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Population transfer in a Lambda system induced by detunings
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In this paper we propose a protocol to achieve coherent population transfer between two states in a three-level
atom by using two ac fields. It is based on the physics of stimulated Raman adiabatic passage (STIRAP), but
it is implemented with the constraint of a reduced control, namely, one of the fields cannot be switched off. A
combination of frequency chirps is used with resonant fields, allowing us to achieve approximate destructive
interference, despite the fact that an exact dark state does not exist. This chirped STIRAP protocol is tailored for
applications to artificial atoms, where architectures with several elementary units can be strongly coupled but
where the possibility of switching on and off such couplings is often very limited. Demonstration of this protocol
would be a benchmark for the implementation of a class of multilevel advanced control procedures for quantum
computation and microwave quantum photonics in artificial atoms.
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I. INTRODUCTION

Preparation of a quantum system in a well-defined state
is an essential task in many branches of modern physics
ranging from atomic and molecular physics [1] to quantum
computation [2]. Techniques for transferring population from
a ground state |0〉 to a state |1〉 employ either Rabi cycling or
adiabatic passage (AP) [3]. Among these latter, the stimulated
Raman adiabatic passage (STIRAP) is a three-level atom
scheme where selective and faithful population transfer is
achieved by operating with two resonant driving fields in
� configuration [3,4]. The advantage over Rabi cycling is
the dramatic reduction of sensitivity to fluctuations of the
parameters, at the expenses of a longer duration of the adiabatic
protocol. In more complex architectures, semiclassical driving
fields are substituted by harmonic modes of a strongly coupled
cavity, and tasks such as preparation of photons with controlled
amplitude, frequency, and polarization [5,6] can be performed
by vacuum-stimulated Raman AP (vSTIRAP).

In the last few years multilevel coherence in solid-state
systems, from mesoscopic devices [7] to atomiclike impurity
states [8], has been a fertile subject of investigation. In
particular, superconductivity-based “artificial atoms” [9–11]
are very promising, since they allowed the demonstration on
the mesoscopic scale of coherent phenomena proper of the
microscopic realm. With respect to their natural counterpart,
artificial atoms offer the advantage that composite structures
can be fabricated on a single chip [12], which allows manip-
ulation of single photons at gigahertz frequencies, opening
the new scenario of microwave quantum photonics [13].
Moreover, new architectures could be implemented with both
larger couplings [14] and a larger degree of integration than
their atomic counterparts.

In the last few years several theoretical proposals [15–21]
and experiments [22–25] have dealt with multilevel coherence
in artificial atoms. Distinctive features of such systems are
the effectiveness of parity selection rules [16,18,21], which
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together with the presence of strong 1/f noise [26,27], impose
constraints on the available control. Therefore new protocols
for manipulating the coherent dynamics must be tailored
for such systems. Their design requires that large couplings
allowing for efficient control are combined with protection
from noise [21].

In this paper we present a protocol to achieve coherent
population transfer between the two lowest excited states of a
three-level atom by using two ac fields. The key difference
with standard STIRAP, where ac fields must be switched
on and off in a counterintuitive sequence [4], is that one
of the fields is kept always on, its amplitude being constant
during the protocol. Operating with an always-on field requires
phase modulation, and for this reason we call the protocol
cSTIRAP (chirped STIRAP). Sweeping the frequency of a
single classical driving field across the resonance is a standard
way to switch on and off Rabi oscillations, thereby one may
think to rephrase STIRAP accordingly, but this is not the
case. Indeed, coherent population transfer requires destructive
interference of the two fields [3]. This is guaranteed by
cSTIRAP, which thereby solves a nontrivial control problem,
its experimental demonstration in artificial atoms being by
itself an important proof of principle of advanced three-level
control. Even more interestingly, cSTIRAP could apply to
architectures where “artificial atoms” are coupled to quantized
modes, electromagnetic or nanomechanical, where strong
coupling is achieved by nonswitchable hardware elements
keeping the interaction always on. The protocol we propose
possesses certain advantageous distinctive characteristics: (i) it
works with reduced available control, as an always-on field; (ii)
it operates with nearly resonant fields, reducing the operation
time; (iii) it may rely on better techniques to control the phase
of microwave circuits; and (iv) it is cyclic.

The paper is organized as follows. In Sec. II we introduce
the model Hamiltonian and briefly review standard implemen-
tations of coherent population transfer in two- and three-level
atoms. In Sec. III we illustrate the protocol, discussing in
Sec. IV the robustness against parametric fluctuations and, in
Sec. V, decoherence effects. Finally, in Sec.VI, along with the
conclusions, we will discuss the comparison of cSTIRAP with
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other protocols for population transfer operated by frequency
chirps.

