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We consider two spin-1/2 fermions in a two-dimensional magnetic system that is close to the O(3) magnetic
quantum critical point (QCP) which separates magnetically ordered and disordered phases. Focusing on the
disordered phase in the vicinity of the QCP, we demonstrate that the criticality results in a strong long-range
attraction between the fermions, with potential V (r) ∝ −1/rα , α ≈ 0.75, where r is the separation between
the fermions. The mechanism of the enhanced attraction is similar to the Casimir effect and corresponds to
multimagnon exchange processes between the fermions. While we consider a model system, the problem
is originally motivated by the recent establishment of magnetic QCP in hole-doped cuprates under the
superconducting dome at doping of about 10%. We suggest a mechanism of magnetic critical enhancement
of pairing in cuprates.
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I. INTRODUCTION

In the present paper, we study the interaction between
fermions mediated by magnetic fluctuations in the vicinity
of a magnetic quantum critical point. To address this generic
problem, we consider a specific model of two holes injected
into a bilayer antiferromagnet. The results presented below
demonstrate that critical magnetic fluctuations lead to a long-
range Coulomb-like attraction between the holes.

Our interest to this problem is motivated by cuprates.
Lying at the center of the debate of high-Tc superconductivity
is whether it originates from a Fermi liquid or from a
Mott insulator. Recent experimental data, including angle-
resolved photoemission spectroscopy (ARPES) support a
Mott insulator scenario in underdoped cuprates and show a
transition from small to large Fermi surface in the hole doping
range 0.1 < x < 0.15, see Refs. [1–3]. Magnetic quantum
oscillations (MQO) in underdoped YBa2Cu3O6+y also support
the small pocket scenario [4], in contrast to the large Fermi
surface observed on the overdoped side [5]. Besides that, the
existence of hole pockets is consistent with the picture of
a dilute gas of holes dressed by spin fluctuations, based on
doping a Mott insulator [6].

Optimally doped and overdoped cuprates do not have any
static magnetic order. On the other hand, the underdoped
cuprates possess a static incommensurate magnetic order at
zero temperature. A magnetic QCP separating these two
regions was predicted in Ref. [7] at doping x ≈ 0.1. In
La2−xSrxCuO4, the QCP is smeared out because of disorder.
However, in YBa2Cu3O6+y , the QCP is located experimentally
with neutron scattering, nuclear magnetic resonance wipeout
and muon spin rotation (μSR) at doping x ≈ 0.09 (y ≈ 0.47)
[8–10]. At larger doping, after crossing the QCP, the (quasi-)
static magnetic ordering vanishes and becomes fully dynamic.

It is widely believed that superconducting pairing in
cuprates is driven by a magnetic mechanism. The most
common approach is based on the spin-fermion model in the
frame of normal Fermi liquid picture (large Fermi surface).
Within this approach electrons interact via exchange of an
antiferromagnetic (AF) fluctuation (paramagnon) [11]. The
lightly doped AF Mott insulator approach, instead, necessarily

implies small Fermi surface. In this case, holes interact/pair
via exchange of the Goldstone magnon [12]. Due to the
strong on-site Hubbard repulsion both approaches result in
the d-wave pairing of fermions.

Magnetic criticality can significantly influence supercon-
ducting pairing. This idea has been recently considered by
Wang and Chubukov [13] in the context of electron doped
cuprates. There are also some earlier works referenced in
Ref. [14]. However, to the best of our knowledge, all the
previous works imply a normal liquid with a large Fermi
surface. This might be a reconstructed Fermi surface which
emulates small hole pockets [15], but still in essence this is
a weak coupling normal Fermi liquid like approach. A large
Fermi surface to a significant extent reduces the importance of
the magnetic criticality for the pairing.

In this work, we consider two holes injected in the 2D
“rigid” Mott insulator, so in essence our approach implies a
small Fermi surface. Using a somewhat intuitive language,
one can say that there are few holes in this regime and
many more virtual magnons. In this case, the influence of
the magnetic criticality on the coupling between two fermions
is the most dramatic and the Casimir bag physics can fully
manifest itself. As a Mott insulator host we use the bilayer
antiferromagnet with magnetic fluctuations driven by the
interlayer coupling. We consider the bilayer model for the sake
of performing a controlled calculation. However, we believe
that conceptually our conclusions are equally applicable to
the single-layer and multilayer cuprates. The model presented
here has only commensurate magnetic ordering, so we put
aside incommensurability in cuprates.

The model under consideration demonstrates spin-charge
separation at the QCP [16]. It means delocalization of hole
spin due to dressing by a divergent magnon cloud. The effect
of spin-charge separation points out to the nontriviality of the
pairing problem. We are not aware of any other models of
fermion pairing that incorporate the physics of spin-charge
separation.

In order to probe the interaction between two fermions, we
consider spin fluctuations in the system, keeping the fermions
to be immobile and spatially localized, just as magnetic
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impurities. In the very end of the paper, we argue that the
mobility of fermions does not influence our conclusions, at
least as soon as the fermion hopping amplitude is sufficiently
small. Our calculations show that the single-magnon exchange
becomes irrelevant close to the QCP. Instead, we obtain strong
interfermion attraction in singlet and triplet spin channels due
to the Casimir effect [17]. Each of the fermions (holes) builds
up a “bag” of quantum magnetic fluctuations. The fermions
attract each other, sharing a common bag and reducing the
energy of the magnetic fluctuations inside of the bag. A “spin-
bag” mechanism of attraction in the antiferromagnetic Neel
phase was suggested by Schrieffer, Wen, and Zhang [18] in
the context of high-Tc superconductivity. Another mechanism
of Casimir magnetic attraction was proposed by Pryadko,
Kivelson and Hone [19], but this suggestion is more a “van
der Waals magnetic force” than a bag. Our model/mechanism
is significantly different from previous suggestions, it is a real
bag significantly based on the magnetic criticality. To make
the semantics more clear, we underline the following points:
(i) in the conventional single-magnon exchange mechanism,
there is one magnon per two fermions; (ii) in the van der
Waals like Casimir mechanism, there are two magnons per
two fermions; and (iii) in the bag mechanism, there are very
many magnons per two fermions. It is worth noting that the
spin-bag model has conceptual similarity to QCD bag models
for nucleon binding such as MIT [20] and chiral bags [21] that
have being extensively studied from 1970’s till now.

