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Gap structure in Fe-based superconductors with accidental nodes: The role of hybridization
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We study the effects of hybridization between the two electron pockets in Fe-based superconductors with
s-wave gap with accidental nodes. We argue that hybridization reconstructs the Fermi surfaces and also induces
an additional interpocket pairing component. We analyze how these two effects modify the gap structure by
tracing the position of the nodal points of the energy dispersions in the superconducting state. We find three
possible outcomes. In the first, the nodes simply shift their positions in the Brillouin zone; in the second, the
nodes merge and disappear, in which case the gap function has either equal or opposite signs on the electron
pockets; in the third, a new set of nodal points emerges, doubling the original number of nodes.
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I. INTRODUCTION

The iron pnictides and chalcogens have been the subject of
intense study since 2008, when it was discovered that they are
superconducting at relatively high critical temperatures [1].
Understanding their gap structure is an important step toward
identifying the mechanism responsible for superconductiv-
ity in these materials. Although the multiband nature of
Fe pnictides/chalcogenides allows for many different gap
structures, the prevailing scenario is that the pairing occurs
between electrons on the same Fermi surface (FS) and the
superconducting gap function has s+− symmetry; i.e., the
gap changes sign between hole and electron pockets. There
is experimental evidence that in some members of the family,
such as BaFe2(As1−xPx)2 [2], LaOFeP [3], and LiFeP [4], the
gap has nodes, likely on the electron pockets.

Previous studies of the gap structure were mostly restricted
to an Fe-only approach, in which a generic model of the band
structure consists of two nearly circular hole pockets centered
at (0,0) and two elliptical electron pockets centered at (π,0)
and (0,π ) in the first Brillouin zone (BZ) (see Fig. 1). In some
systems there exists, at least for some kz, a third hole pocket,
centered at (π,π ).

The s+− superconductivity is believed to be chiefly caused
by a magnetically enhanced interaction between hole and elec-
tron pockets [5,6]. The nodes on the two electron pockets come
about because by symmetry the s-wave gap on these pockets
has the form �(1 ± α cos 2θk) (plus higher harmonics), and if
α > 1, the gap vanishes at cos 2θk = ±1/α [6–8].

However, this Fe-only scenario is incomplete because the
electron hopping between Fe atoms predominantly occurs via
pnictogen or chalcogen sites, half of which are located above
and half below each Fe layer in a checkerboard pattern [9]. As
a result, the actual symmetry is lower than that of the Fe-only
lattice, and the correct unit cell contains two Fe atoms. The
nonequivalence of hopping from above and from below an iron
layer causes the electron pockets to hybridize. In this paper we
will study the effect of this hybridization on the gap structure.

In order to incorporate this effect into models with one Fe
atom, one has to include additional terms in the Hamiltonian
with excess momentum Q = (π,π ). This does not actually
violate conservation of momentum because this vector folds
into a reciprocal lattice vector in the actual BZ with two
Fe atoms per unit cell. The momentum Q connects the two

electron FSs and also the hole pocket centered at (π,π ) with
the other two hole pockets. Our primary goal will be to study
how the accidental nodes on the electron pockets evolve once
we include hybridization. Therefore, we focus on the effect of
hybridization on the electron pockets.

The hybridization gives rise to two effects. First, hopping
via pnictogen/chalcogen sites gives rise to an additional
quadratic term in the Hamiltonian for two electron pockets,

Hλ =
∑

k

[λkc
†
kαdk+Qα + λ∗

kd
†
kαck+Qα], (1)

where c and d are operators for electrons near each of the
two electron FSs (we discuss the form of λk in the next
section) and the sum over repeated spin indices is implied. This
cross-term mixes the two electron pockets and reconstructs
the electron FSs. Second, there appear new four-fermion
interaction terms in which incoming and outgoing momenta
differ by Q. In the superconducting state, in which we are
interested, two out of four fermions can be put into the
condensate and the four-fermion terms with excess momentum
Q reduce to quadratic terms with prefactors proportional to the
superconducting gap. These new terms describe interpocket
pairing between fermions from two different electron pockets:

Hβ = 1

2

∑
k

βk
[
c
†
kαd

†
−k−Qβ + d

†
kαc

†
−k−Qβ

]
iσ

y

αβ + H.c. (2)

In other words, due to hybridization, the nonzero intrapocket
pairing condensates 〈c†kαc

†
−kβ〉 and 〈d†

k+Qαd
†
−k−Qβ〉 induce

interpocket pairing between the two electron pockets.
In this paper we study how the additional terms Hλ and

Hβ affect the gap structure when nodes are present on the
electron pockets. The effect of the hopping λk term alone has
been studied before [10], but not its interplay with the pairing
term. We find that the hopping and interpocket pairing terms
generally pull the nodal points in opposite direction. If the
λk term dominates and reaches a certain threshold value, the
nodes merge and disappear at particular symmetry points, and
the gap acquires a uniform and equal phase on the two electron
pockets (opposite to the phase on the hole pockets). In contrast,
when βk dominates and reaches a threshold value, the nodes
merge and disappear at a different set of symmetry points and
the phase of the superconducting order parameter becomes
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FIG. 1. (Color online) Unfolded Brillouin zone with one Fe atom
per unit cell (with no hybridization). Holes and electron pockets are
labeled by h and e, respectively. The crosses on the electron pockets
indicate where the nodal lines of the gap function intersect the Fermi
surface.

