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Thermodynamics of the Bose-Hubbard model in a Bogoliubov+U theory
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We derive the Bogoliubov+U formalism to study the thermodynamical properties of the Bose-Hubbard model.
The framework can be viewed as the zero-frequency limit of bosonic dynamical mean-field theory (B-DMFT), but
equally well as an extension of the mean-field decoupling approximation in which pair creation and annihilation
of depleted particles is taken into account. The self-energy on the impurity site is treated variationally, minimizing
the grand potential. The theory containing just three parameters that are determined self-consistently reproduces
the T = 0 phase diagrams of the three-dimensional and two-dimensional Bose-Hubbard model with an accuracy
of 1% or better. The superfluid to normal transition at finite temperature is also reproduced well and only slightly
less accurately than in B-DMFT.
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I. INTRODUCTION

The properties of cold atomic gases trapped in an optical
lattice can be tuned and controlled very precisely, providing
a powerful tool for the simulation of the iconical low-
energy effective Hamiltonians of condensed-matter models
[1]. Dramatic experimental progress in this field, such as the
observation of the Mott insulator to superfluid phase transition
in the Bose-Hubbard model [1] or the recent realization of the
Hofstadter model [2], have galvanized the condensed-matter
community.

The accuracy of cold atom experiments has laid bare the
need for advanced numerical methods in order to tackle
these correlated many-body systems quantitatively. In one
dimension the density matrix renormalization group (DMRG)
[3–6] works very well, while in higher dimensions the
numerical complexity represents a problem. Very successful
also in higher dimensions have been path integral quantum
Monte Carlo (QMC) simulations with worm-type updates
[7], leading to identical results for the Bose-Hubbard model
as observed in experiment [8,9]. Despite all its impressive
successes for bosonic systems, the worm algorithm suffers
from a prohibitive sign problem when cold atoms are subject
to (artificial) gauge fields. In such cases no algorithm is known
that works and one is forced to resort to approximations. This
has been a main driving force for the development of bosonic
dynamical mean-field theory [10,11] (B-DMFT).

In B-DMFT, as in standard mean-field theory, the many-
body system is projected onto a single impurity, keeping only
the local propagators. This provides us with a model in which
the self-energy and the local propagators can be determined
self-consistently by solving an effective impurity action and
a self-consistency condition iteratively. At the moment it
has only been formulated for single-site impurities, but the
ultimate goal is to formulate it for small clusters that can
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also deal with larger unit cells. It is known that B-DMFT
provides excellent agreement [of the order of 1% in three
dimensions (3D)] with experimental and QMC data [10] for
the standard Bose-Hubbard model and improves remarkably
on static mean-field theory. B-DMFT is hence a promising
candidate to deal with more complicated dispersions: The
hope is that it deals with the local interactions as accurately
as in the standard Bose-Hubbard model whereas a small
cluster could treat the full dispersion. Furthermore, one would
expect that a cluster method goes beyond real-space DMFT
for multicomponent systems and systems with long-range
interactions and/or dispersions [12,13].

However, B-DMFT is numerically rather complex due to
the imaginary-time dependency of the hybridization term. At
finite temperature the impurity problem has to be solved by
continuous time Monte Carlo methods [10,11], where, due to
the difference in sign between the normal and the anomalous
Green’s function, a sign problem arises in the symmetry broken
phase.