The structure of the paper is following. In Sec. II, we
introduce a bilayer J − J⊥ antiferromagnet, which is a simple
but instructive model and contains all the essential physics of
magnetic criticality. In Sec. II A, we characterize the magnetic
quantum critical point driven by interlayer coupling J⊥/J

and describe magnon excitations for an undoped AF in the
disordered phase in the frame of spin-bond mean-field theory.
Next, in Sec. II B, we move to the hole-doped J − J⊥ model
and show how holes interact with magnons. In Sec. III, which
is the main content of the paper, we consider the hole-hole
pairing problem at the QCP and show that pairing can not
be described in terms of one-magnon exchange. In Sec. III A,
we develop an effective theory for the Casimir interaction of
the fermions, considering a double-fermion “atom,” which can
be either in a singlet or a triplet state. In Sec. III B, we present
the results of solution to Dyson’s equations for singlet and
triplet Green’s functions and finally show how the binding
energy in both spin channels depends on the interfermion
distance r . Finally, we draw our conclusions in Sec. IV and
provide supplementary material in Appendix.

II. MODEL

Our model system is a J − J⊥ square lattice bilayer Heisen-
berg antiferromagnet at zero temperature, where magnetic
fluctuations are driven by interlayer coupling J⊥ (see Fig. 1).

The Hamiltonian of the undoped host AF reads

HJ,J⊥ = J
∑
〈i,j〉

(
S(1)

i · S(1)
j + S(2)

i · S(2)
j

) + J⊥
∑

i

S(1)
i · S(2)

i .

(1)

FIG. 1. (Color online) Bilayer J − J⊥ antiferromagnet model.
Two black dots on the top layer represent holes.

The superscripts (1) and (2) in Eq. (1) indicate the layers,
〈i,j 〉 denotes summation over the nearest-neighbor sites. Here,
S(1)

i = 1
2c

†
iμ,1σμνciν,1 is the spin of an electron at site i on the

top plane and c
†
iσ,1/ciσ,1 is the creation/annihilation operator of

an electron with spin σ = ↑,↓ at site i, σμν are Pauli matrices.
The Hamiltonian describes the antiferromagnetic coupling in
each layer as well as between the two layers. It is known that
without holes (half-filling) the model has an O(3) magnetic
QCP at J⊥/J = 2.525 (see Refs. [22–25]) separating the AF
ordered and the magnetically disordered phase of spin dimers.
Note that since we consider the zero-temperature case, the
magnetic ordering in the AF phase is consistent with the
Mermin-Wagner theorem. We dope the first layer with two
holes. For simplicity, we set the hopping integrals equal to zero,
therefore the holes are immobile. The holes interact with each
other via magnetic fluctuations of the spins, i.e., exchanging
by magnons.

In the subsections A and B of the current section, we will
briefly present formalism that describes magnon excitations
and hole-magnon interaction on the basis of the bilayer model.
For more detailed explanations, see Ref. [16]; a reader which
is not interested in these technical details can go directly to
Sec. III.

A. Magnons at QCP

The magnetic excitations in the magnetically disordered
phase are magnons, which are also called triplons in literature.
In the present paper, we will use terms magnons and triplons
as synonyms. To describe the magnons, we employ the
spin-bond operator mean-field technique. This approach has
been previously applied to quantum disordered systems such
as bilayer antiferromagnets, spin chains, spin ladders, Kondo
insulators, etc. [26–31]. It is known [27,28] that this simple
technique gives the position of the QCP at (J⊥/J )c ≈ 2.31,
which is close to the exact value (J⊥/J )c = 2.525 known from
quantum Monte Carlo calculations [22,23], series expansions
[24], and involved analytical calculations with the use of the
Brueckner technique [25]. The spin-bond technique being
much simpler than the Brueckner technique has sufficient
accuracy for our purposes.

The bond-operator representation describes the system in
a base of pairs of coupled spins on a rung, which can either
be in a singlet or triplet (triplon) state. So, we define singlet
s
†
i and triplet (t†ix,t

†
iy,t

†
iz) operators that create a state at site i

with spin zero and spin one, which is polarized along one of
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the axes (x,y,z). The four types of bosons obey the bosonic
commutation relations. To restrict the physical states to either
a singlet or triplet, the above operators are subjected to the
constraint

s
†
i si +

∑
α

t
†
iαtiα = 1. (2)

In terms of these bosons, the spin operators in each layer
S(1)

i and S(2)
i can be expressed as

S
(1,2)
iα = 1

2 (±s
†
i tiα ± t

†
iαsi − iεαβγ t

†
iβ tiγ ), (3)

see Ref. [32]. Substituting the bond-operator representation of
spins defined in Eq. (3) into the HJ,J⊥ in Eq. (1), we obtain

HJ,J⊥ = H1 + H2 + H3 + H4,

H1 = J⊥
∑

i

(
−3

4
s
†
i si + 1

4
t
†
iαtiα

)
,

H2 = J

2

∑
〈i,j〉

(s†i s
†
j tiαtjα + s

†
i sj tiαt

†
jα + H.c.),

(4)
H3 = J

2

∑
〈i,j〉

iεαβγ (t†jαt
†
iβ tiγ sj + H.c.),

H4 = J

2

∑
〈i,j〉

(t†iαt
†
jβ tiβ tjα − t

†
iαt

†
jαtiβ tjβ).