opposite on the hybridized electron pockets. This is the same
gap structure that was recently found in the analysis of pairing
in the orbital formalism [11] and dubbed the orbital antiphase
s+− state. The state with opposite signs of the gaps on the
two electron pockets has also been found in the analysis of
possible superconducting states in LiFeAs, albeit for a different
reason [12]. As an interesting peculiarity, we found that for

(b)(a)

(c)

Unfolded BZ Folded BZ

(d)

FIG. 2. (Color online) Fermi surface folding. (a) Unfolded Bril-
louin zone corresponding to a 1Fe unit cell. (b) Folded Brillouin zone
corresponding to a 2Fe unit cell. The electron Fermi surfaces overlap
and are reconstructed into outer and inner parts. Depending on their
original location, the nodes of the gap function are either all located
on the outer surface, as shown in (c), or on the inner surface, as shown
in (d).

elliptical pockets nodes disappear in a rather nontrivial way:
first new nodes appear and the number of nodes doubles, and
then the new and already existing nodes merge and disappear.
Such behavior has not been found before in the studies of
multiband superconductors, as far as we know.

The hybridization between electron pockets, either due to
Hλ or to Hβ , has to be distinguished from the effect of the
folding of the 1Fe BZ into the 2Fe BZ. Upon folding, fermionic
momenta transform as k̃x = kx + ky,k̃y = ky − kx , and the
two electron FSs, originally centered at (0,π ) and (π,0), merge
around (π,π ) (see Fig. 2). The inner and outer FSs touch each
other along k̃x = π or k̃y = π . The merging can be viewed as
“reconstruction” of the two electron FSs into an inner FS with
no nodes and an outer FS with 8 nodes, or vice versa. However,
this “reconstruction” is just a rotation in momentum space and
a rebranding. The kF remains the same and the location of the
nodes remains at exactly the same angles as without folding,
only the reference axis rotates by 45◦. The hybridization is a
different phenomenon: it actually reconstructs the original FSs
into an inner and an outer FSs at new kF and creates a pairing
component between them. As a consequence, the position of
the nodal points shifts.

The paper is organized as follows: In Sec. II we discuss
our model. In Sec. III, we consider, as a warm-up, the limiting
case of circular electron pockets and analyze the two effects
of hybridization first separately and then together and study
their interplay. Section IV extends the analysis to the more
general case of elliptical pockets. We summarize our findings
in Sec. V.

II. THE MODEL

We consider a two-dimensional multiband model with
hole pockets centered at (0,0) and elliptical electron pockets
centered at (0,π ) and (π,0) in the unfolded BZ. In the normal
state, the Hamiltonian describing the two nonhybridized
electron pockets is simply

H0 =
∑

k

[ξ c
kc

†
kαckα + ξd

k d
†
kαdkα]. (3)

We assume that the dominant interaction which leads to
s+− superconductivity is the repulsion between electron and
hole pockets, enhanced by (π,π ) spin fluctuations (in the
2Fe BZ). The s-wave gap on the hole pockets is invariant
under rotations by π/2, so it can be expanded in cos 4nφ

harmonics, where φ is the angle along the hole pocket and
n is an integer. On the electron pockets the expansion of the
s-wave gap contains cos 2nθ terms, where θ is the angle along
the electron pockets and the components with odd n = 1,3, . . .

have opposite signs on the two electron pockets, if we measure
θ from the same direction for both pockets [7]. These odd
multiples of 2θ are allowed because the electron pockets
transform into each other under a rotation by π/2. Numerical
analysis [6,8] shows that the gap on the electron pockets
can be well approximated by the two first harmonics n = 0
and n = 1, whose magnitudes are generally comparable to
each other. Accordingly, we set �e1(θk) = �(1 − α cos 2θk),
�e2(θk+Q) = �(1 + α cos 2θk+Q). The corresponding term in
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the Hamiltonian is thus

H� = 1

2

∑
k

�[(1 − yk)c†kαc
†
−kβ + (1 + yk+Q)d†

k+Qαd
†
−k−Qβ]

× iσ
y

αβ + H.c., (4)

where yk ≡ α cos 2θk and yk+Q ≡ α cos 2θk+Q.
Our goal is to analyze how accidental nodes on electron

pockets evolve with increasing hybridization. For this we
assume from the beginning that |α| > 1 in which case the gaps
on electron pockets have nodes when yk = 1 (for c fermions)
and yk+Q = −1 (for d fermions).

To simplify the presentation, we fold the 1Fe BZ into the
2Fe BZ and replace the momentum k + Q of d fermions by
k. The momenta k below are defined as a deviation from Q,
which is the location of the electron pockets in the folded
BZ. In order to preserve the cos 2θk form of the gap function,
we define θk relative to the minor axis of the c pocket. In the
normal state, the inclusion of hopping via pnictogen/chalcogen
atoms generates mixing between c and d fermions:

Hλ =
∑

k

[λkc
†
kαdkα + λ∗

kd
†
kαckα]. (5)

A microscopic derivation of λk shows [10,13–15] that
in 1111 systems (in which the configuration of pnictide
atoms around every Fe layer is the same), λk vanishes along
the lines kx = ±ky and has some weak kz dependence. In
122 structures (in which the “above/below” configuration of
pnictogen/chalcogen atoms is inverted from one Fe layer to the
other), λk has minima but does not vanish along any direction.
In the presence of a spin-orbit interaction λk does not have
zeros even in 1111 systems [13,14]. Because our goal is to
understand the generic effect of the hybridization between the
two bands, we will treat λk as a constant λ [14,16]. Earlier
analysis of the effect of λk including its angular dependence
(but without interplay with interpocket pairing) has shown that
the results are qualitatively the same as for constant λ [10].