In this paper, we filter out the ingredients of B-DMFT
that are indispensable for its accuracy and arrive at a simpler
formalism. This is the Bogoliubov+U theory (B + U ), which
makes use of a simplified effective impurity Hamiltonian,
similar to the action of extended mean-field theory, which was
recently developed in the high-energy community [14,15] but
differs conceptually from our formalism. B + U has a negligi-
ble computational cost and is not prone to numerical instabili-
ties. The premise of our theory is that the Bose-Hubbard model
can be fully characterized at zero temperature by the three
parameters φ, �11, and �12 (the condensate order parameter,
and the normal and the anomalous self-energy, respectively) if
the self-energy is treated as a variational parameter, providing
a far better approximation to finite-temperature properties than
simple mean-field theory. B + U can be seen as a simplified
B-DMFT where only a single Matsubara frequency is kept (and
is hence conserving). It is different from the variational cluster
approximation (VCA) by also considering nonzero values of
pair creation and annihilation of depleted particles [16]. It is
also the simplest accurate extension of the weakly interacting
Bose gas theory [17] to lattice systems with a superfluid to
Mott insulator transition. It further provides a very natural
framework compared to the collective quantum field theory
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developed by Kleinert et al. [18] and the two collective fields
proposed by Cooper et al. [19–21], and behaves quantitatively
much better. It has a similar functional degree of freedom as
the projector technique introduced by Trefzger and Sengupta
[22] for finite lattices. Among other methods which are used
to treat the Bose-Hubbard model are also the process chain
approach [23,24] and the quantum phase field U (1) rotor field
[25].

The paper is organized as follows. In Sec. II the B + U

formalism is derived for the Bose-Hubbard model in equilib-
rium, while in Sec. III the details of the variational calculation
of the optimal self-energy are shown. We furthermore sum-
marize the full self-consistent scheme of B + U and show
how thermodynamic quantities can be calculated from it in
Sec. IV, while some simple limits of B + U are explained
in Sec. V. In Sec. VI we present the results at zero and
finite temperature, comparing them with QMC and B-DMFT.
Finally, in Sec. VII we conclude and present a short outlook
about future applications of the B + U formalism.

II. SOLVER AND SELF-CONSISTENCY CONDITION

In this section we derive the B + U formalism for the
Bose-Hubbard model in equilibrium. In order to derive an
effective Hamiltonian, we start from the full Bose-Hubbard
Hamiltonian,

HBH = −J
∑
〈i,j 〉

b
†
i bj + U

2

∑
i

ni(ni − 1) − μ
∑

i

ni, (1)

where b
†
i is a bosonic single-particle creation operator on

lattice site i, ni is the particle-number operator, J denotes the
tunneling amplitude, U the on-site interaction, μ the chemical
potential, and 〈i,j 〉 means that we sum over nearest neighbors.
In order to determine the thermodynamic properties of the
system, we have to compute the condensate density and the
connected Green’s function, defined respectively as

φ = 〈b〉, (2)

Gi,j
c (τ ) = −〈�i(τ )�†

j (0)〉 + φφ†, (3)

with Nambu notation �i(τ ) = (bi (τ )
b
†
i (τ )

). The possibility of broken

U (1) symmetry forces bj to be expanded around its mean-field
value φ = 〈bj 〉 (which we take to be site independent and can
always be chosen real) by bj = φ + δbj . If we concentrate on
the site at the origin bo, the Hamiltonian can be rewritten as

H = Ho + Hext + �H,

Ho = U

2
no(no − 1) − μno − zJφ(bo + b†o), (4)

�H = −J
∑
〈i,o〉

(δb†i δbo + δb†oδbi),

where Hext contains all terms of the Hamiltonian (1) not
containing the origin “o.” The notation 〈i,o〉 means that we
sum over the nearest neighbors of o, and z is the coordination
number. We wish to separate the full partition function
Z = tr[e−βH ] as Z = ZextZo. Here, Zext is the full (and
unknown) partition of the system determined by the terms

in the Hamiltonian not involving the site o. It is treated as
an irrelevant number in the rest of the paper. The partition
function Zo contains the full local Hamiltonian Ho as well as
the correlations introduced by “ext” on the origin as follows,

Zo = tr[e−β(Ho+〈�H 〉Hext )]. (5)