The Hamiltonian (4) contains quadratic, cubic, and quartic
terms in magnon operators t . The most important for us are
the quadratic terms, because they provide quantum criticality.
The only effect due to the nonlinear terms H3 and H4 is
the renormalization of parameters near the QCP, such as the
position of the QCP, magnon velocity, magnon gap, etc. This
does not affect physics at the QCP, and therefore we will
neglect these terms in further considerations.

The next step for treating the Hamiltonian (4) is to account
for the hard-core constraint (2). It could be done by introducing
an infinite on-site repulsion of triplons; however, this technique
is quite involved. Another, more simple, way is to employ a
mean-field approach, accounting for the constraint (2) via a
Lagrange multiplier μ in the Hamiltonian:

HJ,J⊥ → HJ,J⊥ − μ
∑

i

(s†i si + t
†
iαtiα − 1). (5)

Further analysis is straightforward. We replace singlet op-
erators by numbers, 〈s†i 〉 = 〈si〉 = s̄ (Bose-Einstein conden-
sation of spin singlets), and diagonalize the quadratic in t

Hamiltonian by performing the usual Fourier and Bogoliubov
transformations:

tiα =
√

1

N

∑
q

eiqri (uqbqα + vqb
†
−qα). (6)

Here, N is the number of spin dimers in the lattice; the
diagonalized Hamiltonian reads

Hm(μ,s̄) = E0(μ,s̄) +
∑

q

ωqb
†
qαbqα, (7)

where ωq =
√

A2
q − 4B2

q and coefficients Aq = J⊥
4 − μ +

2J s̄2γq , Bq = J s̄2γq . Here, we define

γq = 1
2 [cos(qx) + cos(qy)]. (8)

The lattice spacing is set to unity. The ground-state energy

E0(μ,s̄) = N

(
−3J⊥s2

4
− μs̄2 + μ

)
+ 3

2

∑
q

(ωq − Aq)

(9)
just shifts the energy scale, and therefore is irrelevant for our
purposes. The Bogoliubov coefficients uq and vq are given by

uq =
√

Aq

2ωq

+ 1

2
, vq = −sign(Bq)

√
Aq

2ωq

− 1

2
. (10)

The parameters μ and s̄ are determined by the saddle point
equations: ∂E0(μ,s̄)/∂μ = ∂E0(μ,s̄)/∂s̄ = 0. A solution to
these equations gives the position of the QCP at J⊥/J = 2.31
and values of “chemical potential” μ = −2.706 and singlet
density s̄ = 0.906. We see that even at the QCP, s̄ is close
to unity, which again justifies the smallness of the nonlinear
terms H3 and H4 in the Hamiltonian.

The dispersion of magnons is

ωk =
√

c2(k − Q)2 + 
2, Q = (π,π ) (11)

in the vicinity of the wave-vector Q, here, 
 is the magnon
gap and c is the velocity of magnons c = 2J s̄2 = 1.64J ,
where the more precise value is c = 1.9J , see Ref. [24]. In
the AF ordered phase, the magnons are Goldstone bosons and
thus necessarily gapless. On the contrary, in the disordered
phase, the gap opens up and the spin-bond approach gives

 ∝ (J⊥ − J⊥,c), which is not far from the prediction for
O(3) universality class systems 
 ∝ (J⊥ − J⊥,c)ν with critical
index ν = 0.71 (see Ref. [33]). So, the spin-bond method
provides a reasonably accurate description of the QCP.

B. Hole-magnon interaction

We dope our system with two immobile holes, by removing
two electrons from the upper plane of the bilayer antiferromag-
net. Hence we define the hole creation operator a

†
iσ with spin

projection σ = ↑,↓ by its action on the spin singlet bond |s〉:
a
†
i↑|s〉 = c

†
i↑,2|0〉, a

†
i↓|s〉 = c

†
i↓,2|0〉, (12)

where |0〉 is vacuum. The electron creation/annihilation
operator in the upper plane can be expressed in terms of
hole creation/annihilation operators a

†
iσ /aiσ (see Ref. [29]),

and after substitution in (1) it gives the following part of the
Hamiltonian, which describes the hole-magnon interaction

Hhm = −J s̄

2

∑
〈i,j〉

{(tj + t†j )σ i + (ti + t†i )σ j }

−J

2

∑
〈i,j〉

i(σ i[t
†
j × tj ] + σ j [t†i × ti]). (13)

Here, σ i = a
†
iμσμνaiν . The first line in the Hamiltonian (13)

corresponds to the hole-magnon interaction vertex. The terms,
describing a hole-double-magnon vertex, which come from
the second line of (13) will be neglected below, because
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= + +

+ . . .

FIG. 2. Dyson’s equation for single-hole Green’s function in self-
consistent Born approximation. Solid and wavy lines correspond to
hole and magnon Green’s functions.

they are irrelevant in the infrared limit, see next section for
explanation of this point. Performing again standard Fourier
and Bogoliubov transformations (6), the Hamiltonian (13) can
be rewritten as

Hhm ≈
∑

i

σ α
i

∑
q

gq(bqαeiqri + b†qαe−iqri ). (14)

The hole-magnon vertex is equal to

gq = − J s̄√
N

γq(uq + vq). (15)

Note that at the QCP the vertex diverges at q → Q = (π,π ),
because of the singularity of Bogoliubov coefficients uq,vq ∝
1/

√
ωq → ∞.

The divergence of gq is crucial for the physics of fermion-
magnon coupling at the QCP. In fact, it results in the
phenomenon of spin-charge separation for the single-fermion
problem [16]. The spin of the hole is distributed in the
power-law divergent cloud of magnons and, in this sense,
is separated from the charge of the hole, localized on the
hole’s site. Later in the paper, we will show that the infrared
divergence of the fermion-magnon coupling at the QCP results
in strong power-law attraction between the fermions.