II. COHERENT POPULATION TRANSFER
IN LAMBDA ATOMS

In two-level systems coherent population transfer |0〉 → |1〉
by AP is performed by shining a direct coupling field whose
detuning is swept through the resonance at the Bohr frequency
of the transition. Common examples are rapid AP (RAP) or
stark chirped RAP (SCRAP) [1].

In three-level systems population transfer may be achieved
in the absence of direct coupling, via a third linkage state |2〉,
coupled to |0〉 and |1〉 by a pump field at frequency ωp �
E2 − E0 and a Stokes field at ωs � E2 − E1, respectively.
In particular, the Lambda configuration depicted in the top
inset of Fig. 1 is considered in this work. Since |2〉 is usually
short lived, one of the goals of coherent techniques is to use
|2〉 but never populate it. This is achieved in a very efficient
and elegant way relying on destructive interference [3]. The
Hamiltonian in the rotating wave approximation, in the basis
of the bare states {|0〉,|1〉,|2〉}, is expressed in a doubly rotating
frame as

H =

⎡
⎢⎣

0 0 1
2�∗

p(t)

0 δ(t) 1
2�∗

s (t)
1
2�p(t) 1

2�s(t) δp(t)

⎤
⎥⎦, (1)

where �k(t) with k = p,s are the Rabi frequencies of the pump
and the Stokes fields, which are detuned by δp := E2 − E0 −
ωp and δs := E2 − E1 − ωs , respectively. A key quantity is
the two-photon detuning, defined as δ := δp − δs .

Conventional STIRAP relies on the fact that at two-photon
resonance, δ(t) = 0, an instantaneous eigenvector with zero
eigenvalue ε0 = 0 exists, given by

|D(t)〉 = �s(t)|0〉 − �p(t)|1〉√
�2

s (t) + �2
p(t)

. (2)

FIG. 1. (Color online) Main figure: single (colored lines) and
two-photon (dotted line) detunings in �0 units. Top inset: Three-level
Lambda system. Bottom inset: Zoom of the single- and two-photon
detunings (solid lines), plotted together with the Stokes eigenvalues
(dashed lines) of Eq. (6), showing the appearance of a dynamical
Stokes-induced AT, which is switched on and off by modulation
of δs .

It is called dark state, since population is confined in the
“trapped subspace” {|0〉,|1〉}, despite the fact that the two
fields excite both the 0 → 2 and the 1 → 2 transitions.
The key phenomenon preventing population of |2〉 is de-
structive interference between the amplitudes corresponding
to the two absorption patterns [1,3]. Conventional STIRAP
consists in letting the dark state evolve adiabatically from
|D(−∞)〉 = |0〉 to |D(∞)〉 = |1〉. This is achieved by shining
pulses �k(t) in a “counterintuitive” sequence, the Stokes
at first and then the pump. An important characteristic
of STIRAP is the fact that AP is operated when both
fields are on, determining a two-photon effective coupling
|0〉 ↔ |1〉. STIRAP has been observed in a variety of
physical systems [3,4]. The two-photon character of pop-
ulation transfer, and the fact that the protocol is maxi-
mally efficient with fully resonant fields, δ = δs = δp = 0,
is the key for interesting applications with quantized fields.

Another three-level technique, Raman chirped adiabatic
passage (RCAP) [28], uses phase modulation instead. Pop-
ulation transfer is achieved by two far off-resonance chirped
laser pulses sweeping through resonance (see Sec. VI). Unlike
conventional STIRAP, two-photon resonance is not kept
during the whole process, causing a transient population of
state |2〉 to appear. The latter in principle can be made small
by accurate tuning of parameters.

III. COHERENT POPULATION TRANSFER
WITH AN ALWAYS-ON FIELD

In this section we will address the problem of achieving
|0〉 → |1〉 population transfer subject to two constraints,
namely, (a) keeping the population of |2〉 small and
(b) operating with a reduced control, in particular with one
of the fields, for instance the Stokes field, kept always on,
�s(t) =: �0 �= 0. Naively, one could suppose that sweeping
the detuning δs(t) could allow one to effectively switch �s on
and off, allowing again for conventional STIRAP. However,
this is not the case because coherent population transfer
requires that the two-photon resonance condition δ = 0 be
kept while sweeping δs(t) to ensure destructive interference.
In what follows we will seek a solution which allows complete
population transfer to be achieved by properly shaping the
detunings.