We approximate the expectation value 〈�H 〉Hext by the
cumulant expansion

〈�H 〉Hext ≈ −J

〈∑
〈i,o〉

δ�
†
i δ�o

〉
Hext

− 1

2
J 2

〈∑
〈i,o〉

δ�
†
i δ�o

∑
〈j,o〉

δ�
†
j δ�o

〉
Hext

= 0 − 1

2
δ�†

o�δ�o, (6)

where 〈�H 〉 and 〈�H�H 〉 are rewritten in terms of Nambu
operators and � is an unknown 2 × 2 real-valued matrix
with two independent components �11 = �22 and �12 = �21

which describes a correction to the common mean-field
impurity Hamiltonian. The anomalous term �12, containing
processes of the type δb2, is explicitly taken to be finite in this
notation, since it is known from the Bogoliubov theory that
deep in the superfluid phase it becomes equally important to
the normal (diagonal) term �11, containing the δb†δb terms.
By (6) we arrive at the effective impurity Hamiltonian

HE = −1

2
δ�†

o�δ�o − zJφ(bo + b†o)

+ U

2
no(no − 1) − μno. (7)

As can be seen in the Appendix, this effective impurity
Hamiltonian is equivalent to B-DMFT in the limit

�(τ1 − τ2) → �δ(τ1 − τ2). (8)

Since � is independent on imaginary time, the Dyson equation
on the impurity has to be evaluated only for a single Matsubara
value. The Green’s function which mirrors the symmetry
relations assumed for � is the one evaluated at ωn = 0. The
central characteristic of B + U theory is that we demand
that the condensate and the (full) Green’s function of the
Bose-Hubbard model evaluated at o for zero (Matsubara)
frequency coincide with the one of system (7), i.e.,

φ ≡ 〈bo〉HE
, (9)

Go,o
c (ωn = 0) ≡ −〈(�o�

†
o)(ωn = 0)〉HE

+ φφ†. (10)

The paradoxical compatibility of Eqs. (10) and (8) is specific
for bosonic systems [see also below Eq. (11)]. The equations
constitute a self-consistency problem, whose solution also
fixes the factors �11 and �12. This can be solved in a unique
way if �[Gc,φ] is invertible, or, technically speaking, if the
Luttinger-Ward functional is unique. Since the static mean field
(i.e., the decoupling approximation with �11 = �12 = 0) is
always a solution, it is easy to convince oneself that multiple
(local) minima occur (cf. Ref. [26] for a recent discussion).
Nevertheless, we have been able to determine the physically
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correct solution without problem in all parameter regimes (see
below). In practice, one uses an iteration scheme to solve
the self-consistency problem. The factors �11 and �12 follow
from the Dyson equation on the impurity site at zero Matsubara
frequency,

� = �E(ωn = 0) + Gc,E(ωn = 0)−1 − μI, (11)

with an unknown self-energy �E. The connected Green’s
function on the impurity site Gc,E is calculated through the
full Green’s function on the lattice by

Gc,E(ωn = 0) = 1

(2π )d

∫
ddkG(ωn = 0,k), (12)

and the Dyson equation of the full lattice

G(ωn = 0,k)−1 = G0(ωn = 0,k)−1 − �E(ωn = 0), (13)

with the bare Green’s function given by G0(ωn,k)−1 =
[μ − ε(k)]I + iωnσ z, where ε(k) is the dispersion relation of
the lattice and ωn = 2π

β
n are the Matsubara frequencies.

The approximation (8) shows that the B + U theory has
the same functional form as the decoupling approximation in
the nonbroken phase. In that case only �11 is present but it
acts as a shift in chemical potential. For the broken phase, �11

and μ are combined with different operators. They control
the density of the condensed and depleted atoms, whereas
�12 mainly determines the anomalous density. According to
the Bogoliubov theory of the weakly interacting Bose gas,
the anomalous propagator is equally important (but opposite
in sign) as the normal propagator deep in the superfluid
phase. In this way, the deep superfluid regime is taken care
of appropriately in our formalism. The Mott localization is
enabled by the exact treatment of the density fluctuations on
the impurity.

