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Motivated by the midinfrared scenario for high-temperature superconductivity proposed by Leggett, the
effects of Umklapp processes on the density-density correlation function in the presence of long-range Coulomb
interaction have been investigated on a microscopic model. We show that because Umklapp processes enable
scatterings that conserve total momentum only up to n �K , where n is an integer and �K is the reciprocal wave vector,
significant amounts of spectral weight in the plasmonic excitations at long wavelength are transferred into lower
frequency around the midinfrared regime. We further find that regardless of the gap symmetry, superconductivity
generally suppresses the Umklapp scatterings due to the formation of the electron pairing. This suppression is
unique for the superconductivity due to the interplay between electron pairing and the odd parity of the matrix
elements associated with Umklapp channels, which usually does not occur in other known competing orders.
Specific predictions for the experimental signatures in optical conductivity and electron energy loss spectroscopy
will be discussed.
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I. INTRODUCTION

Dynamical responses to experimental probes from the
high-temperature superconductors are an important subject in
condensed-matter physics, since they may hold key informa-
tion to resolve the origin of the superconductivity [1–5]. While
enormous efforts have been made to understand the novel
behaviors appearing at low energy (∼100 meV), including
but not limited to angle-resolved photoemission spectroscopy
(ARPES) [6,7], inelastic neutron scattering [8], point contact
spectroscopy [9–11], and quasiparticle interferences (QPI)
[12], the study of dynamical responses at a frequency in
the midinfrared regime or even higher has received much
less attention. Perhaps it is due to the belief that although
the physics at high energy may play a role in the pairing
mechanism at low energy, it is unlikely affected by the
superconductivity, given that the superconducting gap is only
around the order of 10–50 meV.

In this regard, the observation of significant changes
in optical conductivity due to the superconductivity up to
energy as high as the order of 1 eV in cuprates [13–16]
and iron-based superconductors [17] is a shocking result.
These experiments found significant differences in the optical
conductivity between the normal and superconducting states
in a wide range of frequencies. According to the BCS theory,
regardless of the origin of the pairing mechanism, only the
electronic structure at energy scales comparable to the super-
conducting gap is strongly modified. As a result, the dynamical
responses should remain unchanged at frequencies much
higher than the superconducting gap, as shown in the seminal
papers of Anderson on the theory of plasmon excitation in
superconductors [18,19]. Therefore, these unusual changes at
high energy are naively attributed to the strong local interaction
such as Hubbard U or Heisenberg J , but a detailed theory is
still lacking.
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A even more fundamental question raised by Turlakov and
Leggett [20,21] places more constraints on the study of the
superconductivity-induced changes in the optical conductivity.
Based on a rigorous consideration of the three sum rules

Jn=−1,1,3(�q) = 2

π

∫ ∞

0
dωωnImχ (�q,ω), (1)

where χ (�q,ω) is the density-density correlation function, they
found a general statement about the upper and the lower
bounds on the Coulomb energy at long wavelength by applying
Cauchy-Schwartz inequalities. Moreover, it is shown that with-
out processes breaking the conservation of the total momentum
of electrons, no observable change in the density-density
correlation function at long wavelength shall be allowed. Since
the optical conductivity is closely related to the density-density
correlation function at long wavelength, the same conclusion
applies to optical conductivity as well. In other words, the
strong local interactions such as U and J alone cannot
explain the changes in optical conductivity, and the interaction
breaking the conservation of total momentum of electrons has
to be identified to understand this experimental puzzle.