First of all, when one of the fields is always on, the
Hamiltonian (1) for t → ±∞ is not diagonal in the bare state
basis. In order to approximate asymptotically the desired target
state |1〉, necessarily at the end of the protocol we must have
δs 	 �0. If we take detunings shaped as shown in Fig. 1,
which are given by

δs(t) = 1

2
hδ�0

[
tanh

(
t − τ

τch

)
+ tanh

(
t + τ

τch

)]
,

δp(t) = κδδs(t), (3)

the desired asymptotics is ensured by hδ 	 1, i.e., the
protocol must start and end with “far detuned” lasers. The
modulation (3) has the important characteristics that at least
for part of the protocol δ(t) = 0 (Fig. 1). During this phase, a
Stokes-induced Autler-Townes (AT) splitting opens. Although
an exact adiabatic dark state is not available for population
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transfer, we will argue later that keeping δ ≈ 0 allows one to
minimize the transient population of |2〉.

The population transfer mechanism is better understood by
studying the evolution of the instantaneous eigenvalues and
eigenvectors of the “Stokes” Hamiltonian, obtained by setting
to zero the pump field in Eq. (1):

Hs(t) =
⎡
⎣0 0 0

0 δ(t) 1
2�0

0 1
2�0 δp(t)

⎤
⎦ . (4)

Here the Rabi frequency has been taken real with no loss of
generality. The Stokes Hamiltonian acts nontrivially only on
the {|1〉,|2〉} subspace, yielding the asymptotic states

|s+(−∞)〉 � |2〉 → |s+(+∞)〉 � |1〉,
|s−(−∞)〉 � |1〉 → |s−(+∞)〉 � |2〉. (5)

The “Stokes eigenvalues” display the presence of the AT
splitting during the protocol (Fig. 1, bottom inset):

s0 = 0, s± = δ +
δs ±

√
δ2
s + �2

0

2
. (6)

During this AT phase, δs is swept across the resonance
swapping |1〉 ↔ |2〉.

Using detunings Eq. (3) with κδ > 1, the pattern of
split instantaneous eigenvalues s±(t) is crossed twice by the
eigenvalue s0 = 0, as shown in Fig. 2(a). Crossings occur at
times ±tc when s±(t) = 0, i.e., 4δ(tc)δp(tc) = �2

0. In these
conditions the system prepared in |ψ(−∞)〉 = |0〉 remains, of
course, in this state, passing through the crossing. Population
transfer is achieved by applying a finite area pump pulse
reaching its peak value close to the second crossing, t = tc.
For instance, employing a a Gaussian pulse, we have

�p(t) = κ �0e−( t−tc
T

)2
. (7)

The behavior is understood in terms of the instantaneous
eigenenergies of the full Hamiltonian Eq. (1). In particular,
the pump pulse lifts the degeneracy between s0 and s+,
turning their crossing into an avoided crossing [Fig. 2(a)]. The
adiabatic connection corresponding to s+ eventually yields the
desired population transfer, |0〉 → |s+(+∞)〉 � |1〉.

We remark that population transfer depends only on the
presence of a crossing between Stokes eigenenergies s+ and
s0, and on the fact that the adiabatic approximation is valid.
In this regime the precise shape of the pulses is not relevant.
Therefore the protocol is robust against imperfections in the
control. From the physical point of view it is worth stressing
that the pump pulse triggers AP by a two-photon process.
The distinctive feature of our proposal is that this two-photon
effective coupling is obtained with both quasiresonant pump
and Stokes fields. This ensures large efficiency for rather
small pulse duration. We mention that during its switching on
�p could in principle trigger unwanted transitions |0〉 → |2〉,
which are however suppressed by the Stokes-induced AT
splitting and the two-photon resonance condition. A similar
phenomenon occurs in standard STIRAP, where it is called

FIG. 2. (Color online) (a) Eigenvalues of the Stokes Hamiltonian
of Eq. (4) (dashed lines) and of the full Hamiltonian of Eq. (1) (solid
lines) in �0 units. The red thick line is the instantaneous energy of
the system adiabatically driven from |0〉 to |s+〉 � |1〉 through the
opening of the avoided crossing generated by the pump pulse (dotted
line) at time t = tc. (b) Population histories (red, blue, and green lines)
from the numerical solution of the Schrödinger equation, for �s(t) =
�0, �0T = 40, hδ = 10, κδ = 1.2 and κ = 1, τch = 0.6T , showing
complete population transfer by cSTIRAP. For these parameters the
adiabatic approximation (gray curves) fully agrees with the exact
solution. Inset: the exact population P2 of the excited state (green
solid line) is small at any time of the protocol, as can be estimated
by Eq. (8) (thin line). The dashed line refers to the approximation of
Eq. (A4).

the Stokes-induced EIT (electromagnetically induced trans-
parency) phase [3].

Summing up cSTIRAP can be described in the language of
Ref. [3] as a five-stage protocol, with successive far-detuned,
Stokes-induced AT, Stokes-induced EIT, two-photon AP, and
again far-detuned phases. In what follows we see that the other
important requirement, namely, that population of |2〉 should
be minimal at all times, is also fulfilled. This requirement is
necessary in order to prevent unwanted decay processes likely
to occur in real physical systems where |2〉 is often unstable.

