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Breakdown of long-wavelength magnons in cubic antiferromagnets with dipolar
forces at small temperature
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Using 1/S expansion, we discuss the magnon spectrum of Heisenberg antiferromagnet (AF) on a simple cubic
lattice with small dipolar interaction at small temperature T � TN , where TN is the Néel temperature. Similar
to three-dimensional and two-dimensional ferromagnets, quantum and thermal fluctuations renormalize greatly
the bare gapless spectrum leading to a gap � ∼ ω0, where ω0 is the characteristic dipolar energy. This gap is
accompanied by anisotropic corrections to the free energy which make the cube edges easy directions for the
staggered magnetization (dipolar anisotropy). In accordance with previous results, we find that dipolar forces
split the magnon spectrum into two branches. This splitting makes possible two types of processes which lead
to a considerable enhancement of the damping compared to the Heisenberg AF: a magnon decay into two other
magnons and a confluence of two magnons. It is found that magnons are well defined quasiparticles in quantum
AF. We demonstrate however that a small fraction of long-wavelength magnons can be overdamped in AFs
with S � 1 and in quantum AFs with a single-ion anisotropy competing with the dipolar anisotropy. Particular
materials are pointed out which can be suitable for experimental observation of this long-wavelength magnons
breakdown that contradicts expectation of the quasiparticle concept.
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I. INTRODUCTION

The concept of elementary excitations (quasiparticles) is
a powerful approach in the modern theory of many-body
systems [1,2]. According to this concept, each weakly excited
state of a system can be represented as a set of weakly
interacting quasiparticles carrying quanta of momentum k and
energy εk. Processes of spontaneous decay of quasiparticles
and interaction between them lead to a finiteness of their
lifetime that is related to the quasiparticle damping �k. It
is reasonable to introduce the idea of quasiparticle only if its
lifetime is sufficiently large or if the damping is much smaller
than the energy (�k � εk). As long-wavelength quasiparticles
have the smallest energies, weakly excited states of a many-
body system are represented as collections of long-wavelength
elementary excitations. Thus, they should be well defined
according to the quasiparticles concept. As regards short-
wavelength elementary excitations, they can be defined badly
or even cannot exist at all for some momenta. This situation
is realized, for instance, in liquid 4He which has a termination
point in its spectrum [1,3]. As short-wavelength elementary
excitations are normally well defined, particular systems with
overdamped short-wavelength quasiparticles have attracted
much attention in recent years [4–11].

The quasiparticle concept is supported by many experi-
ments in various systems and numerous microscopic calcu-
lations in particular models. For example, it was found in
Ref. [12] that �k � εk at k � 1 and T � TN in 3D Heisenberg
antiferromagnets (AFs) with a small single-ion anisotropy,
where TN is the Néel temperature. In particular, it was obtained
that �k ∼ ε2

kτ
3 ln τ at S ∼ 1 and k � τ 3, where τ = T/TN �

1. For large spins S � 1, when the regime TN/S � T � TN

exists, the damping is estimated as �k ∼ ε2
kτ

2 at k � 1.
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On the other hand, it has been revealed recently [13,14] that
small long-range dipolar interaction in two-dimensional (2D)
and three-dimensional (3D) Heisenberg ferromagnets (FMs)
makes a small fraction of long-wavelength magnons to be
heavily damped.1 It has been obtained that a peak appears in the
ratio �k/εk at very small but finite momentum. The peak height
is of the order of unity even if the temperature is much smaller
than the Curie one (i.e., when FM can be considered as a
weakly excited system). This unexpected result contradicts the
conventional wisdom about long-wavelength quasiparticles
and expectation of the quasiparticle concept. It is demonstrated
also in Refs. [13,14] that it is the long-range nature of the
dipolar interaction that is responsible for the anomalous
damping of some long-wavelength magnons. In the majority of
real FM materials this effect is screened by magnetocrystalline
anisotropy leading to the gap in the spectrum. Besides, it
is difficult to observe the long-wavelength magnons
breakdown experimentally due to very small values of
the corresponding momenta. However recent progress in
neutron spin-echo technique [15,16] holds out hope that the
corresponding measurements will be carried out in suitable FM
materials [14].