We next consider how hybridization affects the pairing
terms. They can be subdivided into two types. Terms of the first
type describe an interaction with excess momentum Q between
electron pockets and contain three fermionic operators from
one pocket and one from the other pocket [17]; e.g.,

H1 =
∑
k,p,q

u1[(c†kαdk−q,α + d
†
kαck−q,α)

× (c†pβcp+q,β + d
†
pβdp+q,β )]. (6)

Terms of the second type contain an interaction with excess
momentum Q involving two fermions from a hole pocket and
two from different electron pockets; e.g.,

H2 =
∑

k,p,q,i

u2
[(

c
†
kαhi

k−q,α + h
i†
kαck−q,α

)

× (
d
†
pβhi

p+q,β + h
i†
pβdp+q,β

)]
, (7)

where the operator hi
pα describes fermions near the ith hole

pocket. The two types of terms are different, yet their effect
on the s+− superconducting state is the same: both induce
an additional pairing interaction between fermions belonging
to different electron pockets. Indeed, in the superconducting

state 〈c†kαc
†
−kβ〉, 〈d†

kαd
†
−kβ〉, and 〈hi†

kαh
i†
−kβ〉 are all nonzero.

Decoupling four-fermion terms in (6) and (7) using these
averages, we obtain anomalous quadratic terms involving c

and d fermions:

Hβ = 1

2

∑
k

βk[c†kαd
†
−kβ + d

†
kαc

†
−kβ]iσ y

αβ + H.c., (8)

where βk is given by

βk ≡ 1

2

∑
p

u1(k,p)(iσ y)†α′β ′[〈c−pα′cpβ ′ 〉 + 〈d−pα′dpβ ′ 〉]

+ 1

2

∑
p,i

u2(k,p)(iσ y)†α′β ′
〈
hi

−pα′h
i
pβ ′

〉
. (9)

The coupling βk is proportional to the magnitude of the
s+− gap � and has some nonsingular angular dependence,
determined by u1(k,p) and u2(k,p), which we can safely
neglect. We assume without loss of generality that the
parameters � and λ are real and positive. The parameter β ∝ �

is then also real, but its sign can be either positive or negative.
Below we consider various ratios of λ/β and two FS ge-

ometries. In each case we compute the quasiparticle dispersion
in the superconducting state and determine the position of the
nodal points. In all cases we find two different dispersions:
One is gapped over the entire BZ, while the other contains
nodal points in a subset of the parameter space.

III. CIRCULAR POCKETS

As a warm-up, consider the limiting case when the
two electron pockets are identical and have full rotational
symmetry; i.e., ξ c

k = ξ
f

k ≡ ξk.

A. Interpocket pairing only (β �= 0, λ = 0)

In this special case, we find, after straightforward diagonal-
ization of the quadratic form, that the two dispersions in the
superconducting state are

(E±
k )2 = ξ 2

k + (
� ±

√
�2y2

k + β2
)2

, (10)

where the expression in parentheses represents an effective gap
function. At β = 0, E+

k = ±
√

ξ 2
k + �2(1 + |yk|)2 and E−

k =
±

√
ξ 2

k + �2(1 − |yk|)2. This corresponds to the gap structure
in the folded BZ: one band has no nodes and the other band
has 8 nodes (see Fig. 3).

At β 
= 0, both dispersions evolve. The nodal points are still
located on the FS (the locus of zero-energy points in the normal
state, given by ξk = 0). The band with energy E+

k is shifted
up at a nonzero β and its effective gap function is definitely
nodeless. In contrast, the band with energy E−

k is shifted down
and the positions of the 8 nodes shift to

cos(2θk) = ±
√

�2 − β2

α�
. (11)

As β increases, the nodal points move toward the diagonals
kx = ±ky , as shown in Fig. 3. At a critical value βc = �

they meet along the BZ diagonals. At larger β > βc the nodes
disappear. At the same, because the nodes merge along the BZ
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(c) Increasing interpocket pairing(a) Original pockets
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FIG. 3. (Color online) Gap structure for circular electron pockets with interpocket pairing. The crosses represent the location of the nodal
points of the quasiparticle dispersions in the superconducting state. In (a) and (b) we show the unfolded and folded zones, respectively. In
the folded zone, the pockets should overlap but we separate them for clarity. As we increase the interpocket pairing, keeping the conventional
intrapocket pairing fixed, the nodal points shift toward the diagonal lines kx = ±ky , as seen in (c). If the interpocket pairing reaches a critical
value, the nodes merge and disappear, resulting in electron Fermi surfaces with opposite signs of the gap function.

diagonals, the sign of the gap on one FS is opposite to that on
another FS. Such a gap structure has been obtained before in
the analysis of possible gap configurations in LiFeAs both in
orbital formalism and in band formalism [11,12]. In the orbital
formalism, such a state was termed the “orbital antiphase” s+−
state [11].