III. VARIATION OF THE SELF-ENERGY

In order to solve the impurity problem, we consider the
minimization of its grand potential �[�,φ] with respect to its
self-energy �, as is also done in self-energy-functional theory
[27] and VCA [16]. The minimum with respect to the kinetic
condensate term zJφ, δ�

δ(zJφ) = δ�
δ(zJφ∗) = 0, is already taken

care of by the self-consistency condition (9). φ is thus kept
constant during the variational calculation of the self-energy.
We therefore have to minimize

δ�

δ�
= δ�

δ�11

δ�11

δ�
+ δ�

δ�12

δ�12

δ�
. (14)

We are able to find an analytic expression of δ�
δ�ij

, since
the grand potential is defined as �(�,φ) = −lnZ(�,φ), with
Z(�,φ) = Tr[e−βHE (�,φ)], giving us

δ�(�,φ)

δ�11
= 〈2φbo − no〉HE (�,φ) − |φ|2, (15)

δ�(�,φ)

δ�12
= 〈

2φbo − b2
o

〉
HE (�,φ) − |φ|2. (16)

After integration, this gives us the relation

�(�,φ) = A(�(�),φ) + B(�(�),φ) + C, (17)

with some irrelevant integration constant C and

A(�(�),φ) = δ�(�(�),φ)
δ�11

�11(�), (18)

B(�(�),φ) = δ�(�(�),φ)
δ�12

�12(�). (19)

In order to avoid unphysical results, we have to introduce
upper bounds on |�ij |. From (6) we see that � cannot exceed
the kinetic energy of a double hopping process of depleted
particles,

|�12| � |�11| � (zJ )2〈δb†oδbo〉. (20)

Furthermore, we require that for all momenta k G11(ωn =
0,k)−1 � −ε and det[G(ωn = 0,k)−1] � ε [where a small ε is
introduced for stability requirements when inverting the 2 × 2
matrix G(ωn = 0,k)−1 in (13)], giving us additional bounds
on the self-energy

�11 � μ + zJ + ε, (21)

|�12| �
√

(�11 − zJ − μ)2 − ε2. (22)

IV. FULL SCHEME AND OBSERVABLES

By combining Secs. II and III we can write down the full
self-consistent scheme for the B + U theory. Starting from an
initial guess for φ and � (usually the converged mean-field
values for � = 0), we calculate a new value for φ through
Eqs. (7) and (9). Then we search for the optimal value of
the self-energy by minimizing (17) while keeping φ constant.
This is done by varying � within the bounds (21) and (22)
and calculating �(�) by Eqs. (11)–(13), keeping in mind the
bound on � (20). Once the optimal value �opt is found, the
new value for �, �(�opt), is plugged into (7), from which
a new value for φ is calculated. This procedure is repeated
until convergence is reached. In the B + U self-consistency
all bonds adjacent to o are included in HE , whereas when
computing the quantities per site, all bonds have to be counted
only once. In order to calculate the correct thermodynamic
quantities per site once convergence is reached, one therefore
has to divide � by 2, giving us, e.g., for the density per site
〈n〉 = N/V ,

〈n〉 → 〈no〉HE (�/2,φ). (23)

We can further divide the Hamiltonian into a kinetic [upper
line in (7)] and a potential term [lower line in (7)], giving us
expressions for the kinetic and potential energy per site

Ekin = −1

2

(
�11〈δb†oδbo〉 + �12

〈
δb2

o

〉) − zJ |φ|2, (24)

Epot = U

2

(〈
n2

o

〉 − 〈no〉
) − μ〈no〉, (25)

where the total energy per site is given by Etot = Ekin + Epot.
It should further be noted that even though we do not need
to calculate G(τ ) explicitly in the solver and we do not
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include any retardation in our formalism, we can still calculate
correlation functions of the kind 〈A(τ )B(0)〉 by