The purpose of the present paper is to carry out similar
analysis of the magnon spectrum in Heisenberg AF with
dipolar interaction on a simple cubic lattice at T � TN using
1/S expansion. We obtain that similar to 2D and 3D FMs
[13,17] quantum and thermal fluctuations lead to anisotropic
corrections to the free energy which make the cube edges easy
directions for the staggered magnetization. These corrections
to the free energy are naturally accompanied by appearance of

1Notice that long-range interactions in a system are not taken
into account in quite a general line of arguments supporting the
quasiparticle concept [1,2,18].
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FIG. 1. Diagrams of the first order in 1/S for self-energy parts
discussed in the present paper. Diagram (a) comes from four-magnon
terms (9) in the Hamiltonian, whereas (b) stems from three-magnon
terms (8). Lines in these diagrams stand for Green’s functions (11).

a gap � in the magnon spectrum in the first order in 1/S. All
these phenomena are of “order-by-disorder” origin.

We obtain in accordance with previous results [19–21] that
dipolar forces split the magnon spectrum into two branches.
Despite its smallness, this splitting is responsible for a
considerable enhancement of the magnon damping: it opens a
way for a decay of a magnon into two other spin waves and for
a confluence of two magnons. These processes of decay and
confluence contribute to magnon damping because the dipolar
interaction leads to three-particle vertexes in the Hamiltonian.
As a result, the main contribution to the damping arises in the
first order in 1/S from the loop diagram shown in Fig. 1(b).
This should be contrasted with Heisenberg AF, which does not
have odd-particle vertexes due to the rotation invariance of the
Heisenberg coupling. As a consequence, the magnon damping
obtained in Ref. [12] and mentioned above arises at finite T

from four-magnon vertexes in the second order in 1/S.
Our damping calculation in the first order in 1/S shows that

magnons are well defined quasiparticles if S ∼ 1. In particular,
we obtain a peak in the ratio �k/εk at k ∼ �/D, where D is the
magnon velocity, whose height is proportional to T/D � 1.
The peak height increases considerably at S � 1 in the regime
TN/S � T � TN in which case �k/εk ∼ const and a fraction
of long-wavelength magnons with k ∼ �/D turns out to
be overdamped. We demonstrate that the long-wavelength
magnons breakdown arises also when a single-ion anisotropy
appears in the system which competes with the anisotropy
of the dipolar origin mentioned above. We argue that this
phenomenon can be observed in cubic AFs TlMnF3 and
RbMnF3 doped with a very small amount of cobalt. Notice
that dipolar forces enhance greatly the magnon damping as
compared with the purely Heisenberg AFs considered in
Ref. [12] and mentioned above.

The rest of the present paper is organized as follows.
Section II is devoted to Hamiltonian transformations and to
description of the technique. Renormalization of the ground
state energy and the real part of spectrum are discussed in
Secs. III and IV, respectively. The spin-wave damping is
derived in Sec. V. The long-wavelength magnons breakdown
at S � 1 and in AFs with the competing single-ion anisotropy
is considered in Sec. VI. Section VII contains our conclusion.
Four Appendixes are added with details of calculations.

II. HAMILTONIAN TRANSFORMATION
AND TECHNIQUE

A. Hamiltonian transformation

We discuss Heisenberg AF with dipolar interaction
on a simple cubic lattice whose Hamiltonian has the

form

H = 1

2

∑
l �=m

(
Jlmδαβ − Q

αβ

lm

)
Sα

l Sβ
m, (1)

where summation over repeated Greek letters is implied, Jlm =
J > 0 for nearest neighbors and Jlm = 0 for other couples of
spins,

Q
αβ

lm = ω0

4π

3Rα
lmR

β

lm − δαβR2
lm

R5
lm

(2)

is the dipolar tensor,

ω0 = 4π
(gμB)2

v0
(3)

is the characteristic dipolar energy that is smaller than 1 K
in the majority of magnetic materials, and v0 is the unit cell
volume. We assume in the present paper that ω0 � J . By
taking the Fourier transformation, one has from Eq. (1)