An intuitive way to understand this behavior is the fol-
lowing: the gap function at the upper band is positive, while
the one at the lower band has a roughly sinusoidal shape that
crosses zero eight times, and its maxima occur at the diagonal
directions kx = ky and kx = −ky . As |β| increases, the gap
function shifts downward and thus the nodes move towards
the BZ diagonals, until |β| reaches the critical value βc. At
this point, pairs of nodal points meet and annihilate. At larger
|β| > � the maxima of the gap function are located below
zero; i.e., the gap is negative for all angles. This behavior is
illustrated in Fig. 4.

β=0

β=0.75Δ 

β=Δ

0 −π/4 π/2 3π/4 π

−0.5

0

0.5

θ

∆ ef
f(θ

)/∆

FIG. 4. Nodal gap function with interpocket pairing β evaluated
over the FS. As β increases, the function shifts downward and its
zeros move toward the angles nπ/2, where n is an integer, which
correspond to the directions given by kx = ±ky . At β = �, pairs of
zeros merge at those angles. For β > �, the function is negative and
has no zeros.

B. Interpocket hopping only (λ �= 0, β = 0)

This case has been studied before [10], and we briefly
summarize the results for completeness. The hybridization
of the electron pockets reconstructs the FSs. In order to
study this effect we diagonalize the Hamiltonian H0 + Hλ

by introducing new quasiparticles a and b via

ckα = akα − bkα√
2

, dkα = akα + bkα√
2

. (12)

After diagonalization, the nonpairing part of the Hamiltonian
takes the form

H′
0 =

∑
k

[
ξa

k a
†
kαakα + ξb

k b
†
kαbkα

]
, (13)

where the dispersions are ξa
k = ξk + λ and ξb

k = ξk − λ. The
new FSs are concentric circles. The a pocket is smaller and
the b pocket is larger than the unhybridized pockets.

In order to study the superconducting state, it is convenient
to first rewrite H� in terms of the new operators a and b as

H′
� = 1

2

∑
k

�[a†
kαa

†
−kβ + b

†
kαb

†
−kβ]iσ y

αβ

+ 1

2

∑
k

�yk[a†
kαb

†
−kβ + b

†
kαa

†
−kβ ]iσ y

αβ + H.c. (14)

Note that the interpocket pairing component �yk emerges.
Diagonalizing the new HamiltonianH′

0 + H′
�, we find the two

dispersions for the quasiparticles in the superconducting state
given by

(E±
k )2 = Ak ±

√
Bk, (15)

where

Ak = ξ 2
k + �2

(
1 + y2

k

) + λ2, (16)

Bk = 4[(ξkλ)2 + �2y2
k(�2 + λ2)]. (17)

The dispersion E+
k , as defined in (15), is positive for all k

even when evaluated at � = 0, so it has no locus of the nodal
points. Both FS lines ξk = ±λ in the normal state are part of
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FIG. 5. (Color online) Gap structure for circular pockets with interpocket hopping. In (a) and (b) we show the unfolded and folded gap
structure in the absence of hybridization, respectively. Interpocket hopping reconstructs the FSs as shown in (c). The dashed line represents the
original pockets, while the solid lines are the new set of two pockets. As the hopping parameter increases, the inner FS shrinks and the outer
one becomes larger. In the superconducting state, the nodal points (represented as crosses) lie on the unhybridized FSs and shift toward the kx

and ky axis as the hopping increases. At a critical value of this parameter the nodes meet and merge in pairs. For greater values of the parameter
they vanish and the sign of the gap function becomes the same on both FSs. The separation between the FSs is purely schematic and has been
exaggerated for clarity.

the other dispersion E−
k . Once � becomes nonzero, one can

easily check that E−
k is nonzero along the normal-state FSs.

However, on the original, non-reconstructed FS,

E−
k =

√
�2 + λ2 − �|yk|. (18)

This function contains 8 nodal points located at

cos(2θk) = ±
√

�2 + λ2

α�
. (19)

As one increases λ, the nodes stay on the unhybridized FSs,
but move toward the kx or ky axes (whichever is closer), until
λ reaches a critical value λc = �

√
α2 − 1. At this value of λ,

pairs of nodal points merge and then disappear at larger λ. We
show this schematically in Fig. 5.

The analysis of the signs of the gap requires some care.
For λ � �, the interpocket pairing term becomes irrelevant
as the two reconstructed FSs are far apart from each other. In
this limit, the gap on each reconstructed pocket is given by
the first line in (14) and is just � for both pockets. In this
limit, the sign of the gap is indeed the same on both FSs. At
intermediate λ, however, one cannot define the phase of the
gap function on the two FSs because in terms of the hybridized
fermions the gap has contributions from both intrapocket and
interpocket condensates 〈ak,αa−k,β〉iσ y

αβ and 〈ak,αb−k,β〉iσ y

αβ ,
respectively. Because the limiting behavior at large λ is known,
it is “natural” to define both finite gaps with the same sign, as
in Eq. (14), but we caution that this is rigorously justified only
in the limit of very large λ.

C. Interpocket pairing and hopping (β �= 0, λ �= 0)

Once more, the first step is to diagonalize the Hamiltonian
H0 + Hλ by introducing new pockets a and b exactly as in the
case with β = 0. We then rewrite the remaining Hamiltonian
in terms of the a and b operators and obtain

H′
�+β = 1

2

∑
k

[(� + β)a†
kαa

†
−kβ + (� − β)b†kαb

†
−kβ ]iσ y

αβ

+ 1

2

∑
k

�yk[a†
kαb

†
−kβ + b

†
kαa

†
−kβ]iσ y

αβ + H.c.