Since all the high-temperature superconductors known to
date are crystalline and have Fermi surfaces close to the
Brillouin-zone boundary, Umklapp processes are the most
ubiquitous momentum-conservation-breaking terms. While in
the semiconductors the Umklapp processes have been included
in the first-principle calculations, known as the local-field
effect [22,23], the role of Umklapp processes in the correlated
materials as well as in the superconducting states is still not
understood. In this paper, we investigate the effects due to
Umklapp processes on the density-density correlation function
in both normal and superconducting states. We find that a
significant amount of spectral weight is created at frequencies
below the plasmon frequency due to the presence of Umklapp
processes. In the superconducting state, the interplay between
the nature of electron pairing between (�k ↑) and (−�k ↓) and
the odd parity of the matrix elements associated with Umklapp
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processes substantially suppresses the effects from Umklapp
processes. This superconductivity-induced suppression of
Umklapp processes results in the decrease of the spectral
weights in the frequency range well above the gap but below
the plasmon frequency, and should occur as the system un-
dergoes the superconducting phase transition, consistent with
the changes of optical conductivity observed experimentally.
Moreover, we predict that a downward shift of plasmon
frequency as well as an increase of the spectral weight in the
plasmon modes should occur simultaneously. We will show
that these signatures could be revealed from the analyses of the
existing data of Ref. [16] and recent measurement by Levallois
et al. [24] of the optimally doped Bi2Sr2Ca2Cu3O10. Further
experiments on optical conductivity and electron energy loss
spectroscopy (EELS) will be necessary for future study.

II. HAMILTONIAN OF A TWO-DIMENSIONAL SYSTEM
WITH PERIODIC POTENTIAL ALONG x̂ DIRECTION

We start from the general Hamiltonian with a periodic
potential along the x̂ direction,

H = HK + HCoul,

HK =
∫

d�rψ†
�rσ

[
−�

2∇2

2m
− μ + 2U cos( �Kx · �r)

]
ψ�rσ ,

HCoul = 1

2�

∑
�q �=0

vq[ρ̂(�q)ρ̂(−�q) − N̂ ], (2)

where vq = e2/2ε0ε∞q for two dimensions (2D) and �Kx =
2π
a

(x̂,0). ρ̂(�q) and N̂ are the density and total electron number
operators, respectively. Performing the Fourier transformation
on HK , we have

HK =
∞(odd)∑
l=−∞

∑
�kσ

ε(�k + l �Kx/2)c†�k+l �Kx/2,σ
c�k+l �Kx/2σ

+U
[
c
†
�k+l �Kx/2σ

c�k+(l−2) �Kx/2σ + H.c.
]
, (3)

where we have introduced a shorthand notation for the
integration over momentum as

∑
�kσ

≡
∑

σ

1

4π2

∫ Kx
2

− Kx
2

dkx

∫ ∞

−∞
dky. (4)

Moreover, ε(�k) ≡ �
2k2

2m
− μ, and c �p,σ is the Fourier component

of ψ�rσ defined as

ψ�rσ = 1

4π2

∫
dpxdpye

i �p·�rc �p,σ . (5)

The simplest case is to consider only two l’s, which we pick
as l = ±1. This choice satisfies all of the necessary symmetries
including time reversal, parity, etc., and therefore it serves as
an excellent example for the proof of principles. We can then
reduce the HK to

HK =
∑
�kσ

ε(�k)c†�k− �Kx/2,σ
c�k− �Kx/2,σ + c

†
�k+ �Kx/2,σ

c�k+ �Kx/2,σ

+U
[
c
†
�k− �Kx/2σ

c�k+ �Kx/2σ + c
†
�k+ �Kx/2σ

c�k− �Kx/2σ

]
, (6)

which can be diagonalized as

HK =
∑
�kσ

E+
kσ c

†
+,�kσ

c+,�kσ + E−
kσ c

†
−,�kσ

c−,�kσ , (7)

where

E±
kσ ≡ ε1(�k) ± D(�k),

ε1(�k) ≡ ε(�k− �Kx/2) + ε(�k + �Kx/2)

2
= �

2

2m

(
k2 + 1

4
K2

x

)
−μ,

ε2(�k) ≡ ε(�k − �Kx/2) − ε(�k + �Kx/2)

2
= − �

2

2m
�k · �Kx,

D(�k) ≡
√

ε2(�k)2 + U 2. (8)

The eigenvectors and the original fermionic operators are
related by

c�k− �Kx/2,σ = cos θkc+,�kσ − sin θkc−,�kσ ,
(9)

c�k+ �Kx/2,σ = sin θkc+,�kσ + cos θkc−,�kσ ,

where cos 2θk = ε2(�k)
D(�k)

, and 0 � θk � π
2 .