H = 1

2

∑
k

(
Jkδαβ − Q

αβ

k

)
Sα

k S
β

−k, (4)

where Jk = ∑
l Jlm exp(ikRlm) and Q

αβ

k =∑
l Q

αβ

lm exp(ikRlm).
It is convenient to represent spin components in the

local coordinate frame as follows: Sl = Sx
l x̂ + (Sy

l ŷ +
Sz

l ẑ) exp(ik0Rl), where x̂, ŷ, and ẑ are mutually orthogonal
unit vectors, exp(ik0Rl) describes AF spin ordering being
equal to +1 and −1 on sites belonging to different magnetic
sublattices, k0 = (π,π,π ) is the AF vector, and we set the
lattice spacing to be equal to unity. This representation allows
one introducing only one sort of bosons via the Dyson-Maleev
spin representation which has the form

Sx
l =

√
S

2

(
al + a

†
l − a

†
l a

2
l

2S

)
,

S
y

l = −i

√
S

2

(
al − a

†
l − a

†
l a

2
l

2S

)
, (5)

Sz
l = S − a

†
l al .

Using the Holstein-Primakoff transformation instead of the
Dyson-Maleev one (5) does not change the results obtained
below. Taking the Fourier transformation in Eqs. (5) and using
the relation Sk = Sx

k x̂ + S
y

k+k0
ŷ + Sz

k+k0
ẑ one obtains from

Eq. (4) for the Hamiltonian H = Egs + ∑6
i=1 Hi , where

Egs = − 1
2S2J0N (6)

is the classical ground state energy, N is the number of spins
in the lattice, and Hi denote terms containing products of i

operators a† and a. In particular, H1 = 0 because it contains
only Q

αβ

0 and Q
αβ

k0
with α �= β which are equal to zero.

One has for the rest terms which are essential for further
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consideration

H2 =
∑

k

[
Eka

†
kak + Bk

2
(aka−k + a

†
ka

†
−k) + Eka

†
k+k0

ak + Bk

2
aka−k+k0

+ B∗
k

2
a
†
ka

†
−k+k0

]
, (7)

H3 =
√

S

2N

∑
k1+k2+k3=0

[
iQ

yz

k2+k0
a
†
k1

(
a
†
k2

− a−k2

)
a−k3

+ Qxz
k2

a
†
k1+k0

(
a
†
k2

+ a−k2

)
a−k3

]
, (8)

H4 = 1

4N

∑
k1+k2+k3+k4=0

{
a
†
k1

a−k2
a−k3

a−k4

( − 2Jk2 + Qxx
k2

− Q
yy

k2+k0

)

+ a
†
k1

a
†
k2

a−k3
a−k4

(−2Jk1+k3 + Qxx
k1

+ Q
yy

k1+k0
− 2Qzz

k1+k3+k0

)
− ia

†
k1+k0

[(
Q

xy

k2
− Q

xy

k2+k0

)
a
†
k2

+ a−k2

(
Q

xy

k2
+ Q

xy

k2+k0

)]
a−k3

a−k4

}
, (9)

where

Ek = SJ0 − S

2

(
Qxx

k + Q
yy

k+k0

)
,

Bk = SJk − S

2

(
Qxx

k − Q
yy

k+k0

)
, (10)

Ek = i
S

2

(
Q

xy

k+k0
− Q

xy

k

)
,

Bk = i
S

2

(
Q

xy

k+k0
+ Q

xy

k

)
.

B. Green’s functions

It is convenient for further calculations to introduce the following set of retarded Green’s functions:

G(ω,k) = 〈ak,a
†
k〉ω, G(ω,k) = 〈a†

−k,a−k〉ω = G∗(−ω, − k),

F (ω,k) = 〈ak,a−k〉ω, F †(ω,k) = 〈a†
−k,a

†
k〉ω = F ∗(−ω, − k), (11)

G(ω,k) = 〈ak+k0 ,a
†
k〉ω, G(ω,k) = 〈a†

−k+k0
,a−k〉ω = G∗(−ω, − k),

F(ω,k) = 〈ak+k0 ,a−k〉ω, F†(ω,k) = 〈
a
†
−k+k0

,a
†
k

〉
ω

= F∗(−ω, − k).