(20)

Observe that the coefficient β appears only in the intrapocket
terms. We diagonalize the Hamiltonian H′

0 + H′
�+β and again

find dispersions of the form E±
k =

√
Ak ± √

Bk, where

Ak = ξ 2
k + �2

(
1 + y2

k

) + λ2 + β2, (21)

Bk = 4
[
(ξkλ + �β)2 + �2y2

k(�2 + λ2)
]
. (22)

The dispersion E+
k is fully gapped, but E−

k has nodal points at
momenta given by

ξk = λβ/�, (23)

cos 2θk = ±
√

�2 + λ2 − β2 − λ2β2/�2

α�
. (24)

Note that the nodal points are now shifted from the unhy-
bridized FS. The direction of the shift depends on the sign of
β. If β > 0 (β < 0) the nodes appear between the original FSs
(the ones before hybridization) and the outer (inner) hybridized
FS. The nodes exist in the parameter range given by

0 � �2 + λ2 − β2 − λ2β2/�2 � α2�2. (25)

The lower bound is reached when we keep λ fixed and increase
|β| towards critical βc = �. In this case the nodes merge
at the diagonals kx = ky or kx = −ky . The nodes disappear
when |β| > βc and the intrapocket gap components in the
first line of Eq. (20) have different signs. In the limit of
λ � �, the interpocket gap component becomes irrelevant
since the reconstructed FSs are far apart and in this sense the
gap function has opposite signs on the two electron pockets.

The upper boundary in (25) is reached when we set |β| < �

and increase λ. In this situation the nodes merge along the kx

and ky directions at a critical value of λ given by

λc = �

√
(α2 − 1)�2 + β2

�2 − β2
. (26)

At λ > λc, the nodes disappear and the gap function has the
same sign on each electron pocket, as can be clearly seen in the
limit of λ � �. Note that λc grows with β; i.e., the interpocket
pairing allows the nodes to exist in a greater range of values
of λ. In this sense the pairing partially protects the nodes from
disappearing due to hopping, as long as |β| < �. The behavior
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FIG. 6. (Color online) Gap structure for circular pockets with interpocket hopping and pairing interaction. The solid outer and inner circles
represent the reconstructed FSs after hybridization. In the superconducting state, the nodal points (represented as crosses) lie on a circle (dashed
line) but no longer on the unhybridized Fermi surface. As the hopping parameter λ increases, the nodes move toward the kx and ky axis, where
they can merge and disappear. In this scenario the gap function has the same sign on both electron pockets. Increasing the pairing strength β

shifts the nodes toward the diagonal lines kx = ±ky instead. The nodes can merge and vanish, in which case the gap function acquires opposite
signs on the outer and inner pockets.

of the nodes when both λ and β are present is summarized in
Fig. 6.

Since the limiting cases where β or λ are large yield
different results for the relative signs of the gap function on the
electron pockets, it is interesting to see how one may go from
one limit to the other. Consider first a situation where β = 0
and λ > λc (the fully gapped state with equal signs of the
gaps on the two electron FSs). Now increase β. When β gets
larger, λc increases and tends to infinity when β approaches �

[see Eq. (26)]. Accordingly, once β exceeds some threshold,
λc become larger than λ and the nodal points reappear along
kx and ky directions. As β continues to increase, the nodes
split, shift toward the diagonal lines kx = ±ky , merge there
at β = �, and disappear when β > �, resulting in the fully
gapped state where the signs of the gaps on the two Fermi
surfaces are opposite. If instead one departs from λ = 0 and
β > �, then increasing λ reconstructs the FSs but cannot cause
the nodal points to reappear. Thus one cannot go back to the
state with same signs on the FSs as long as β > �. Instead,
one would need to decrease �, reversing the process described
above.

IV. ELLIPTICAL POCKETS

Now we consider the more realistic case where the electron
pockets are elliptical. We will take the dispersions in the form

ξ c
k = −μ + k2

x

2m1
+ k2

y

2m2
, (27)

ξd
k = −μ + k2

x

2m2
+ k2

y

2m1
. (28)

It is convenient to rewrite the dispersions as ξ
c,d
k = ξk ±

δk cos 2θk, where the + sign corresponds to ξ c
k , ξk ≡ (ξ c

k +
ξd

k )/2, and δk ≡ k2(m−1
1 − m−1

2 )/4. Without loss of generality,
we will take δk to be positive.

A. Interpocket pairing only (β �= 0, λ = 0)

The dispersions after diagonalizing the Hamiltonian are
given by (E±

k )2 = Ak ± √
Bk, where

Ak = 1
2

[(
ξ c

k

)2 + (
ξd

k

)2 + 2�2
(
1 + y2

k

) + 2β2
]
, (29)

Bk = 1
4

{[(
ξd

k

)2 − (
ξ c

k

)2 + 4�2yk
]2

+ 4|β|2[(ξ c
k − ξd

k

)2 + 4�2]}. (30)

Once again, E+
k is fully gapped but E−

k may contain nodes.
Unlike the circular case, the nodes are not located on the
original FSs, but at momenta |k| which are solutions of

(δk + αξk)(ξkδk − α�2) + αβ2δk = 0. (31)

Let the solutions to this equation be ξk = ξ̄ and δk = δ̄. The
angular positions of the nodal points are given by

cos2 2θk = F (ξ̄ ,δ̄)