We estimate P2 = |〈2|ψ〉|2 by adiabatic elimination. The
standard procedure formulated in the bare basis yields the
state |ψ0

AE〉 = c0|0〉 + c1|1〉 (see Appendix A). First-order
corrections yield a leakage from the subspace {|0〉,|1〉}, given
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FIG. 3. (Color online) Upper panels: STIRAP efficiency vs the
relative peak amplitudes of the fields (left panel, where κδ = 1.2)
and to the relative detunings (right panel, where κ = 1), for various
degrees of adiabaticity [curves: �0T = 40 (red), 20 (blue), 10
(brown) from higher to lower efficiency]. For κδ > 1, and provided
adiabaticity is good, the system has a very slight sensitivity to
these parameters. Lower panels: sensitivity of the efficiency to
unwanted transient population of |2〉 accounted for by a finite lifetime
τ2 =: 1/
2 [cf. Eq. (10)]. The insets of panels (a) and (c) are zooms
of the corresponding main figures showing how, in the presence of a
nonvanishing 
2, the efficiency improves with increasing κ .

by [28]

P2(t) �
∣∣∣∣�pc0 + �0c1

2δp

∣∣∣∣
2

, (8)

that can be made very small, as shown in Fig. 2(b), which
also shows that this approximation works very well. A better
approximation is obtained by working in the Stokes basis [see
Appendix A and Fig. 2(b)], but Eq. (8) has a simpler analytic
form, allowing us to write a figure of merit for the parametric
dependence of leakage during the protocol. A simple choice is
to consider leakage at the crossing s+ = 0:

P2(tc) � δ

δp

f (κ) = κδ − 1

κδ

f (κ). (9)

Here f (κ) is a monotonically decreasing function of the ratio
of the Rabi peak amplitudes κ . This qualitative behavior is
confirmed by the numerical simulations shown in Fig. 3,
where the efficiency is plotted versus relative magnitude
of the amplitudes (κ , left panel) and of the detunings (κδ ,
right panel), both in the absence (top panel) and in the
presence (bottom panel) of a finite lifetime τ2 = T/2 of the
intermediate state |2〉 (see Sec. IV for a model). It is seen that
efficiency increases with increasing κ as an effect of a larger
avoided crossing at s+ = 0. Moreover, increasing κ reduces
the transient population of |2〉, as given by the figure of merit
Eq. (9). This is seen by comparing the insets of the left panels
of Fig. 3. The positive slope of the sensitivity in the presence
of a finite τ2 [Fig. 3(c)] cannot be explained as an improvement
in adiabaticity, since this slope is not present in the ideal case
[Fig. 3(a)]. Therefore it can only be caused by a reduction of
P2. Population transfer occurs only for κδ > 1, as shown in

Figs. 3(b) and 3(d). In particular, for κδ = 1 we have δ(t) = 0
and Eq. (2) applies, showing that an always-on Stokes field
would produce a return of the population to the initial state.
For κδ < 1 the Stokes eigenvalues do not cross, and adiabatic
dynamics leads to a final population entirely in |0〉.

IV. SENSITIVITY TO PARAMETERS

The efficiency of cSTIRAP is not very sensitive to slight
deviations of relative amplitudes κ and detunings κδ of
the pulses, provided adiabaticity is kept. This is shown in
Fig. 3, the results in the lower panels allowing us to fix
convenient values κ = 1, κδ = 1.2, and �0T = 40, which we
use hereafter.

As in conventional STIRAP [3], the most critical feature is
the parametric sensitivity to stray detunings. Here we discuss
this issue, which is also responsible for decoherence due to
low-frequency noise [21,27].

The physics is understood by recalling the picture of
conventional STIRAP, where two kinds of errors emerge [1].
“Bad projection” errors, due a bad choice of the pulse
shape and timing, may lead to the wrong target state. “Bad
adiabaticity” errors induce leakage from the trapped subspace,
nonadiabatic transitions surely occurring when the so-called
“global condition” �kT 	 1 is not met. Both kinds of errors
are also triggered by fluctuations induced by an environment
(see Sec. V). For cSTIRAP we verified that a large enough �kT

again guarantees adiabaticity (Fig. 3). In this regime a strong
asset of cSTIRAP is that it is not affected by bad projection
errors in the far-detuned phases, since final eigenstates in the
rotating frame are nondegenerate.