It is important to note that instead of using quasimomentum
on a tight-binding model in the reduced Brillouin-zone
scheme, we have chosen to work on real momentum from
a full Hamiltonian with periodic potential included explicitly.
The advantage of our choice is that Umklapp processes in
this formalism correspond to processes conserving the real
momentum, but not the momentum in the band we are
interested in. Therefore, Umklapp channels can be expressed
as a series of density operators with matrix elements as
functions of θk , which can be done in a straightforward way.
We will see how this works in the next section.

III. RPA THEORY FOR DENSITY-DENSITY
CORRELATION FUNCTION IN NORMAL STATE

In order to extract the Umklapp processes from the
Hamiltonian in Eq. (2), we need to expand HCoul in the band
basis to determine the vertex lines required in the diagrammatic
approach. With the consideration of the periodic potential
along the x̂ direction, the annihilation operator in Eq. (5) can
be written as

ψ�r,σ =
∑

a∈2Z+1

∑
�k

ei(�k−a �Kx/2)·�rc�k−a �Kx/2,σ . (10)

By using Eq. (9), we can express c�k± �Kx/2,σ in terms of Bloch
bands c±,�kσ . We restrict our interest only to the band on
which the Fermi surface lies to highlight the features emerging
entirely due to the Umklapp processes instead of interband
scatterings. Assume that the Fermi surface lies on the c−,�kσ

band, in which the components in HCoul involving only the
c−,�kσ band are

H
β

Coul = 1

2�

∑
�q �=0

∑
a,b,c,d=−1,1

∑
�kσ

∑
�pσ ′

V a,b,c,d
q (�k, �p)

× c
†
−,�kσ

c−,�k−�q+(b−a) �Kx/2σ c
†
−, �p−�q+(c−d) �Kx/2σ ′c−, �pσ ′,

(11)
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FIG. 1. (Color online) Interaction vertex lines with Umklapp
scattering. V a,b,c,d

q (�k, �p) is given in Eq. (11).

where V a,b,c,d
q (�k, �p) can be read off Eq. (9). Now it is clear that

Eq. (11) describes the components of the Coulomb interaction
on c−,�kσ with both normal and Umklapp processes included,
and the corresponding vertex lines are plotted in Fig. 1.

The final form of HCoul in our consideration becomes

HCoul = 1

2�

∑
�q �=0

vqρ̂
full(�q)ρ̂full(−�q), (12)

where

ρ̂full(�q) ≡
∑
�k,σ

cos(θ�k − θ�k−�q)c†−,�kσ
c−,�k−�q,σ

−
∑
�k,σ

sin θ�k cos θ�k−�qc
†
−,�kσ

c−,�k−�q− �K,σ

−
∑
�k,σ

cos θ�k sin θ�k−�qc
†
−,�kσ

c−,�k−�q+ �K,σ . (13)

Now we can follow the standard approach to perform the
generalized random-phase approximation (RPA) calculations.
First we define

ρ̂1(�q) ≡
∑
�k,σ

cos(θ�k − θ�k−�q)c†−,�kσ
c−,�k−�q,σ ,

ρ̂2(�q) ≡ −
∑
�k,σ

sin θ�k cos θ�k−�qc
†
−,�kσ

c−,�k−�q− �K,σ ,

ρ̂3(�q) ≡ −
∑
�k,σ

cos θ�k sin θ�k−�qc
†
−,�kσ

c−,�k−�q+ �K,σ . (14)

The bare susceptibility becomes a matrix and each component
can be expressed by the Lindhard function,

χ̂0
ρ̂i ,ρ̂j

(�q,ω)

= − 2

�

∑
�k,σ

fifj ×
{

nF [E−(k − q)] − nF [E−(k)]

�ω + iδ + E−(k − q) − E−(k)

}
,

where

f1(�k,�q) = cos(θ�k − θ�k−�q),

f2(�k,�q) = − sin θ�k cos θ�k−�q, (15)

f3(�k,�q) = − cos θ�k sin θ�k−�q,

and the factor of two in Eq. (15) comes from the spin degrees of
freedom. The final expression of the density-density response
function with the RPA is

[χ̂(�q,ω)]−1 = [χ̂0(�q,ω)]−1 + Ûq, (16)

FIG. 2. (Color online) Check of f -sum rule J1(�q) as a function
of �q. J1(�q) scales with q2 as expected.