〈A(τ )B(0)〉HE
= 1

Z
tr[e−(β−τ )HE Ae−τHE B], (26)

or directly in energy space through the eigenvalues of HE .
Since the B + U solver consists of a single impurity, in order
to compute momentum-dependent quantities, one has to resort
to the approximate expression

G(iωn,k)−1 = G0(iωn,k)−1 − �(iωn), (27)

with

�(iωn) = iωnσz + μI + � − Gc,E
−1(iωn). (28)

By a Fourier transformation this enables us to compute such
quantities as the momentum-dependent density

n(k) = −G(k,τ = 0+) − 1, (29)

or the critical quasiparticle and quasihole energies at zero
momentum εp/h which can be evaluated from the asymptotic
behavior of G(k = 0,τ ) at zero temperature through [28,29]

G(k = 0,τ ) →
{

Zpeεpτ , τ → +∞,

Zme−εmτ , τ → −∞,
(30)

where Zp = Zm − 1.

V. SIMPLE LIMITS

From relation (20) it is clear that � → 0 as J → 0.
Furthermore, also, as U goes to zero, � vanishes, since
〈δb†oδbo〉 → 0. Therefore, in both cases the mean-field limit
is recovered. In the case of U 	 J the mean-field limit is
consistent with the weakly interacting Bose gas theory [17],
where the self-energy is frequency independent as is the case
for B + U in our approach. Another simple limit of B + U is
the Bethe lattice for a semicircular density of states given by

D(ε) = 1

2πzJ 2

√
4zJ 2 − ε2, |ε| � 2

√
zJ, (31)

as was also implemented for B-DMFT [10,11], which reduces
the self-consistency of B + U to one single equation,

� = −zJ 2Gc,E(ω = 0). (32)

As can be seen in Sec. VI for the 3D case, this leads to good
agreement with the full self-consistency of a cubic lattice with
a much lower numerical cost, since the minimization routine
described in Sec. III is no longer necessary.

VI. RESULTS

In Fig. 1 the phase diagram at zero temperature is shown
for both a three-dimensional (3D) cubic and a two-dimensional
(2D) square lattice. We compare the results with mean-field
theory, path integral Monte Carlo simulations with worm-type
updates (QMC) from Ref. [28], and B-DMFT results from
Ref. [10]. The results are identical with the B-DMFT results
and agree within a percent with the QMC data both for
the 3D and the 2D cases. The results for a Bethe lattice
with coordination number z = 6 are shown as black dashed

FIG. 1. (Color online) (a), (b) Zero-temperature phase diagram
of a (a) 3D cubic and (b) 2D square lattice in the vicinity of the 〈n〉 = 1
Mott lobe calculated with B + U (red dots) compared with mean-field
(gray line) and QMC [28] (white boxes) results. For simplicity, the
B-DMFT results are not shown here, since they overlap with the QMC
data within 1% [10]. (c) Temperature-dependent phase diagram of a
3D cubic lattice with chemical potential μ/U = 0.4 calculated with
B + U (red dots), compared with mean-field (gray line), QMC [28]
(white boxes, mostly overlapping with B-DMFT) and B-DMFT [10]
(black triangles) results. The B + U results for a semicircular density
of states (Bethe lattice, z = 6) are shown as a black dashed line. The
systematic error bar is smaller than the size of the dots.