(δ̄2 + α2�2)2
, (32)

where

F (ξ̄ ,δ̄) = (δ̄2 − α2�2)(ξ̄ 2 + β2 − �2) − 4α�2ξ̄ δ̄. (33)

Note that for each solution to Eq. (31) there exist 8 nodal points
in the dispersion. One may solve for ξ̄ and δ̄ exactly but the
solution is not very illuminating. It is more useful to solve for
ξ̄ in terms of δ̄ and analyze how the nodal points evolve when
we change δ̄. Expressing ξ̄ in terms of δ̄ we obtain

ξ̄ = δ̄2 − α2�2 ±
√

(α2�2 + δ̄2)2 − 4α2β2δ̄2

2αδ̄
. (34)

Substitution of these solutions into Eq. (33) yields

cos2 2θk = δ̄2 − α2�2 ∓
√

(α2�2 + δ̄2)2 − 4α2β2δ̄2

2α2δ̄2
.(35)

Analyzing (35) we find new interesting physics. Namely,
depending on the parameters, there may be 0, 8, or 16 nodal

224502-6



GAP STRUCTURE IN Fe-BASED SUPERCONDUCTORS . . . PHYSICAL REVIEW B 91, 224502 (2015)

Increasing interpocket interaction

Small ellipticity

Large ellipticity Large ellipticity

(d)

(e)

(c)
Small ellipticity

(a)

(b)

+

+

+
-

-
Nodes merge
and vanish

New nodes emerge at
Fermi surface crossing

(f)

(g)

-
+

-

-

-
++

+ +
+

+
+

Folded BZ

-

-

--
+

+

+
++

+

+

+
-

-
+

+

+
-

-

+

+

+
-

-
+- +

+

+
-

-
+-

FIG. 7. (Color online) Gap structure for elliptical pockets with interpocket pairing. In (a) we show the folded electron pockets overlapping.
The crosses indicate the position of the nodal points, while the solid and dashed lines indicate opposite signs of the gap function. The evolution
of the nodal points as obtained by a numerical calculation is shown in (b) through (f). First, (b) shows the nodal points with no hybridization.
If the ellipticity is below a threshold, increasing the interpocket pairing simply shifts the nodes toward the diagonal lines kx = ±ky as seen in
(c) and (d). The nodes merge and disappear after reaching the diagonal lines and the gap structure becomes nodeless as shown in (g). If this
occurs, the gap function has opposite signs on the inner and outer edges of the FSs. Alternatively, if the ellipticity is higher than the threshold,
the nodes do not reach the diagonal lines, but instead a node emerges at that symmetry point. As we further increase the interpocket pairing the
node splits into two nodes which move toward the original nodes, as shown in (e) and (f). Eventually, the new and old nodes meet and merge,
resulting again in the structure shown in (g).

points in the dispersion. When δ̄ < α�, there are either 8
or zero nodes, as one can immediately verify. At small β,
there are 8 nodes. As |β| increases, the nodes move toward
the diagonals kx = ±ky , like in the circular case. At |β| = �,
pairs of nodes merge, and for |β| > � they disappear. The
outcome of the disappearance of the nodes is the effective s+−
superconducting state with different signs of the gap on the
inner and outer electron pockets; see Fig. 7.

When δ̄ > α�, the evolution of the nodes is more interest-
ing. At small β, there are again 8 nodes. As |β| increases, the
nodes shift towards diagonals but they do not reach kx = ±ky

at |β| = �. Instead, at this β, a new quadratic node appears in
each quadrant at the point where zone diagonals intersect the
original FS. At |β| > �, each quadratic node splits into two,
one to the right and one to the left of a diagonal, and each new
node moves toward the already existing nodes (see Fig. 7).
Thus, there is a total of 16 nodal points. As |β| continues
increasing, the old and new nodes merge at a critical value
|β| = βc given by

βc = (α2�2 + δ̄2)/(2|α|δ̄). (36)

The nodes disappear when |β| exceeds this critical value and
the end result of the evolution of the nodes is the same minus-
plus gap on the inner and outer electron pockets.

We verified this behavior numerically (Fig. 7 actually
shows the results of numerical calculations). In all numerical

examples here and below we have set μ = 10� and α = −1.5.
Note in passing that while the relationships presented in this
analysis are exact, one must keep in mind that in general δ̄ by
itself depends on β.

B. Interpocket hopping only (λ �= 0, β = 0)

This case has been studied before [10] and we present it here
for completeness, using a somewhat different computation
scheme. The first step is to diagonalize the Hamiltonian
H0 + Hλ by introducing new operators a and b such that

ckα = ukckα + vkbkα, dkα = −vkakα + ukbkα, (37)

where uk = cos ψ and vk = − sin ψ , and this angle ψ sat-
isfies cos 2ψ = (ξc

k − ξd
k )/

√
(ξ c

k − ξd
k )2 + 4λ2 and sin 2ψ =

2λ/
√

(ξ c
k − ξd

k )2 + 4λ2. The new Hamiltonian is

H′
0 =

∑
k

[
ξa

k a
†
kαakα + ξb

k b
†
kαbkα

]
, (38)

where ξ
a,b
k = 1

2 (ξ c
k + ξd

k ) ±
√

λ2 + (ξc
k − ξd

k )2/4. These new
dispersions define the reconstructed FSs shown in Fig. 8. As the
hopping parameter λ increases, the outer FS (associated with b

fermions) becomes larger, while the inner FS (associated with
a fermions) shrinks.