The importance of spin-charge separation for the single-
fermion problem at the QCP could be seen from an analysis
of the analytical structure of the hole Green’s function. The
standard approach in order to calculate one-fermion Green’s
function is to use 1/N expansion for the O(N ) group, where
N = 3 is the number of magnon components. Summation of
leading terms in the expansion arises in self-consistent Born
approximation (SCBA), see Fig. 2.

Calculations of the hole Green’s function in the disordered
phase in SCBA have been performed in Refs. [34,35]. The
results show that away from the QCP, in the disordered
magnetic phase, the quasiparticle pole in the fermion Green’s
function is separated by 
 from the incoherent part of the
Green’s function. However, when approaching the QCP, the
Green’s function instead of the normal pole has just a branch
cut singularity. This is a consequence of the infrared singularity
of the coupling constant gq .

The spectral density of the fermion Green’s function (see
Fig. 3) has inverse square root behavior

G(ε) ∝ 1/
√

ε0 − ε (16)

in the vicinity of the singularity point ε0 and the quasiparticle
residue is approaching zero, Z ∝ √


, at the QCP. Here,

ε0 ≈ −0.97J (17)

−1
/
π
Im

{G
(

)}

FIG. 3. (Color online) Spectral function −1/π Im[G(ε)] of a
single immobile hole obtained in SCBA (see Ref. [35]). The green
dashed curve corresponds to the QCP (
 = 0), and the black solid
line corresponds to the magnon gap 
 = 0.1J . Note that at the QCP
the quasiparticle pole disappears.

is the position of the branching point of the Green’s function
and has a meaning of fermion energy shift due to the interaction
with magnons, where we set the bare energy of the hole to zero.

III. HOLE-HOLE INTERACTION, MEDIATED
BY MAGNONS

Now we are ready to move to the actual problem of magnon
mediated pairing of fermions and demonstrate new results.
Adding up magnon Hamiltonian Hm, Eq. (7) and hole-magnon
interaction Hamiltonian Hhm, Eq. (14), we arrive to an effective
Hamiltonian for two interacting holes, located at the sites with
coordinates r1 and r2,

Heff =
∑

q

ωqb
†
qαbqα +

∑
i=1,2

σα
i

∑
q

gq(bqαeiqr i + b†qαe−iqr i ).

(18)

The Hamiltonian (18) is applicable only if the distance
between holes r = |r1 − r2| > 1, as long as we put aside direct
exchange interaction between two neighboring holes.

The effective model (18) can be formulated in the language
of a field theory. In fact, it is equivalent to the problem of two
spin-1/2 fermions coupled to a vector field φ(r), described by
O(3)-symmetric theory with Lagrangian

L= 1

2
(∂tφ)2 − c2

2
(∇φ)2 − 
2

2
φ2 − λ(φ(r1)σ 1 + φ(r2)σ 2),

(19)

where λ is the coupling constant of fermion spin to magnon
field. We focus only on the disordered magnetic phase, and
therefore assume 
2 � 0.

We would like to make three comments concerning the
techniques and approximations we use in the present work. (i)
We use SCBA as the main technical tool. The approximation
is justified by the small parameter 1/N , where N = 3,
corresponding to the O(3) symmetry group. Application
of this method to the single-impurity problem [35] gives
results extremely close to that obtained within the more
conventional renormalization group approach [34]. (ii) We
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λΓω=0

λΓω=0

q, ω = 0

√
Z

√
Z

√
Z

√
Z

FIG. 4. One-magnon exchange diagram that provides a fermion-
fermion interaction potential V

(1)
int (q). Note that the renormalization

factor
√

Z should be referred to each fermion line. Fermion-magnon
vertices also come renormalized λ → λ
ω=0.

neglected the self-action of magnons, the term ∝ φ4 is dropped
in Eq. (19). There is no doubt that the self-action influences
the position of the QCP, it also influences the critical index
in the gap dependence, 
 ∝ (J⊥ − J⊥,c)ν . However, as soon
as we express our answers in terms of 
, the self-action is
getting insignificant compared to the noncrossing diagrams
accounted within SCBA. It can be illustrated by the single-
impurity Green’s function (16), the noncrossing diagrams
dramatically reduce the fermion quasiparticle residue from
Z = 1 to Z ∝ 
1/2, the anomalous dimension is 1/2. On the
other hand, the magnon self-action only slightly influences
the magnon quasiparticle residue, Z = 1 → Z ∝ 
η, the
anomalous dimension is η = 0.033 [33]. (iii) We neglect the
second line in the interaction (13). The simplest way to justify
this is to use the field-theory language. In this language, the
second line has the following kinematic form, σ · [φ × ∂tφ].
Because of the time derivative, the term is infrared irrelevant.

Parameters of the Lagrangian (19) could be directly
expressed via parameters of the initial lattice Hamiltonian (1).
As an example, the coupling constant λ in (19) is related
to the hole-magnon vertex gq in the effective Hamiltonian
(18) as gq = λ/

√
2ωq . Hence, for the Heisenberg bilayer

model, λ ≈ 2J
√

c. This equivalence shows that the problem
of fermion pairing at the QCP, we are considering here, is
generic. It has implications far beyond the particular bilayer
model.

In order to calculate the pairing energy between two
fermions, we first consider one magnon exchange contribution,
Fig. 4. According to Feynman rules, we obtain the interaction
potential

V
(1)

int (q) = −λ2Z2
2
ω=0

〈σ 1σ 2〉
c2(q − Q)2 + 
2

. (20)

The factor Z2 comes from Z1/2 for each external fermion line.
The vertex λ
ω=0 comes from diagrams in Fig. 5, λ → λ
ω=0.
Here, ω is the frequency of the exchange magnon, which is
equal to zero. In the coordinate representation, the potential
reads

V
(1)

int (r) = − λ2

2πc2
Z2
2

ω=0 cos( Qr)〈σ 1σ 2〉K0

(
r


c

)
,

(21)

λΓω

q, ω

= + + . . .