We have two sets of Dyson equations for them one of which has the following form:⎛
⎜⎜⎜⎜⎝

�k − ω + Ek Bk + �k −Ek + Sk −Bk + Pk

Bk + �
†
k �k + ω + Ek Bk + P†

k Ek + Sk

Ek + Sk+k0 −Bk + Pk+k0 �k+k0 − ω + Ek+k0 Bk+k0 + �k+k0

Bk + P†
k+k0

−Ek + Sk+k0 Bk+k0 + �
†
k+k0

�k+k0 + ω + Ek+k0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

G

F †

G
F†

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

−1

0

0

0

⎞
⎟⎟⎟⎠, (12)

where couples of self-energy parts are introduced: �k =
�(ω,k) and �k = �(ω,k), �k = �(ω,k) and �

†
k =

�†(ω,k), Sk = S(ω,k) and Sk = S(ω,k), Pk = P(ω,k) and
P†

k = P†(ω,k), and we use relations B∗
k = −Bk = −Bk+k0

and E∗
k = −Ek = Ek+k0 following from Eqs. (10).

The general solution of Eq. (12) is quite cumbersome and
we do not present it here. Green’s functions derived from
Eq. (12) in the spin-wave approximation (i.e., at zero self-
energy parts) are presented in Appendix A [see Eqs. (A1)].
Their denominator has the form

D(0)(ω,k) = [ω2 − (ε+
0k)2][ω2 − (ε−

0k)2], (13)

where

(ε±
0k)2 = 1

2

(
E2

k + E2
k+k0

− B2
k − B2

k+k0
+ 2B2

k − 2E2
k

) ±
√

dk,

(14)

dk = 1
4

(
E2

k + E2
k+k0

− B2
k − B2

k+k0
+ 2B2

k − 2E2
k

)2

− [
(Ek + Bk)

(
Ek+k0 − Bk+k0

) + (Ek − Bk)2
]

× [
(Ek − Bk)

(
Ek+k0 + Bk+k0

) + (Ek + Bk)2
]

(15)

and ε±
0k give energies of two magnon branches in the spin-

wave approximation (i.e., the classical magnon spectrum).
It is seen that dipolar forces split the spectrum into two
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branches as it was pointed out before [20,21]. It can be shown
using Eqs. (10), (14), and (15) that ε±

0k are invariant under
replacement of k by k + k0.

To find magnon spectrum in the first order in 1/S (that is
denoted below as ε±

1k), one has to use Green’s functions (A1)
for diagrams calculation and to consider the first 1/S correc-
tions to the Green’s functions denominator that has the form
up to a factor

D(1)(ω,k) = [ω2 − (ε+
0k)2][ω2 − (ε−

0k)2] + 
(ω,k), (16)

where 
(ω,k) is a function linear in self-energy parts. The
explicit expression for 
(ω,k) is given in Appendix A [see
Eqs. (A4) and (A5)]. It is also shown in Appendix A that

(ω,k) is invariant under replacement of k by k + k0. As a
result ε±

1k (like ε±
0k) have the same form in the vicinity of k = 0

and k = k0. That is why we discuss below the spectrum only
in the neighborhood of the point k = 0 (i.e., at k � 1) bearing
in mind that it has the same form near k = k0.

C. Magnon spectrum

Classical magnon spectrum given by Eq. (14) becomes
simpler in the limiting case of k � 1. As it is seen from

Eqs. (10), one has to use properties of dipolar tensor at k � 1
and k ∼ k0 to derive it. The dipolar tensor has the well-known
form near the point k = 0

Q
αβ

k = ω0

(
δαβ

3
− kαkβ

k2

)
, k � 1. (17)

We obtain numerically using the dipolar sums computation
technique (see, e.g., Ref. [22] and references therein) at k ∼ k0

Q
αβ

k+k0
= ω0

[
cxx

(
3k2

α − k2
)
δαβ + cxykαkβ(1 − δαβ)

]
, k � 1,

cxx ≈ 0.051, (18)

cxy ≈ −0.055.

In particular, it is seen from Eq. (18) that Q
αβ

k0
= 0. It can

be shown that higher order terms in powers of k in Eqs. (17)
and (18) do not contribute to the results obtained in the present
paper in the considered orders in ω0/J and k.