Now we consider the superconducting state. Rewriting the
pairing part of the Hamiltonian in terms of the new operators
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FIG. 8. (Color online) Gap structure for elliptical pockets with interpocket hopping. In (a) we show the gap structure in the absence of
hybridization. Interpocket hopping reconstructs the FSs as shown in (b). As the hopping parameter increases, the inner FS shrinks and the outer
one becomes larger. In the superconducting state, the nodal points (represented as crosses) lie near, but not exactly on, FSs and shift toward the
kx and ky axis as the hopping increases, as shown in (b) and (c). At a critical value of the hopping the nodes meet and merge in pairs as in (d).
Finally, for greater values of the parameter they vanish and the sign of the gap function becomes the same on both FSs. Panels (b) through (e)
are the result of numerical calculations.

we find

H′
� = 1

2

∑
k

[�(1 − fkyk)a†
kαa

†
−kβ

+�(1 + fkyk)b†kαb
†
−kβ]iσ y

αβ

− 1

2

∑
k

�gkyk[c†kαd
†
−kβ + d

†
kαc

†
−kβ]iσ y

αβ + H.c., (39)

where fk ≡ cos 2ψ and gk ≡ − sin 2ψ . The diagonalization
of this Hamiltonian again yields dispersions in the supercon-
ducting state in the form (E±

k )2 = Ak ± √
Bk. In this particular

case

Ak = 1
2

[(
ξa

k

)2 + (
ξb

k

)2 + 2�2(1 + y2
k

)]
, (40)

Bk = 1
4

{[(
ξb

k

)2 − (
ξa

k

)2 + 4�2fkyk
]2

+ 4�2y2
kg2

k

[(
ξa

k − ξb
k

)2 + 4�2
]}

. (41)

As usual, the dispersion E+
k is nodeless, but E−

k has nodes
at momenta which are the solutions of the equation

(δk + αξk)(ξkδk − α�2) − αλ2δk = 0. (42)

Each solution to this equation defines a pair (ξ̄ , δ̄) and
determines the radial position of the nodal point. The angular
position is then given by

cos2 2θk = F (ξ̄ ,δ̄)

(δ̄2 + α2�2)2
, (43)

where

F (ξ̄ ,δ̄) = (δ̄2 − α2�2)(ξ̄ 2 − λ2 − �2) − 4α�2ξ̄ δ̄.

(44)

Like before, we solve for ξ̄ in terms of δ̄. The solution is

ξ̄ = −δ̄2 + α2�2 −
√

(α2�2 + δ̄2)2 + 4α2λ2δ̄2

2αδ̄
. (45)

When we substitute this solution into Eq. (43) we find that the
angular position of the nodes is given by

cos2 2θk = δ̄2 − α2�2 +
√

(α2�2 + δ̄2)2 + 4α2λ2δ̄2

2α2δ̄2
. (46)

The analysis of these equations shows that nodal points
appear in a set of 8 and that they are not located on the
FSs of the normal state, although our numerical calculations
show that they remain very close to it. The location of the
nodes with respect to the original FSs varies depending on
the sign of α. If α > 0, the nodes are located inside of both
unhybridized FSs but outside of the smaller FS. Instead, if
α < 0 the nodes are outside the unhybridized FSs but inside
the larger reconstructed FS.

In both cases, the behavior is qualitatively the same as in
the limiting case of circular pockets and is summarized in
Fig. 8, where we show the result of numerical calculations.
Increasing λ shifts the nodes toward the kx and ky axes. The
critical value of λ that causes the nodes to merge along these
directions is enhanced by the ellipticity and is given by λc =√

(�2 + δ̄2)(α2 − 1). At any larger λ the nodes disappear. In
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this sense, the eccentricity of the pockets tries to prevent the
disappearance of the nodes.

Regarding the gap structure, we note that for large λ the
interpocket pairing term is irrelevant as the reconstructed
FSs are far apart from each other. In this limit, the gap on
the reconstructed pockets is given by �(1 ± fkyk), where
|fkyk|  1. Thus, the phase of the gap function is equal and
uniform over the the reconstructed FSs.

At smaller λ, the phase of the gap along the FSs cannot
be determined as the pairing involves both intrapocket and

interpocket terms. Judging from the large-λ limit, it seems
natural to define the gap with equal sign on both FSs also at
intermediate λ; see Fig. 8.

C. Interpocket pairing and hopping (β �= 0, λ �= 0)

This case is the most generic one. Like before, we switch
to the reconstructed a and b pockets after hybridization. The
pairing terms in the Hamiltonian can be rewritten in terms of
a and b operators and take the form

H′
�+β = 1

2

∑
k

[�aa(k)a†
kαa

†
−kβ + �bb(k)b†kαb

†
−kβ ]iσ y

αβ + 1

2

∑
k

�ab(k)[a†
kαb

†
−kβ + b

†
kαa

†
−kβ ]iσ y

αβ + H.c., (47)

where

�aa(k) = �(1 − ykfk) − βgk, (48)

�bb(k) = �(1 + ykfk) + βgk, (49)

�ab(k) = −�ykgk + βfk. (50)

The dispersions are given by (E±
k )2 = Ak ± √

Bk, where

Ak = 1
2

[(
ξa

k

)2 + (
ξb

k

)2 + 2�2
(
1 + y2

k

) + 2β2
]
, (51)