FIG. 5. The fermion-magnon vertex.

where K0 is the Macdonald function of zeroth order. The
potential energy V

(1)
int (r) ∝ ln(r) is logarithmic at small dis-

tances r < c/
 and it exponentially decays at r > c/


as V
(1)

int (r) ∝ e−r
/c. The spin-dependent prefactor 〈σ 1σ 2〉 =
2[S(S + 1) − 3/2] is determined by the total spin of two
fermions S and equals to −3 in a singlet channel and +1
in a triplet channel. The potential is attractive in the state with
a total spin zero (one) when

Pr = cos( Qr) = (−1)rx+ry (22)

is negative (positive) and repulsive in the opposite case (r =
rxex + ryey). This fact has clear physical meaning and reflects
the AF character of spin correlations in the antiferromagnet.
The system tends to restore AF ordering and the state when
the spins of two interacting holes are aligned according to
an antiferromagnetic pattern (see Fig. 6) is energetically
preferable.

When we approach the QCP, the quasiparticle residue as
well as the magnon-hole vertex tend to zero: Z ∝ √


 →
0 and 
ω=0 ∝ 
1/6 → 0 (see discussion in Sec. II B and
Ref. [35]). Thus the single-magnon exchange contribution
given by (21) vanishes, because the potential V

(1)
int is propor-

tional to Z2
2
ω=0 → 0. Does this imply that pairing between

fermions becomes very weak close to the QCP? Our answer is
no, on the contrary, the pairing becomes very strong, but it is
due to the Casimir bag mechanism.

Casimir effect attraction has different limits/regimes. The
simplest one is the “van der Waals” regime, which is relevant
to the van der Waals force between two neutral atoms. In this
regime, the quasiparticle residue remains large, Z ≈ 1, and the
attraction is described by the box diagrams shown in Fig. 7;
this approach to this effect was developed by Dzyaloshinsky
[36]. The number of intermediate magnons is just two, it is
equal to the number of fermions. The mechanism of Casimir
magnetic attraction between impurities suggested in Ref. [19]

FIG. 6. (Color online) Dependence of spin channel, which pro-
vides attraction between holes on a mutual positioning of the holes
in the lattice. Two holes with spins up symbolically represent
a triplet channel, which provides negative interaction energy for
Pr = (−1)rx+ry = +1, two holes with opposite spins represent a
singlet channel, which results in attraction when Pr = −1.
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+

FIG. 7. The box diagrams for a two-magnon exchange between
fermions. Note that the renormalization factor

√
Z should be referred

to each external fermion line.

for antiferromagnetically ordered phases belongs exactly to
this regime. In this phase, the fermion’s quasiparticle residue
is practically unchanged due to the Adler’s relation, and the
attraction is described by simple box diagrams, see Ref. [37].

The diagrams in Figs. 4 and 7 contain
√

Z per each external
leg. While the presence of

√
Z is a textbook statement [33], it

is important to understand where it comes from. The origin is
the quasiparticle description, these diagrams generate effective
potentials/interactions between quasipraticles. As soon as the
interaction is established, it is used in Schrodinger equation,
Lippmann-Schwinger equation, or BCS equation. Obviously,
the techniques based on the quasiparticle approach are not
applicable in the case when Z → 0 and the spectral weight
becomes fully incoherent. To the best of our knowledge, the
only known technique that does not refer to quasiparticles is
Bethe-Salpeter equation (BSE), which operates with a two-
fermion Green’s function with amputated legs. Unfortunately,
all known applications of BSE, for example, binding of
positronium [38], in the end assume quasipraticles with
nonzero residue. While, in principle, the BSE approach is
applicable to our problem, all our attempts to apply the method
were unsuccessful because of a large number of two-fermion
irreducible diagrams with multiple magnon exchanges.

To solve the Casimir bag problem we have developed
a diagramatic method, which we call the “Lamb-shift”
technique. Similar to BSE in the Lamb-shift technique we also
operate with a two-fermion Green’s function. The advantage
of BSE is that it is generic and in principle it is independent of
the large parameter N . On the other hand, the Lamb-shift
technique is the large N expansion by construction. The
advantage of the Lamb-shift technique is that it allows us
to solve the multimagnon problem.

A. The Lamb-shift technique for calculation
of Casimir interaction

In this section, we introduce a new technique to treat
Casimir pairing energy. To incorporate “Casimir effect”
physics, we consider a composite two-fermion “atom,” which
has total spin either zero (singlet state) or one (triplet state).
Next, we calculate the Lamb shift in energy of this composite
atom due to radiation of magnons as a function of separation
between fermions.

Let us consider the effective theory for the composite object.
The creation operator for a singlet state is

�
†
S = 1√

2
(a†

1↑a
†
2↓ − a

†
1↓a

†
2↑) (23)

and for a triplet state

�
†
T ,x = −1√

2
(a†

1↑a
†
2↑ − a

†
1↓a

†
2↓),

�
†
T ,y = i√

2
(a†

1↑a
†
2↑ + a

†
1↓a

†
2↓),

�
†
T ,z = 1√

2
(a†

1↑a
†
2↓ + a

†
1↓a

†
2↑).

(24)

According to the selection rules for interaction of the atom
with a magnon, there are three types of transitions: S → Tα ,
Tα → Tβ , and Tα → S, where S means singlet state and
Tα denotes triplet state with polarization α. The only one
invariant kinematic structure that provides coupling between
S and T ,α states with emission (absorption) of one magnon
is {gST (q)�†

T ,α�S(bqα + b
†
qα) + H.c.}. In a similar way, a

transition of the type Tα → Tβ is governed by the term
igT T (q)εαβγ �

†
T ,α�T,β(bqγ + b

†
qγ ). The coefficients gST (q)

and gT T (q) are coupling constants for these transitions.
Therefore the interaction of the two-fermion system with a
magnon field in the singlet-triplet representation reads

H =
[
δαβ�

†
T ,α�S

∑
q

gST (q)(bqβ + b
†
qβ) + H.c.

