obtained from Eq. (C3)] vs g for a fixed value of
U . As g → 0, K(− 4t2

g2 ) → 0, while E(− 4t2

g2 ) → ∞. Thus, for
g < 2t , which is the regime of interest, b is always negative.

Thus, following the GL approach [21] we conclude that the
transition from the PM BI to the AFM phase in the half-filled
IHM is always of first order in nature, even for very small
values of �/t .
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