where the interaction kernel

Ûq =

⎛
⎜⎝

vq v�q+ �K v�q− �K
v�q− �K vq v�q−2 �K
v�q+ �K v�q+2 �K vq

⎞
⎟⎠ . (17)

In the limit of long wavelength (small q), f1 ≈ 1 and v�q± �K <<

vq . As a result, the density-density response function in
the normal process that we are interested in is [χ̂(�q,ω)]1,1,
which describes the scatterings between particle-hole pairs
with a total momentum of �q. [χ̂(�q,ω)]2,2 and [χ̂(�q,ω)]3,3

describe the scatterings between particle-hole pairs with a
total momentum of �q ± Kx . Off-diagonal terms in χ̂ (�q,ω)
describe the scatterings between particle-hole pairs whose total
momenta differ by nKx , which are just the Umklapp processes.

It is worth mentioning that our formalism satisfies the f -
sum rule,

J1(�q) = 2

π

∫ ∞

0
dωωIm[χ̂(�q,ω)]11 = nq2

m
, (18)

which only depends on �q as the Fermi energy is fixed. We
have checked that J1(�q) is the same in both normal and
superconducting states (the formalism for the superconducting
state will be discussed in the next section), scaling with q2 as
shown in Fig. 2.

To demonstrate the features emerging from the Umklapp
processes, we introduce an effective parameter VUm into
χ̂ (�q,ω),

[χ̂ ′(�q,ω)]i,j = [χ̂ (�q,ω)]i,j , i = j

= VUm[χ̂(�q,ω)]i,j , i �= j. (19)

It is instructive to analyze the case of VUm = 0 first. In this case,
χ (�q,ω) only has the diagonal terms and a collective excitation
occurs when

[χ̂0(�q,ω)]−1
ii + vq = 0. (20)

The collective excitation in the i = 1 channel is just the
familiar plasmon excitation. We have checked that the fre-
quency of this excitation scales with

√
q as expected from

a two-dimensional system. For i = 2,3, there are collective
excitations enabled entirely due to the periodic potential U .
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To see this, one can check that if U = 0, then f2 = f3 = 0
in Eq. (15). Consequently, no any collective excitation is
present in the i = 2,3 channels. On the other hand, finite U

results in nonzero f2 and f3, producing collective excitations at
energies lower than the plasmon excitation due to the fact that
f2,f3 < 1. However, since there are no Umklapp processes (no
off-diagonal terms), these collective excitations cannot be seen
in the [χ̂(�q,ω)]11 channel, i.e., the density-density correlation
function of experimental interest.

Nevertheless, once the Umklapp processes are turned on,
these collective excitations couple to the plasmon excitation,
resulting in two important consequences. First, because the
plasmon excitation is at highest energy, the couplings (Umk-
lapp processes) push the plasmon frequency upward, while
the collective excitations at the i = 2,3 channels are pushed
downward. Second, because of the coupling, the collective
excitations at the i = 2,3 channels have finite spectral weights
even in the [χ̂(�q,ω)]11 channel. These features are clearly
shown in Fig. 3, which exhibits the increase of the plasmon
frequency as well as the increase of the spectral weight at
frequencies below the plasmon excitation with increasing
VUm. As the Umklapp scattering is strong enough so that
the collective excitations at the i = 2,3 channels are pushed
into the particle continuum, a broad spectrum emerges. The
effects due to the Umklapp processes described above can
be further checked by studying the case with small Fermi
surface centered around the  point. In this case, the Umklapp
scattering should be strongly suppressed due to the energy
conservation, which is verified in the lower plot of Fig. 3.

The physics discussed above is very general. If we include
more l’s in Eq. (3), the size of the χ̂ (�q,ω) matrix increases,
producing more and more spectral weights at frequencies
lower than the plasmon frequency. One can include periodic
potential along the ŷ direction as well, which corresponds
to a two-dimensional lattice system. The main effect of this
is the increase of the size of the χ̂ (�q,ω) matrix, which
produces more collective excitation at frequencies below the
plasmon excitation and, consequently, more spectral weight
transfers. Therefore, we conclude that with the inclusion of
Umklapp scattering, significant amounts of spectral weights
are transferred from the plasmon excitation to the lower
energy, even for a single-band system. This is fundamentally
different from the case without Umklapp scattering in which
the plasmon mode is the only excitation at long wavelength
and holds all the spectral weights.