lines. As can be seen, for the 3D case the simplified self-
consistency for the Bethe lattice works very well, showing
deviations only near the tip of the Mott lobe. In Fig. 1(c)
the temperature-dependent phase diagram for μ/U = 0.4 is
shown and compared to B-DMFT, QMC, and mean-field
results for a 3D cubic lattice. In this case the lack of retardation
in the B + U formalism leads to a bigger deviation from
the B-DMFT results. However, the B + U results are still
far more precise than the ones obtained in static mean-field
theory. In Fig. 2 the temperature dependence of the superfluid
order parameter φ, the kinetic energy Ekin, and the total
energy Etot is shown and compared to mean field and QMC
for μ/U = 0.4 (〈n〉 ≈ 1) and U/J = 20. It should be noted
that, since the optimization in � is very sensitive close to
the phase transition, we cannot and wish not to make any
statements with respect to the order of the phase transition in
Fig. 2: A local theory such as B + U should be judged for its
accuracy on local observables and is by construction unable
to capture long wavelength physics. Information on critical
phenomena is hence outside its realm of applicability. The
kinetic energy is very accurate for low temperatures, but in
the normal phase we find a plateau just as in the decoupling
approximation. The corresponding local density 〈n〉 per site
is shown in Fig. 3 for the same parameters, where also
the full local Green’s function on the impurity in imaginary
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FIG. 2. (Color online) Temperature dependence of (a) the super-
fluid order parameter φ, (b) kinetic energy Ekin, and (c) total energy
Etot for μ/U = 0.4 (〈n〉 ≈ 1) and U/J = 20 in a 3D cubic lattice
calculated with B + U (red dots) compared with mean-field (gray
line) and QMC [28] (black boxes) results. The B + U results for a
semicircular density of states (Bethe lattice, z = 6) are shown as a
black dashed line. The systematic error bar is smaller than the size of
the dots.

time G(τ ) = −〈�o(τ )�†
o(0)〉

HE
calculated by (26) is shown

for the same parameters and temperature T/J = 1. In Fig. 4(a)
we plot the density in momentum space n(k) = ndp(k) + n0δk,0

for μ/U = 0.5 and different values of J/U at zero tempera-
ture, where ndp(k) are the depleted particles calculated from the
connected Green’s function and n0 = |φ|2 is the condensate
fraction. In Fig. 4(b) the quasiparticle and quasihole energies
in the Mott phase at zero momentum are extrapolated from the
imaginary-time dependence of the zero-momentum Green’s
function through (30) and compared to QMC results from
Ref. [29] and the analytic zeroth-order solution for U → ∞.
We see both good agreement with QMC for finite J/U as with
the strongly interacting limit for J/U 	 1.

FIG. 3. (Color online) (a) Temperature dependence of the local
density per site 〈n〉 for μ/U = 0.4 and U/J = 20 in a 3D cubic
lattice calculated with B + U (red dots) compared with mean-field
(gray line), Bethe lattice (dashed black line), and QMC [28] (black
boxes) results. (b) Imaginary-time dependence of the components
of the Green’s function on the impurity G(τ ) in the superfluid
phase for the same parameters and T/J = 1. The normal component
G11(τ ) = −〈bo(τ )b†

o(0)〉 is shown in black dots, while the anomalous
component G12(τ ) = −〈bo(τ )bo(0)〉 is shown in red squares.

FIG. 4. (Color online) (a) Momentum dependence of the density
n(k) at zero temperature for μ/U = 0.5 and different values of
J/U in the Mott (black, blue) and superfluid phase (red, green).
(b) Quasiparticle and quasihole energies at zero momentum εp/h in
the Mott phase at zero temperature for B + U (solid lines), QMC
[29] (squares), and the analytic zeroth-order solution for U → ∞
(dashed) for μ/U = 0.5 and zero temperature.