One obtains from Eqs. (10), (14), (15), (17), and (18)
for the classical spectrum at k � 1 in the leading order
in ω0/J

ε±
0k = Dk

√
1 − 2k2L2(θk,ϕk) ± ω0

4J0
L1(ϕk) sin2 θk ≈ Dk

(
1 − k2L2(θk,ϕk) ± ω0

8J0
L1(ϕk) sin2 θk

)
, (19)

L1(ϕk) =
√

(1 + 12cxy)2 + 24(3cxx − cxy)(1 + 18cxx + 6cxy) cos2 2ϕk ≈
√

4.063 + 3.95 cos 4ϕk, (20)

L2(θk,ϕk) = 1

12

(
cos4 θk + cos2 θk sin2 θk + 1

8
sin4 θk(7 + cos 4ϕk)

)
≈ L2 = 0.069, (21)

where D = S
√

2JJ0 = SJ
√

12 is the magnon velocity, angles
θk and ϕk are taken in the spherical coordinate system with the z

axis directed along the staggered magnetization, and constants
cxx and cxy are defined in Eq. (18). It should be noted that
the classical spectrum (19) is gapless. The function L2(θk,ϕk)
is very smooth: its values lie in the interval [ 1

18 , 1
12 ]. That is

why L2(θk,ϕk) can be averaged over the angles and replaced
by the constant L2 for simplicity [see Eq. (21)] as it was done
in Ref. [12]. The spectrum splitting depends on the function
L1(ϕk) which has the following properties:

0.34 ≈ 1 + 12cxy = L1(π/4) � L1(ϕk) � L1(0)

= 1 + 36cxx ≈ 2.83 (22)

and L1(ϕk) ≈ 2
√

2| cos 2ϕk|. Spectrum (19) is plotted in Fig. 2
for a particular set of parameters.

It should be noted that Eq. (19) differs from the clas-
sical spectrum obtained in Ref. [20]. The origin of this
discrepancy is in the fact that dipolar tensor components
were found in Ref. [20] with the precision O(k), whereas
some quadratic in k terms contribute to ε±

0k. In our notation,
these are terms taken into account in Eq. (18) [quadratic in
k terms which are omitted in Eq. (17) do not contribute to
Eq. (19)].

Magnon spectrum can be extracted from the dynamical
structure factor (DSF) that is measured in neutron scattering
experiment. In the spin-wave approximation, transverse DSF is

determined by a linear combination of Green’s functions (11).
In particular, DSF Sxx(ω,k) has the form at k ∼ k0

Sxx(ω,k) ∝ Im[G(ω,k) + G(ω,k) + F (ω,k) + F †(ω,k)]

= π
SJ0

ω

[
δ(ω − ε+

0k) + δ(ω + ε+
0k)

]
×

(
1 − (1 + 36cxx)

cos(2ϕk)

L1(ϕk)

)

+π
SJ0

ω
[δ(ω − ε−

0k) + δ(ω + ε−
0k)]

×
(

1 + (1 + 36cxx)
cos(2ϕk)

L1(ϕk)

)
,

where we use Eqs. (A1) for Green’s functions in the spin-wave
approximation. The sumSxx(ω,k) + Syy(ω,k) has the simpler
dependence on angles:

Sxx(ω,k) + Syy(ω,k) ∝ 2π
SJ0

ω
[δ(ω − ε+

0k) + δ(ω + ε+
0k)

+ δ(ω − ε−
0k) + δ(ω + ε−

0k)],

where k ∼ k0. It is sketched in the inset of Fig. 2, where
we take into account that δ peaks are replaced by Lorentzian
functions due to the magnon damping derived below.
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FIG. 2. (Color online) The splitting of the magnon spectrum into two branches obtained in the spin-wave approximation [ε±
0k given by

Eq. (19)] and in the first order in 1/S [ε±
1k given by Eq. (29)]. Curves are drawn for S = 1/2, J = 1, and ω0 = 0.4. Inset shows a sketch of the

sum of two dynamical structure factors Sxx(ω,k) + Syy(ω,k).