However, since the efficiency of cSTIRAP depends on
the structure of crossings of the eigenvalues of the Stokes
Hamiltonian, it may be affected by stray detunings during the
protocol. A further drawback comes from the fact that the
state carrying population in cSTIRAP, while taking advantage
from destructive interference, is not an exact dark state as
in Eq. (2), since the condition δ(t) = 0 does not hold true.
This is a potentially important source of error for cSTIRAP,
since it also may determine a nonvanishing population of |2〉
at intermediate times. Sensitivity to detunings is conveniently
studied by the following non-Hermitian Hamiltonian:

H (t |{δk}) → H (t |{δk}) + i

2

2
|2〉〈2|. (10)

Using a sufficiently large 
2 > 1/T guarantees that transient
population of |2〉 decays elsewhere (e.g., in a continuum),
yielding a lack of normalization at the end of the protocol.
Therefore the resulting efficiency P1(tf ) is a figure of merit
embedding the requirement that |2〉 should be never populated.

The Hamiltonian (10), where only the dependence on
detunings is emphasized, accounts for the effect of stray
components by letting

δk(t) → δk(t) + δ̃k, k = s,p,

δ(t) → δ(t) + δ̃, δ̃ := δ̃p − δ̃s . (11)

Stray detunings may describe very slow phase fluctuations (at
frequencies �1/T ) of the driving fields. Physically in solid-
state devices they describe energy fluctuations due to coupling
to an environment (see Sec. V and Ref. [21]) whose power
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FIG. 4. (Color online) The color map describes the efficiency of
ideal cSTIRAP, with 
2 = 0 vs fluctuations of the detunings. In the
brightest area we have P1(tf ) > 0.9. Lines refer to 
2 = 1/T and
delimit the P1(tf ) > 0.9 (most inner region) and the P1(tf ) > 0.8
areas. We use the same parameters as in Fig. 2(b), which guarantee
that in absence of fluctuations, δ̃s = δ̃p = δ̃ = 0, adiabaticity of the
protocol is strong. The extension of the regions of large efficiency
determines the single-photon linewidths (in this case �δ̃s) and the
two-photon linewidth �δ̃.

spectrum has 1/f α behavior [27]. In what follows we describe
the detrimental effects they produce and the limitations they
determine.

The efficiency of the protocol versus stray detunings is
shown in Fig. 4. The color map shows P1(t) for 
2 = 0 at the
end of the protocol, t = tf . Lines refer to finite 
2 = 1/T ,
which determines a reduced value of P1(tf ) since a nonvan-
ishing population P2(t) would decay outside the system. It is
seen that the efficiency is large in a whole region around the
center of the plot (absence of fluctuations, δ̃s = δ̃p = δ̃ = 0),
showing the stability of the protocol. The failure of cSTIRAP
in the region of larger detunings is analyzed in Appendix C.
Here we mention that in the first and in the third quadrants of
Fig. 4, failure is due to “bad projection” errors, i.e., the system
may evolve along an adiabatic linkage leading to a wrong target
state. Instead, deep in the second quadrant the problem is “bad
adiabaticity” due to an insufficient pump-induced two-photon
avoided crossing.

Concerning sensitivity to τ , notice that the convenient delay
is implicitly set by the choice of �p(t) being maximal at the
second crossing time [Eq. (7)]. We have checked that in these
conditions the protocol is stable against deviations from the
delay and the detailed pulse shape used in this work, provided
they are not too large. Moreover, it is worth stressing that
the protocol we propose in the “ideal” detunings case, while
being physically satisfactory, is not an optimal solution in the
mathematical sense. Therefore we expect further improvement
by tackling the problem with optimal control theory.

V. DECOHERENCE

A further important source of errors in STIRAP is de-
coherence [21], especially in solid-state artificial atoms. We
discuss some qualitative aspects in this section. A key asset
of conventional STIRAP is that while spontaneous decay
from |2〉 may be large (decay time larger than the duration
of the protocol), the phenomenon is supposed to have small
impact as long as |2〉 is depopulated. This holds true also for
cSTIRAP, as seen from the results for 
2 �= 0 presented in
the last section. Markovian dephasing in STIRAP has been
studied in detail [29], and its detrimental effect, namely,
leakage from the trapped subspace due to the weakening of
destructive interference phenomenon, has been elucidated. It
has been shown that strong Markovian dephasing is tolerated,
as long as it does not affect the two levels of the trapped
subspace. More complete studies of the effects of quantum
noise in driven systems have pointed out that in solid-state
implementations of three-level artificial atoms the main effect
is due to decay processes within the trapped subspace [21].
Other decoherence channels emerging in the Born-Markov
approximation, namely, the relation of rates to the detailed
spectral density of the environment [30] and the possible
drive-induced absorption [21], are less relevant.