IV. RPA THEORY FOR DENSITY-DENSITY
CORRELATION FUNCTION IN
SUPERCONDUCTING STATE

To describe the superconducting state and its related
collective excitations, we introduce the pairing interaction in
this general form,

HSC = −Vp

∑
�k,�k′

gkgk′c
†
−,�k↑c

†
−,−�k↓c−,−�k′↓c−,�k′↑, (21)

where gk describes the gap symmetry which equals 1 for

s-wave and
k2
x−k2

y

k2
F

for d-wave superconductors. Employing
the mean-field theory on HSC , we obtain the superconducting

FIG. 3. (Color online) Upper: Imχ (�q,ω) with μ = 0.2, U = 0.1,
α = 0.1, and �q = (0.05,0) for different values of VUm. The units
of the energy and momentum are chosen to be �

2K2
x /2m and Kx ,

respectively. In the plot, ω′ = �ω/μ and the strong δ-function peak
around ω′ = 0.3 corresponds to the plasmon excitation. As the
strength of Umklapp scattering increases, the spectral weight of the
plasmon excitation transfers into lower frequency and the plasmon
frequency increases. Lower: The same plot for μ = 0.02 which gives
a much smaller Fermi surface around the  point. In this case, the
Fermi wave vector is much smaller than Kx

2 and, consequently, the
effect of Umklapp scattering is negligible. Note that in both plots, a
broadening factor of γ = 0.0005 is introduced.

ground state, and Bogoliubov quasiparticles (α,β) read

c−,�k↑ = cos φkα�k + sin φkβ�k,
(22)

c
†
−,−�k↓ = − sin φkα�k + cos φkβ�k,

where φk = sgn(gk)
2 cos−1[ E−(�k)

ESC (�k)
], ESC(�k) =√

[E−(�k)]2 + [�(�k)]2, and �(�k) = �0gk . �0 is obtained by
solving the gap equation of

1

Vp

=
∑

�k

g2
k

2ESC(�k)
. (23)

Due to the nature of the Cooper pairs, the density-
density correlation function is coupled to the pairing-pairing
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correlation function. The pairing channel can be divided into
phase �(�q) and the amplitude M(�q) modes as

�(�q) =
∑

�k
gk[c−,�k−�q,↑c−,−�k,↓ − c

†
−,−�k+�q↓c

†
−,�k↑],

(24)
M(�q) =

∑
�k

gk[c−,�k−�q↑c−,−�k↓ + c
†
−,−�k+�q,↓c

†
−,�k↑].

Together with ρ1,2,3(�q) derived in the last section, now the
susceptibility in the superconducting state is a 5 × 5 matrix.
We define

A1,2,3(�q) = ρ1,2,3(�q),A4(�q) = �(�q),A5(�q) = M(�q), (25)

and the bare susceptibility with one-loop correction in the
superconducting state is[

χ̂0
SC(�q,ω)

]
Ai,Aj

= − 1

�

∑
�k,σ

[
FiFj

�ω + iδ − ESC(k − q) − ESC(k)

− GiGj

�ω + iδ + ESC(k − q) + ESC(k)

]
,

where

F1 = G1 = f1 sin(φ�k + φ�k−�q),

F2 = G2 = f2 cos φ�k sin φ�k−�q − f3 sin φ�k cos φ�k−�q,

F3 = G3 = f3 cos φ�k sin φ�k−�q − f2 sin φ�k cos φ�k−�q, (26)

F4 = −G4 = gk cos(φ�k − φ�k−�q),

F5 = G5 = gk cos(φ�k + φ�k−�q),

and f1,2,3 can be found in Eq. (15). The susceptibility at the
RPA level in the superconducting state leads to

[χ̂SC(�q,ω)]−1 = [
χ̂0

SC(�q,ω)
]−1 + Û ′

q, (27)

with the interaction kernel of

Û ′
q =

⎛
⎜⎜⎜⎜⎜⎜⎝

vq v�q+ �K v�q− �K 0 0

v�q− �K vq v�q−2 �K 0 0

v�q+ �K v�q+2 �K vq 0 0

0 0 0 −Vp

2 0

0 0 0 0 −Vp

2

⎞
⎟⎟⎟⎟⎟⎟⎠

. (28)