Bk = 1
4

{[(
ξb

k

)2 − (
ξa

k

)2 + 4�2fkyk
]2 + 4�2y2

kg2
k

[(
ξa

k − ξb
k

)2 + 4�2
]} − 2β�gk

(
ξa

k − ξb
k

)[
ξa

k + ξb
k + (

ξa
k − ξb

k

)
fkyk

]
+β2[4�2 + (

ξa
k − ξb

k

)2
f 2

k

]
. (52)

Once more, we search for nodes in the dispersion E−
k . The radial position of the nodes is determined by the condition

(δkξk − α�2)(δk + αξk) + βλ

�

(
α2�2 − δ2

k

) + α(β2 − λ2)δk = 0. (53)

The solutions to this equation (ξ̄ ,δ̄) are needed to find the angular position of the nodes:

cos2 2θk = F (ξ̄ ,δ̄)

(δ̄2 + α2�2)2
, (54)

where

F (ξ̄ ,δ̄) = (δ̄2 − α2�2)(ξ̄ 2 + β2 − λ2 − �2) + 4α�δ̄(βλ − �ξ̄ ). (55)

Solving for ξ̄ in terms of δ̄, we find that the solutions to Eq. (53) are

ξ̄ = 1

2αδ̄

{
−δ̄2 + α2�2 ±

[
(α2�2 + δ̄2)2 + 4αδ̄

(
(δ̄2 − α2�2)

λβ

�
+ αδ̄(λ2 − β2)

)]1/2}
. (56)

The angular location of the nodes for these solutions is given by

cos2 2θk = 1

2α2δ̄2

{
δ̄2 − α2�2 + 2αδβλ/� ∓

[
(α2�2 + δ̄2)2 + 4αδ̄

(
(δ̄2 − α2�2)

λβ

�
+ αδ̄(λ2 − β2)

)]1/2}
. (57)

In this general case the interplay of the different parameters
is considerably more complicated than in the previous limiting
cases, but it does not produce any new features. We find that in
general the position of the nodal points depends on the signs
of both β and α, not only their magnitudes. The dependence
on the sign of β comes from bilinear terms of the form βλ,
while the dependence on the sign of α is a consequence of the
ellipticity of the pockets.

The general behavior of the nodal points is summarized
in Fig. 9. We found by numerical analysis that in general
increasing λ tends to shift the nodes toward the kx and ky axis
as usual, where they merge and disappear at a critical value
of λ. In this case, the sign of the order parameter is the same
on both FSs. Increasing |β| instead shifts the nodes toward the
diagonals kx = ±ky . At |β| = � there are two possibilities, as
seen in the limiting case of λ = 0. The first is that the eight
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FIG. 9. (Color online) Gap structure for elliptical pockets with interpocket hopping and pairing. This case incorporates all the features seen
in Figs. 7 and 8. The main difference is that the condition for additional nodes does not depend solely on the ellipticity, but also on the hopping
parameter and the sign of the interpocket pairing.

nodal points merge in pairs at the diagonal lines, disappearing
for |β| > �.

This happens at small δ̄, i.e., for small eccentricity. The
second is that the original nodal points do not reach the
diagonal lines at this value of β, but instead four new nodes
appear at those lines. Increasing |β| further causes these four
new nodal points to split into pairs, and moves the old and
new nodes toward each other. At a threshold value of β they
merge and then disappear. This second scenario, with 16 nodal
points at intermediate β, is realized at larger δ̄, i.e., at larger
eccentricity. In either case, the merging of nodes caused by
large β means that the gap function has opposite signs on the
electron pockets.

One important difference with the case of λ = 0 is that
the condition for developing additional nodal points is more
complicated since the sign of β and the value of λ also play a
role. It is clear from the equations that the additional nodes are
more likely to develop for β < 0, for δ > α�, and for small λ.
The exact conditions when additional nodes appear are given

by rather involved formulas and we refrain from presenting
them.

V. CONCLUSIONS

In this paper we have investigated the effect of hybridization
of the two electron pockets on the gap structure in FeSCs. We
considered the case when the dominant pairing interaction
is between hole and electron pockets and it yields an s+−
gap with accidental nodes on the electron pockets. Our
goal was to understand how accidental nodes move once
we include the hybridization. We argued that for an s+−
superconductor hybridization gives rise to two effects: hopping
between electron FSs and the appearance of an additional
pairing term which describes interpocket pairing. Each of
these two effects shifts the position of the nodes and at
large enough hybridization the nodes eventually disappear.
However, the evolution of the nodes and the gap structure of the
resulting nodeless state is different, depending on whether the
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interpocket hopping or the interpocket interaction is stronger.
In the first case, the resulting state has the same sign of the
gap on both reconstructed FSs. In the second case, there is a
sign change of the superconducting gap between the inner and
outer FSs.

We also showed that the evolution of the nodes with
increasing interpocket pairing interaction is rather nontrivial,
and in the intermediate regime the number of nodal points may
increase from 8 to 16. We also found that the eccentricity of the
pockets enlarges the critical values of the hybridization param-
eters, partially protecting the nodal points from disappearing.

The bottom line of this analysis is that strong hybridization lifts
accidental nodes, but the resulting superconducting state may
be highly nontrivial, particularly when the dominant effect of
hybridization is the emergence of interpocket pairing potential.
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