On the other hand, unlike their natural counterpart, artificial
atoms implemented by solid-state nanodevices suffer from
low-frequency noise [27]. This drawback may be compensated
by the ease of producing large couplings on chip, the tradeoff
between protection and addressability being the central design
issue. The effect of low-frequency noise in STIRAP has been
discussed in Ref. [20], where its interplay with Markovian
noise and the role of device design were also addressed [21,31].
The extension of this detailed analysis to cSTIRAP is beyond
the scope of this paper, but general features pointed out in the
above works together with the results of the last section allow
us to draw a physical picture which can be used as a guide for
device design.

We assume that low efficiency may be determined by
decoherence leading to detrapping from the {|0〉,|1〉} sub-
space and by failures of the adiabatic approximation also
leading to unwanted population of |2〉. The simplest model
encompassing these main features is to account for decay
of |2〉 in a continuum due to quantum noise (
2) and to
account for dephasing as due to low-frequency (classical)
fluctuations of relevant parameters. That is, we consider the
Hamiltonian equation (1) supplemented by the non-Hermitian
term appearing in Eq. (10), and let δk(t) → δk(t) + δ̃k(t),
for k = s,p, and �k(t) → �k(t) + �̃k(t), where δ̃k(t) and
�̃k(t) are classical stochastic processes. In artificial atoms
such fluctuations stem physically from noisy external bias
fields which induce fluctuations of the energy spectrum of
the device (determining δ̃k’s) and of the operator coupling
to the field (yielding �̃k’s). The efficiency is obtained by
averaging over such fluctuations P1(t |{δ̃k},{�̃k}), at the end
of the protocol. In cases of interest, as for 1/f noise, the
average can be estimated in the quasistatic (or static-path)
approximation [26,27]. It amounts to substituting stochastic
processes by random variables with a suitable Gaussian
distribution, which physically accounts for sample-to-sample
fluctuations of parameters. Results of the last section suggest
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that stray �̃ks hardly affect the efficiency, whereas the effect
of the distribution of δ̃k’s can be important. This effect can
be read off in Fig. 4, which shows that for reasonably small
fluctuations there is a region where large efficiencies are still
allowed. Successful cSTIRAP requires that fluctuations of
energy levels (i.e., detunings) are smaller than the linewidths.
In analogy with the analysis of Ref. [21], we expect that the
condition of large efficiency depends on the band structure of
the device at the bias point. Indeed, depending on the device
and on the noise source, fluctuations of the two splittings
(detunings) are either correlated or anticorrelated [31], namely,
they are described by lines with positive or negative slope
in Fig. 4. A figure of merit is the ratio δ 1

2
/σδ between the

two-photon linewidth of STIRAP, corresponding to the width
of the large efficiency region in the proper direction in Fig. 4,
and the variance σδ of the fluctuations of the two-photon
detuning.

VI. CONCLUSIONS

In this paper we have proposed a protocol which ex-
tends conventional STIRAP. Coherent population transfer
is achieved with reduced available control, namely, one of
the fields is kept always on. This procedure is suited for
applications in artificial atoms and can be advantageous in
integrated atom-cavity system architectures, where couplings
to quantized modes are implemented by nonswitchable hard-
ware [12] and may be manipulated in this way for applications
to microwave quantum photonics [13]. In this respect it may
be useful that cSTIRAP can be repeated cyclically, since
population histories are invariant when δk → −δk , allowing
the protocol to work as well in the reverted detunings
configuration.

The protocol leverages on the fact that in the microwave
realm external fields have a phase which usually can be
controlled better than for sources at optical frequencies. In
particular, frequency can be modulated more accurately, al-
lowing direct time-dependent control of the detunings, instead
of the induced Stark shifts used in genuine atomic systems [1].
Moreover, in solid-state artificial atoms, e.g., superconductor-
based, detunings can be independently modulated by external
voltages and fluxes.

Manipulation of detunings is the basis of other coherent
transfer protocols like RCAP [28]. The essential difference
between standard RCAP and cSTIRAP is that, due to the fact
that the Stokes field is always on, our protocol involves a
dressed state in the AP phase (see Sec. III), whereas in the
former AP occurs between bare states. Therefore while in
RCAP the avoided crossing is due to the two-photon coupling
of two far-detuned dispersively coupled fields, in cSTIRAP AP
takes place via destructively interfering resonant fields. This
renders the protocol more robust, allowing the achievement of
large efficiency even with rather small pulse duration. On the
other hand, the analogy with RCAP, as well as the discussion of
Sec. V, suggests that also cSTIRAP may be resilient to phase
noise and to low-frequency noise in nanocircuits, offering
advantages in quantum state processing with artificial atoms
[19].