It can be easily checked that if we turn off all the Umklapp
processes by hand, only channels of A1, A4, A5 are coupled to
each others. In this case, we find that the plasmon excitation
is still the only collective excitation in [χ̂SC(�q,ω)]11 and its
frequency is the same as the frequency in the normal state.
This is consistent with Anderson’s theory [18,19] as well as
the sum-rule analysis done by Turkalov and Legget [20]. As
the Umklapp scatterings are turned on, as shown in Fig. 4,
we find that the effects of the Umklapp scatterings are much
weaker in the superconducting state than in the normal state.

To see how the superconductivity suppresses Umklapp
processes, we analyze the crucial matrix elements of χ̂0

SC(�q,ω)
in Eq. (26). Due to the pairing between electrons with (�k ↑)
and (−�k ↓) in the superconducting state, we need to rewrite
the density operators in terms of Bogoliubov quasiparticles,

FIG. 4. (Color online) Imχ (�q,ω) with μ = 0.2, U = 0.1, α =
0.1, VUm = 1.0, and �q = (0.05,0) in the normal state and d-wave
superconducting state with �0 = 0.001. The units and notation are the
same as the ones used in Fig. 3. The superconducting state suppresses
the Umklapp scattering, resulting in the decreases of spectral weight
below the plasmon excitation as well as the plasmon frequency.

defined in Eq. (22). Consequently, the density operators should
be evaluated as follows:

ρ̂i(�q) =
∑
�k,σ

fi(�k,�q)c†−,�kσ
c−,�k−�q,σ

=
∑

�k
[fi(�k,�q)c†−,�k↑c−,�k−�q,↑

+ fi(−�k + �q, − �q)c†−,−(�k−�q)↓c−,−�k,↓]. (29)

From Eq. (15), we can easily see that f1(−�k + �q,−�q) =
f1(�k,�q), while f2(−�k + �q,−�q) = −f3(�k,�q) and f3(−�k +
�q, − �q) = −f2(�k,�q). The crucial difference in the parity in the
normal channel (i = 1) and the “Umklapp” channels (i = 2,3)
becomes important at small q. In this limit, f2 ≈ f3 so
that in Eq. (26), F2,3 ≈ f2 sin(φ�k − φ�k−�q) ≈ 0. This indicates
that the components involving the A2,3 channels are largely
suppressed, and effectively only the A1,4,5 channels dominate
over the density-density correlation functions, resembling
the case without Umklapp scattering. Therefore, the effects
from the Umklapp processes are largely suppressed by the
superconductivity, and this conclusion is general for any gap
symmetry. Physically, this suppression of Umklapp scattering
is due to the interplay between the electron pairing and the odd
parity of the matrix elements’ associated Umklapp processes,
which can be seen directly from the above analysis on the
fi(�k,�q).

The above analysis also shows that the superconductivity
is particularly resistive to the Umklapp scatterings compared
to other competing orders. Magnetic, charge-density wave,
or nematic orders usually only induce the coupling between
�k and �k + �Q, where �Q is the ordering wave vector, and,
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consequently, a large suppression due to the odd parity in
f2,3(�k,�q) does not occur.

In summary, we predict a general feature for superconduc-
tivity emerging from a system with strong Umklapp scattering.
The midinfrared spectrum in the density-density correlation
function decreases as the system has a phase transition from
the normal to superconducting states, regardless of the gap
symmetry. Meanwhile, the plasmon excitation has lower
frequency and larger spectral weight in the superconducting
state than in the normal state, which is consistent with the
existing data of optical conductivity. These consequences due
to the suppression of Umklapp processes are unique in the
superconducting state due to the interplay between the electron
pairing and the odd parity of the Umklapp processes, which
usually does not occur in other known competing orders.