]

+ iεαβγ �
†
T ,α�T,β

∑
q

gT T (q)(bqγ + b†qγ ). (25)

The effective vertices can be calculated by evaluating the
matrix elements of the Hamiltonian (18) between states (23)
and (24) :

gST (q) = g∗
T S(q) = 2igq sin

(qr
2

)
,

(26)
gT T (q) = 2gq cos

(qr
2

)
.

Let us define the retarded Green’s function for the singlet
and triplet states:

GT,αβ(t2 − t1) = −i〈0|�T,β (t2)�†
T ,α(t1)|0〉θ (t2 − t1),

GS(t2 − t1) = −i〈0|�S(t2)�†
S(t1)|0〉θ (t2 − t1), (27)

where |0〉 is a ground state of the system and the theta
function is

θ (t) =
{

1, t > 0;

0, t < 0.
(28)

Due to the O(3) rotational invariance, the triplet Green’s
function should be of the form GT,αβ(t) = δαβGT (t). Note that
our definition of the Green’s functions GS(t2 − t1), GT (t2 − t1)
assumes that the fermions, which constitute the composite
atom, are both created at the same moment of time t1 and
then both annihilated at the moment t2. Apart from several
other technical details, the creation/annihilation at the same
time is the major difference of our technique from BSE.
Fourier transform of Eq. (27) gives the Green’s functions in
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ΣS( ) =

ΣT ( +=)

FIG. 8. Diagrams for singlet �S(ε) and triplet �T (ε) self-energies
in SCBA. The double dashed line and dashed line represent a
double-fermion Green’s function in singlet and triplet channels,
correspondingly. Analytical expressions for the diagrams are given
in Eq. (31).

the frequency representation:

GS,T (ε) =
∫ ∞

0
dtei(ε+i0)tGS,T (t) . (29)

The Dyson’s equations for singlet and triplet state Green’s
functions read

GS,T (ε) = 1

ε − �S,T (ε) + i0
. (30)

We use SCBA to evaluate singlet and triplet self-energies:

�S(ε) =3
∑

q

|gST (q)|2GT (ε − ωq),

�T (ε) =
∑

q

|gST (q)|2GS(ε − ωq)

+ 2
∑

q

|gT T (q)|2GT (ε − ωq).

(31)

The diagrams for the singlet and triplet self-energies are
presented in Fig. 8. The combinator factors here come from
contraction of the corresponding tensor structures of the
coupling vertices in (25) and have a meaning of the number of
the polarizations of intermediate states.

Note that unlike the scattering amplitude (20), expressions
(31) for the two-fermion self-energy do not contain single-
fermion quasiparticle residues. Similar to the one-fermion
problem, the residue of the composite atom Green’s function is
zero at the QCP. However, it is not a problem now, because we
are interested only in the position of singularity of the Green’s
function, i.e., in two-fermion pairing energy.

Note also that the Dyson’s equations (30) and (31) for the
two-fermion system include processes when the fermions are
dressed by magnons, as well as processes with (multi-)magnon
exchanges between the fermions. Therefore the Lamb-shift
approach implicitly accounts for the incoherent part of single-
fermion Green’s function, which is crucial in the vicinity of
the QCP.

B. Solution to Dyson’s equations for singlet and triplet states
and hole-hole interaction energy

In order to find the interaction energy of two fermions, we
numerically solve the system of two Dyson’s equations (31) in
the square Brillouin zone for different interfermion separations
r , measured in units of lattice spacings. The energy grid in our
computation is 
ε = 10−3J . The zero approximation Green’s

function is G
(0)
S,T (ε) = 1/(ε + i0) and for artificial broadening

we take +i0 → i10−3J . In order to perform numerical
integration in Eq. (31), we can directly integrate over a square
Brillouin zone, or introduce an effective momentum cutoff
and integrate analytically over the angle in the momentum
space and then integrate over the radial component of the
momentum |q ′| = |q − Q| � �q ≈ 1 numerically. We have
checked that there is a good agreement between these two
methods. However, the effective momentum cutoff method
is much more efficient for numerics and provides better
precision of the computations, therefore we mostly used the
later approach.

The limit r → ∞ of infinite separation between the
fermions corresponds to the case when the vertices in equations
(31) are substituted by the averaged ones over q oscillations
|gST (q)|2,|gT T (q)|2 → 2|gq |2. The position of the singularity
of triplet and singlet Green’s functions gives us the energy E∞
of the two-fermion system separated by infinite distance. It
is clear that in such limit the Green’s functions in both spin
channels should coincide GS(ε) = GT (ε), which guarantees
the same value for the asymptotic energy E∞ in singlet and
triplet states. So, we refer to the interaction energy as a
difference Vint(r) = E(r) − E∞.

We found that the value E∞ ≈ −1.55J (at the QPC)
is about 20% smaller compared to the doubled energy of
an isolated single hole 2ε0 ≈ −1.94J , see Eq. (17). This
difference is due to the fact that certain diagrams, which are
presented in SCBA for a single-hole Green’s function, are not
included in SCBA for the two-hole Green’s function GS,T (see
Fig. 9). This deviation shows the precision of our method,
which can be improved by calculating 1/N corrections to
SCBA (31).

As it is seen from the structure of effective vertices,

|gST (q)|2 = 2g2
q(1 − Pr cos q ′r),

|gT T (q)|2 = 2g2
q(1 + Pr cos q ′r),

(32)

the system’s behavior greatly depends on the “parity” Pr =
(−1)rx+ry of the interfermion distance. The holes prefer to
form a singlet (triplet) spin state for negative (positive) parity
Pr at given r .