STIRAP is also the basis of other protocols such as prepa-
ration of superpositions [1], transfer of wave packets [32],

manipulation of photons and quantum gates [19], with still un-
explored potentialities for quantum information and quantum
control. Therefore demonstration of cSTIRAP is a benchmark
for a class of multilevel advanced control protocols in artificial
atoms.
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APPENDIX A: ADIABATIC ELIMINATION OF STATE |2〉
In order to estimate the population of |2〉, we start from the

usual adiabatic elimination in the bare basis. The Schrödinger
equation i∂t |ψ〉 = H |ψ〉, with the Hamiltonian Eq. (1), is
written for the components of |ψ〉 := ∑2

i=0 ci |i〉. Assuming
ċ2 � 0 one finds

c2 = −�pc0 + �sc1

2δp

. (A1)

This expression of c2 is substituted in the Schrödinger equa-
tion, yielding a two-state problem governed by the effective
Hamiltonian

H2(t) =
⎡
⎣ − �2

p

4δp
−�s�p

4δp

−�s�p

4δp
δ − �2

s

4δp

⎤
⎦ . (A2)

Now, assuming the validity of the adiabatic approximation,
c0 and c1 are approximately given by the instantaneous
eigenvectors of H2(t). In particular, we consider the state
corresponding to the preparation |ψ(ti)〉 = |0〉, and we can
estimate P2 = |c2|2 from Eq. (A1). The analytic result is
shown in Fig. 2(b), the thin solid line in the inset, and it
yields good agreement with the numerical curve. The analytic
expression, though easily attainable, is cumbersome. Insight
into the parametric dependence can be gained by evaluating
leakage at t = tc:

P2(tc) = κδ − 1

κδ

(κ − √
κ2 + 4)2

4 + (κ + √
κ2 + 4)2

,

which is Eq. (8). We remember that adiabatic elimination
yields coarse-grained amplitudes and it is a priori enforced by
large single-photon detunings. Remarkably, the result obtained
from Eq. (A1) is accurate for the whole procedure, even if
in part of the protocol the condition δp 	 �k is not met.
This is because the population of |2〉 is always small, either
because the regime is dispersive or because there is destructive
interference.

Corrections in the regime where δp(t) � �p,�s can be fully
taken into account if adiabatic elimination is carried in the
representation of the Stokes eigenstates. We write the Hamil-
tonian equation (1) in the basis {|0〉,|s+〉,|s−〉}, given by |s±〉 =
a±

1 |1〉 + a±
2 |2〉. By expressing |ψ〉 = c0|0〉 + c+|s+〉 + c−|s−〉

and assuming ċ− � 0, we obtain c− = −(�−/2s−)c0, where
�± = �p[1 + 4(δ − s∓/�0)2]−1/2. Substituting the Ansatz
for c− into the Schrödinger equation yields an effective 2 × 2
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Hamiltonian, which in the {|0〉,|s+〉} basis reads

H2s =
[
− �2

−
4s−

−�+
2

−�+
2 s+

]
, (A3)

which yields the leakage to |2〉 in the form

P2 �
∣∣∣∣ �+
2s−

c0 a−
2 + c+ a+

2

∣∣∣∣
2

. (A4)

As it is seen from Fig. 2(b) (dashed line), the result reproduces
the numerical solution, but it does not yield a figure of merit
as simple as Eq. (8).

APPENDIX B: ALWAYS-ON PUMP FIELD

We can seek for a protocol dual to the always-on Stokes field
by making the following substitutions: tc → −tc, δp � δs ,
�p � �s . The population histories are shown in Fig. 5 and
differ somehow from those of Sec. II. The point is that the
system is prepared in |0〉, which in this case is not an exact
eigenstate of the initial Hamiltonian. As a consequence, Rabi
oscillations of small amplitude appear in both P0 and P2. They
can be substantially reduced by increasing the initial value
of the pump detuning. Stray population may appear in the
intermediate state |2〉, also due to adiabatic population transfer
at the avoided crossing, and can be minimized by adjusting
parameters as suggested by Eq. (8).

APPENDIX C: FAILURE OF STIRAP
AT LARGE DETUNINGS

We now analyze the dynamics in the regions of Fig. 4 where
cSTIRAP fails. As mentioned in Sec. IV, when energy levels
have infinite lifetime, failure of the protocol is due to two kind
of errors, namely, “bad adiabaticity” and “bad projection” [3].
While in the former case, the protocol fails because the avoided
crossing produced by the fields is insufficient to guarantee
adiabaticity, in the latter case the system is projected onto
the wrong eigenstate of the Hamiltonian. Errors mainly occur
during the AP near the point at t = tc where Stokes eigenvalues

–200 –100 0 100 200
0.0

0.2

0.4

0.6

0.8

1.0

0 t

P0 P1

P2

FIG. 5. (Color online) Population histories for �p(t) =: �0,

�0T = 40, hδ = 10, κδ = 1.2, κ = 1, and τch = 0.6T .