VII. CONCLUSION

We have presented the B + U framework for equilibrium
studies of the Bose-Hubbard model. It captures the low-energy
physics of a condensed phase as well as a Mott localization
transition when density fluctuations are strongly suppressed on
a lattice. The thermodynamics of local quantities of the Bose-
Hubbard model can be accurately reproduced everywhere in
parameter space by just three parameters φ, �11, and �12.
By treating the self-energy as a variational parameter which
minimizes the grand potential, B + U can reproduce both the
3D and 2D phase transition from the Mott to the superfluid
phase at zero temperature with an accuracy of about 1%
near the tip of the lobe and better elsewhere. The B + U

method can also be applied to finite-temperature systems
showing a strong improvement on the simple mean-field
limit but it is less accurate than B-DMFT in locating the
phase transition line. Just as B-DMFT, being a local theory,
it can of course never capture hydrodynamics. Due to its
simplicity and low computational cost, B + U is a powerful
tool which in the future could be extended to clusters in order
to study inhomogeneous or topologically nontrivial bosonic
systems, combining exact interactions on clusters, embedded
self-consistently in a lattice with any dispersion.

ACKNOWLEDGMENTS

We wish to thank M. Eckstein, H. U. R. Strand, and F.
A. Wolf for fruitful discussions. This work was supported by
FP7/ERC Starting Grant No. 306897 and FP7/Marie-Curie
Grant No. 321918.

APPENDIX: RELATION BETWEEN B + U AND B-DMFT

We start from the Hamiltonian (1), but instead of
Z = tr[e−βH ] we treat the partition function in the presence
of retardation as Z = tr[e−S] with the full action S
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given by

S =
∫ β

0
dτ

⎛
⎝∑

i

b
†
i (τ )∂τ bi(τ ) − J

∑
〈i,j 〉

b
†
i (τ )bj (τ )

⎞
⎠ +

∫ β

0
dτ

∑
i

(
U

2
ni(τ )(ni(τ ) − 1) − μni(τ )

)
. (A1)

As in Sec. II we expand bj (τ ) = φ + δbj (τ ) around its site- and imaginary-time-independent mean-field value φ, giving us

S = So + Sext + �S,

So =
∫ β

0
dτ

(
b†o(τ )∂τ bo(τ ) + U

2
no(τ )(no(τ ) − 1) − μno(τ ) − zJφ(b†o(τ ) + bo(τ ))

)
, (A2)

�S = −J

∫ β

0
dτ

∑
〈i,o〉

(δb†i (τ )δbo(τ ) + δb†o(τ )δbi(τ )),

and expand the full partition function as Z = ZextZo by

Zo = tr[e−So−〈�S〉Sext ]. (A3)

As with the Hamiltonian in Sec. II, we approximate the expectation value 〈�S〉Sext by the cumulant expansion,

〈�S〉Sext ≈ −
∫ β

0
dτJ

〈∑
〈i,o〉

δ�
†
i (τ )δ�o(τ )

〉
Sext

− 1

2

∫ β

0
dτdτ ′J 2

〈∑
〈i,o〉

δ�
†
i (τ )δ�o(τ )

∑
〈j,o〉

δ�
†
j (τ ′)δ�o(τ ′)

〉
Sext

= 0 −
∫ β

0
dτdτ ′ 1

2
δ�†

o(τ )�(τ − τ ′)δ�o(τ ′), (A4)

leading to the effective B-DMFT impurity action [10,11]

SE =
∫ β

0
dτ [b†o(τ )∂τ bo(τ ) − zJφ(bo(τ ) + b†o(τ ))] −

∫ β

0
dτdτ ′ 1

2
δ�†

o(τ )�(τ − τ ′)δ�o(τ ′)

+
∫ β

0
dτ

(
U

2
no(τ )(no(τ ) − 1) − μno(τ )

)
. (A5)

By the relation S[b,b†] = ∫ β

0 dτ {b†(τ )∂τ b(τ ) + H [b(τ ),b†(τ )]}, one can see that the action (A5) is equivalent to the effective
Hamiltonian (7) for the ansatz

�(τ − τ ′) → �δ(τ − τ ′). (A6)

In fact, (A6) reduces the Dyson equation of B-DMFT on the impurity to

iωnσz + μI + � − �(iωn) = Gc
−1(iωn). (A7)

If we now take the zero Matsubara frequency of this equation, we recover the B + U Dyson equation on the impurity (11).
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