First, let us consider the case, when the system is away from
the QCP, 
 > 0. We plot spectral functions

AS,T (ε) = − 1

π
Im[GS,T (ε)] (33)

(a) (b)

FIG. 9. Diagrams contributing to E∞. Top and bottom solid
lines correspond to a single-hole Green’s function. Diagram (a) is
accounted in SCBA (31), diagram (b) is not included in (31) and
corresponds to the 1/N correction to SCBA.
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A

S
,T

(
)

A
S

,T
(

)

)b()a(r = 4 r = 5

FIG. 10. (Color online) Spectral functions AS(ε), AT (ε) of
double-fermion Green’s functions in singlet and triplet channels close
to the QCP (
 = 0.08J ). (a) corresponds to interhole distance r = 4
and (b) corresponds to r = 5. Blue dashed lines correspond to a triplet
state, red solid lines correspond to a singlet state.

for singlet and triplet Green’s functions at different r , see
Figs. 10(a) and 10(b).

We see a well defined quasiparticle peak in the triplet
(singlet) spin channel at r = 4 (r = 5). However, in the
opposite spin channel, the peak broadens and submerges to
continuum. This effect can be interpreted as a formation of an
excited decaying state, which is coupled via magnons to the
ground state.

In Fig. 11, we plot the fermion-fermion interaction energy
versus distance. The inset displays the interaction energy
when the system is away from the QCP (the magnon gap is
large, 
 = 0.67J ). Squares and triangles show results of our
Lamb-shift technique calculations and solid lines represent the
single-magnon exchange formula (21). There is an excellent
agreement between the two approaches. The main part of
Fig. 11 shows the same quantities, but close to the QCP
(the magnon gap is small, 
 = 0.08J ). Here, we observe a
dramatic disagreement between the result of the Lamb-shift

V
in

t
(r

)/
J

r

Δ = 0.08J

Δ = 0.67J

FIG. 11. (Color online) Interaction energy of two holes Vint(r)
at finite magnon gaps as a function of interhole distance r . Red
trangles and blue squares show the results of the Lamb-shift technique
in singlet and triplet states. Red and blue solid lines represent the
theoretical prediction from one-magnon exchange mechanism (21)
for singlet and triplet channels. The main plot corresponds to small
magnon gap (
 = 0.08J ), the inset corresponds to a large magnon
gap (
 = 0.67J ).

A
S

,T
(

)
A

S
,T

(
)

(a)

(b)

r = 4

r = 5

r = 20

r = 21

FIG. 12. (Color online) Spectral functions AS(ε), AT (ε) of
double-fermion Green’s functions in singlet and triplet channels at the
QCP (
 = 0). In (a), the main plot corresponds to interhole distance
r = 4, the inset plot to r = 20. In (b), the main plot corresponds to
r = 5, the inset plot corresponds to r = 21. Red solid lines show a
singlet state and blue dashed lines show a triplet state.

technique and the single-magnon exchange potential (21). The
single-magnon exchange approximation fails in the vicinity of
the QCP.

Let us now consider the most interesting case of pairing
between fermions at the QCP (
 = 0). As in the case of a
single fermion at the QCP, the Green’s functions GS(ε) and
GT (ε) have just power-law cuts, instead of quasiparticle peaks,
with a branching point E = E(r), see Figs. 12(a) and 12(b).
The position E(r) of the branching point gives the ground-
state energy of the system. The spin channel of the ground
state is specified by the spin state in which the Green’s function
is singular at E(r). The state, in which the Green’s function is
not singular, corresponds to a decaying state. The imaginary
part of both singlet and triplet Green’s functions emerges at
the same branching point E(r) for any fixed r (see Fig. 12).
This is due to transitions between the states with emission of
soft magnons with ωq → 0. In Fig. 12(b), we see a distinct
discontinuity of both singlet and triplet spectral functions at
the same branching point E(r). In Fig. 12(a), the branching
points also coincide, but a singlet spectral function has small
spectral weight in the vicinity of the branching point.

Our results for the interaction energy Vint(r) at the QCP
as a function of distance r , obtained within the Lamb-shift
technique, are presented in Fig. 13. We see from the data
that the interaction between two fermions is attractive, when
the parity Pr is negative (positive), see Fig. 6. The binding
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V

in
t
(r

) /
J

r

FIG. 13. (Color online) Interaction energy Vint(r) of two holes at
the QCP, 
 = 0. Red trangles and blue squares show the results of
the Lamb-shift technique for singlet and triplet states. Red and blue
solid lines represent power-law fits Vint(r) = −a/rα for singlet and
triplet channels. The main plot corresponds to SCBA, in the inset,
we represent Vint(r), which includes the first 1/N correction to the
SCBA. The exponent for all curves is approximately α ≈ 0.75.

becomes stronger at smaller interfermion distances r . The
interaction energy has a power-law form:

Vint(r) = −a/rα, α ≈ 0.75 (34)

with prefactor a ≈ 0.3J , where α and a are found from the
least-square fit of our numerical data. The values for prefactor
a and power exponent α are slightly different for the singlet
(a = 0.3J , α = 0.76) and triplet (a = 0.33J , α = 0.74) cases.
The variations of the values of a and α are negligible within
the accuracy of our calculations.

In the inset in Fig. 13, we show Vint(r), which includes
vertex corrections to SCBA (31). Leading in 1/N corrections
for the singlet and triplet self-energy δ�S and δ�T are
presented in Appendix [see diagrams in Fig. 14 and formulas
(A1) and (A2)]. These corrections increase binding by about
20%, leaving the critical index α almost unchanged. Thus we
conclude that corrections in 1/N to SCBA do not change the
qualitative and quantitative picture, given by SCBA.

From our calculations, we observe a very strong long-range
attraction between fermions in the vicinity of the QCP. We
clearly see that one magnon exchange contribution to the
interaction energy vanishes at the QCP. On the contrary,
accounting for multimagnon exchange processes, we obtain
significant binding in singlet and triplet channels. We calculate
the attraction energy due to multimagnon exchange processes
as a Lamb shift of energy of a two-fermion atom due to
emission of multiple magnons. The fermions interact, sharing a
common bag of magnetic fluctuations and reducing the energy
of fluctuations inside of the bag. Therefore the physics of
interfermion attraction in the vicinity of the QCP is due to the
Casimir bag mechanism.