(d) (a)

(c) (b)

FIG. 6. (Color online) (a)–(c) Instantaneous eigenvalues of the
Stokes (dashed lines) and complete (solid lines) Hamiltonians, in
the dark regions of quadrants (a)–(c) of Fig. 4, in units of �0.
(d) Population histories corresponding to quadrant (d) of Fig. 4 for

2 = 0, showing that, even if P1(tf ) is nearly 1, the protocol suffers
large transient population of |2〉 (green line). In each panel the label
(δ̃/�0,δ̃p/�0) indicates the value of the stray detunings.

cross. An efficient protocol requires for the probabilities of
Landau-Zener transitions between such states that γ0→s− � 1
and 1 − γ0→s+ � 1, which is not always met for finite stray
detunings.

A qualitative picture of how cSTIRAP possibly fails due to
stray detunings is offered by the patterns of the instantaneous
eigenvalues of the full and of the Stokes Hamiltonians, in
the darker regions of the three (a)–(c) quadrants of Fig. 4.
Examples of these patterns are plotted in Figs. 6(a)–6(c).

In the region deep in quadrant (a) of Fig. 4, detunings are
such that the first crossings of the Stokes eigenenergies occurs
at positive times, i.e., when �p is already on [Fig. 6(a)].
Therefore |0〉 and |s−〉 mix, originating a sort of initial
“bad projection” error. Then the subsequent swap |s−〉 → |2〉
leads to a wrong target state. Deep in quadrant (c), the
protocol suffers from a sort of final “bad projection” error:
the second crossing occurs at negative times, where �p ≈
0 and the correspondent transition becomes diabatic. This
yields |ψ(t)〉 ≈ |0〉 at all times [33]. Deep in quadrant (b),
cSTIRAP fails when the configuration of detunings renders
the pump-induced avoided crossing insufficient. In this case
the problem is “bad adiabaticity,” with Zener tunneling in-
ducing unwanted transitions to the state adiabatically evolving
towards |0〉.

Finally, deep in quadrant (d) the configuration of detunings
is such that the two “mixing” phases of the protocol are
inverted. Indeed, the Stokes-induced AT splitting becomes
relevant only after the second crossing, which in the ideal
case would have produced the two-photon AP. Therefore �p

partially injects population into |2〉. At later times, in the
Stokes-AT phase, this population is swapped to |1〉. Although
the final state is correct (cf. the large efficiency in Fig. 4), in the
presence of decay 
2 �= 0, occupation of |2〉 at intermediate
times suppressing the efficiency [see Fig. 6(d) and the solid
lines of Fig. 4].

224506-7



DI STEFANO, PALADINO, D’ARRIGO, AND FALCI PHYSICAL REVIEW B 91, 224506 (2015)

[1] N. V. Vitanov, B. W. S. T. Halfmann, and K. Bergmann,
Annu. Rev. Phys. Chem. 52, 763 (2001).

[2] M. Nielsen and I. Chuang, Quantum Computation and Quantum
Information (Cambridge University Press, Cambridge, UK,
2010).

[3] N. V. Vitanov, M. Fleischhauer, B. W. Shore, and K. Bergmann,
Adv. At., Mol., Opt. Phys. 46, 55 (2001).

[4] K. Bergmann, H. Theuer, and B. Shore, Rev. Mod. Phys. 70,
1003 (1998).

[5] A. Kuhn, M. Hennrich, and G. Rempe, Phys. Rev. Lett. 89,
067901 (2002).
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A. Marx, and R. Gross, Nat. Phys. 6, 772 (2010).

[15] K. V. R. M. Murali, Z. Dutton, W. D. Oliver, D. S. Crankshaw,
and T. P. Orlando, Phys. Rev. Lett. 93, 087003 (2004).

[16] Y.-X. Liu, J. Q. You, L. F. Wei, C. P. Sun, and F. Nori, Phys.
Rev. Lett. 95, 087001 (2005).

[17] J. Siewert, T. Brandes, and G. Falci, Opt. Commun. 264, 435
(2006).

[18] J. Siewert, T. Brandes, and G. Falci, Phys. Rev. B 79, 024504
(2009).

[19] L. F. Wei, J. R. Johansson, L. X. Cen, S. Ashhab, and F. Nori,
Phys. Rev. Lett. 100, 113601 (2008).

[20] G. Falci, M. Berritta, A. Russo, A. D’Arrigo, and E. Paladino,
Phys. Scr. T151, 014020 (2012).

[21] G. Falci, A. La Cognata, M. Berritta, A. D’Arrigo, E. Paladino,
and B. Spagnolo, Phys. Rev. B 87, 214515 (2013).
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