V. COMPARISON WITH EXPERIMENTS

As discussed in Ref. [20], the electron energy loss spec-
troscopy (EELS) [25–29] should be the most ideal probe
for the density-density correlation function. The cross sec-
tion of EELS σ (�q,ω) is typically interpreted as σ (�q,ω) ∝
v2

qImχ (�q,ω), where χ (�q,ω) is the true density-density cor-
relation function at (�q,ω), which is [χ̂(�q,ω)]11 in the present
paper. A systematic study of σ (�q,ω) for cuprates with different
dopings at different temperatures could be used to confirm the
prediction made above.

Relevant information can also be extracted from the existing
data of optical conductivity. It is well accepted that the ab-
plane dielectric function can also be related to σ (�q,ω) via

σ (�q,ω) ∝ 1

q2
Im

[
− 1

εab(�q,ω)

]
. (30)

The quantity Im[− 1
εab(�q,ω) ], known as the loss function, is

plotted in Fig. 5 using the original data of Ref. [16] as
well as the recent measurement by Levallois et al. [24] on
the optimally doped Bi2Sr2Ca2Cu3O10. The reconstructed
loss function revealed two important features [30]. First,
pronounced peaks around 9000 cm−1 (∼1.1 eV) could clearly
be seen in the loss function. Second, the difference in the
loss function between superconducting and normal states
is plotted in Fig. 6. It exhibits an increase of the spectral
weight of the pronounced peaks and a decrease of the spectral
weight in a wide range of the lower frequencies as the system
has a phase transition into the superconducting state. If the
pronounced peaks around 1.1 eV are interpreted as the plasmon
excitation, this observed change of spectral weight in the loss
function in the frequency range below the plasmon excitation
is qualitatively consistent with the present theory. Early EELS
data on cuprates [25] obtained the plasmon energy to be ∼1 eV.
These results provide strong support for the present theory.

There exist, however, some features that cannot be de-
scribed by the presented theory. First, experimentally it has
been found that spectral weight transfers also occur at an
energy scale higher that the plasmon excitation, which is
in the range of 1–3 eV. These transfers might result from
the interband transitions that have been neglected in the
present study. Second, because the plasmon peak is inevitably
damped in the real materials, it is hard to judge whether or

FIG. 5. (Color online) The loss function reconstructed from the
original data of Ref. [16] (top) and recent measurement by Levallois
et al. [24] (bottom) on the optimally doped Bi2Sr2Ca2Cu3O10 with
Tc = 110 K. The pronounced peak around 9000 cm−1 is the plasmon
excitation.

not the plasmon frequency decreases in the superconducting
state, though its spectral weight clearly increases. Further
study including interband transitions as well as a broadening
mechanism will be necessary to address these issues.

VI. CONCLUSION

In this paper, we have investigated the effects of Umklapp
processes on the density-density correlation function in both
the normal and superconducting state. Without Umklapp
processes, the plasmon mode is the only observable excitation
at long wavelength in the density-density correlation function,
and its energy and spectral weight are not affected by
superconductivity at all, as shown in the seminal papers of
Anderson on the theory of plasmon excitation in supercon-
ductors [18,19]. In the presence of Umklapp processes, we
have shown that the plasmon mode is no longer the only
excitation having finite spectral weight, and a significant
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FIG. 6. (Color online) The difference in loss function between
superconducting and normal states obtained from the original data
of Ref. [16] (data 1) and the recent measurement by Levallois et al.
(data 2) on the optimally doped Bi2Sr2Ca2Cu3O10.

amount of spectral weight is transferred from the plasmon
excitation to lower frequency. In the superconducting state,
the interplay between the nature of electron pairing between
(�k ↑) and (−�k ↓) and the odd parity of the matrix elements

associated with Umklapp processes substantially suppresses
the effects from Umklapp processes. The important exper-
imental signatures reflecting this superconductivity-induced
suppression of Umklapp processes are the decrease of the
spectral weights in the frequency range well above the gap but
below the plasmon frequency, a downward shift of plasmon
frequency, and an increase of plasmon spectral weight as the
system undergoes the superconducting phase transition. Since
all of the high-temperature superconductors known to date
are crystalline, such effects should be generally observable
among these materials. These signatures have been observed
in the loss function of the optimally doped Bi2Sr2Ca2Cu3O10,
but further experiments on optical conductivity and EELS will
be necessary.
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