C. Influence of mobility of fermions

How the mobility of fermions influences the considered
mechanism? We do not have a full answer to this question
yet. However, we do understand that the mobility does not
influence the Casimir bag mechanism as soon as the fermion
hopping amplitude is sufficiently small. The fermion hopping
influences the dynamics in two ways: (i) it leads to additional
terms in the fermion-magnon vertices (15) and (26) and (ii)
hopping leads to a fermionic kinetic term in the Hamiltonian
(18).

(i) The hole-magnon vertex with account of hoppings has
been calculated in Ref. [16]. An important point is that the
hopping induced term in the vertex has an additional power of
the momentum transfer compared to the term considered in the
present work. Therefore the hopping induced term is infrared
irrelevant and hence, as it has been demonstrated in Ref. [16],
hopping does not influence the spin-charge separation at the
QCP. For the same reason, the hopping induced term in the
vertex does not influence the magnon bag Casimir attraction.

(ii) The kinetic energy of the fermions, which is quadratic in
the momentum of the fermion, is suppressed at small momenta
comparing to the linear magnon kinetic term, and therefore is
negligible at the QCP [16,39]. However, the fermion mobility
imposes limitations on the time formation of the magnon bag.
To address this issue, we distinguish the nearest-neighbor
hopping t and the next-nearest-neighbor hopping t ′. The
hopping t leads to mixing between singlet and triplet pairing
channels and therefore the effect of this hopping requires a
special analysis. However, the hopping t ′ does not lead to such
mixing. Therefore, in a model with the following hopping
parameters, t = 0, t ′ �= 0, and with hopping less then the depth
of the potential Vint(r): t ′ < 0.3J , the binding problem is very
simple. One has to solve the Lippmann-Schwinger equation
with a kinetic energy due to t ′ and with the attraction given
by Eq. (34). Obviously, the solution gives a strong binding. Of
course, the set of parameters, t = 0, t ′ �= 0, and t ′ < 0.3J , is
not the most physically interesting one. However, the example
demonstrates that in principle the mobility is consistent with
the Casimir bag mechanism.

IV. CONCLUSIONS

In conclusion, we considered the interaction between two
spin-1/2 fermions embedded in a two-dimensional antifer-
romagnetic system at the QCP, which separates ordered
and disordered magnetic phases. As a model system we
study a bilayer antiferromagnet at T = 0 with two injected
holes, in which magnetic criticality is driven by interlayer
coupling. We have shown that in the vicinity of the QCP the
interaction between fermions can not be described by simple
one-magnon exchange, unlike the case when the system is
away from the QCP. The interaction mechanism is similar
to the Casimir effect and is due to multimagnon exchange
processes. To incorporate features of Casimir physics, we
developed an approach, which we call a Lamb-shift technique.
We considered a composite two-fermion atom and calculated
its energy shift (Lamb shift) provided by radiation of magnons.
We found strong attraction between the fermions in spin singlet
and triplet states depending on the parity of the interfermion
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distance r , which is positive (negative) for even (odd) r .
Positive (negative) parity corresponds to attraction in triplet
(singlet) channel. The attractive potential has a power-law form
Vint(r) ∝ −1/rα with the exponent α ≈ 0.75.

We suppose that our work sheds light on the influence of
magnetic criticality on fermion pairing mediated by magnons.
We also believe that our results are conceptually applicable to
cuprates.
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APPENDIX: LEADING 1/N CORRECTIONS TO SCBA
FOR TWO-FERMION GREEN’S FUNCTION

Let us consider 1/N corrections to the self-energies �S(ε)
and �T (ε), calculated in self-consistent Born approximation
[see Eq. (31)]. In order to do this, we account for vertex
corrections δ�S(ε) and δ�T (ε) to self-energies obtained in
SCBA, the corresponding diagrams are shown in Fig. 14. The
vertex correction to the singlet self-energy reads

δ�S(ε) = 3
∑
q,k

|gST (q)|2|gST (k)|2GT,qGT,kGS,qk

−6
∑
q,k

gST (q)g∗
ST (k)gT T (k)g∗

T T (q)

×GT,qGT,kGT,qk. (A1)

The combinator factors come from contractions of the corre-
sponding tensor structures of the effective vertices in Eq. (25).

δΣS( ) =

δΣT ( +=)

+

+

FIG. 14. Diagrams for the leading 1/N corrections δ�S(ε) and
δ�T (ε) (a) to singlet and (b) to triplet self-energies. Double dashed
line and dashed line represent two-fermion Green’s functions in the
singlet and triplet channels, respectively.

In a similar way, the vertex correction to the triplet self-energy
is given by

δ�T (ε) =
∑
q,k

|gST (q)|2|gST (k)|2GS,qGS,kGT,qk

− 2
∑
q,k

gT T (q)g∗
T T (k)g∗

ST (q)gST (k)GT,qGT,kGS,qk

+ 2
∑
q,k

|gT T (q)|2|gT T (k)|2GT,qGT,kGT,qk. (A2)

Here, we are using shorten notations Gn,q = Gn(ε − ωq),
Gn,k = Gn(ε − ωk), and Gn,qk = Gn(ε − ωq − ωk) for the
singlet and triplet Green’s functions (n = S,T ). One can check
that in the limit r → ∞, the correction δ�S will be suppressed
by the factor 1/N = 1/3 with respect to �

(2 loop)
S,T calculated in

SCBA within a two-loop approximation.
The relative shift of binding energy, calculated with and

without vertex correction, does not exceed 20%. It can be
considered as a confirmation of applicability of the 1/N
expansion for the effective Lamb-shift theory described by
the Hamiltonian (25).
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