III. THE GROUND STATE ENERGY RENORMALIZATION

The classical ground state of the model (1) is continuously
degenerate: the staggered magnetization can have arbitrary
direction as it is seen from Eq. (6). It is well known that
quantum fluctuations can give anisotropic corrections to the
ground state energy selecting a limiting number of states
(“order-by-disorder” effect). These quantum corrections are
proportional in our case to sums over momenta containing
components of the dipolar tensor Q

αβ

k and depend conse-
quently on the direction of the quantized axis relative to
the lattice. Thus, one should bear in mind in the subsequent
calculations what is the easy direction of magnetization in
the ground state. Using Eq. (7) for the biquadratic part of the
Hamiltonian and Eqs. (A1) for Green’s functions, we obtain
after tedious calculation the following anisotropic part of the
first 1/S correction to the ground state energy Egs:

�Egs

N
= C

Sω2
0

J

(
γ 2

x γ 2
y + γ 2

x γ 2
z + γ 2

z γ 2
y

)
, (23)

C = J

16ω2
0

1

N

∑
q

(J0 − Jq)2
[(

Qxx
q − Q

yy
q

)2 − 4
(
Q

xy
q

)2]
(
J 2

0 − J 2
q

)3/2

≈ 0.0022, (24)

where γi are direction cosines of the staggered magnetization
relative to axes which are parallel to cube edges. Components
of the dipolar tensor in Eq. (24) are taken relative to
these axes. The constant C has been calculated numerically
using the procedure of dipolar sums computation [22]. This
computational technique is required because momenta q ∼ 1
give the main contribution to the sum in Eq. (24) and one
cannot use Eqs. (17) and (18). As C > 0, cube edges are easy
directions for the staggered magnetization.

It is shown in the next section that similar to FMs with dipo-
lar interaction [13,17], the fluctuation-induced anisotropy (23)
is naturally accompanied by the fluctuation-induced gap in
the spectrum. Then, both the anisotropy and the gap have the
order-by-disorder origin.

IV. RENORMALIZATION OF THE REAL PART
OF THE SPECTRUM

Let us discuss renormalization of the real part of the
spectrum stemming from diagrams of the first order in 1/S

shown in Fig. 1. Lines in these diagrams stand for bare
Green’s functions introduced in Eqs. (11) [see Eqs. (A1) for
their explicit form in the spin-wave approximation]. Each
self-energy part arising in the Dyson equation (12) receives
its own contribution from the diagrams.

As can be seen from results below, it is more convenient to
discuss renormalization of the real part of the spectrum square
for which we have from Eq. (16)

(ε±
1k)2 = (ε±

0k)2 ∓ Re
(ω = ε±
0k + iδ,k)

2
√

dk
, (25)

where the last term is given by Eq. (A6). The Hartree-Fock
diagram presented in Fig. 1(a) originates from four-magnon
terms (9) in the Hamiltonian. After simple calculations we
obtain in the leading orders in k and ω0/J for the contribution
to 
(ω,k)

∓
(4)(ε±
0k,k)

2
√

dk

= (Dk)2 1

SN

∑
q

J0 −
√

J 2
0 − J 2

q

J0
(1 + 2Nq)

+ J0S

4N

∑
q

(J0 − Jq)2
[(

Qxx
q − Q

yy
q

)2 + 2
(
Q

xy
q

)2]
(
J 2

0 − J 2
q

)3/2

× (1 + 2Nq) + J0S

2N

∑
q

Q
xy
q Q

xy

q+k0√
J 2

0 − J 2
q

(1 + 2Nq), (26)

where Nq = [exp(εq/T ) − 1]−1 and εq = S

√
J 2

0 − J 2
q . One

concludes comparing Eqs. (19) and (26) that the first term
in Eq. (26) leads to the well known renormalization of the
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magnon velocity D

D → D

⎛
⎝1 + 1

2SN

∑
q

J0 −
√

J 2
0 − J 2

q

J0
(1 + 2Nq)

⎞
⎠

≈ D

{
1 + 1

2S

[
0.097 + 4ζ (3)

π2

(
T

D

)3
]}

, (27)

where ζ (x) is the Riemann ζ function and we assume that
S ∼ 1 (so that T � D at T � TN ). The second and the third
terms in Eq. (26) contribute to the spin-wave gap.

The loop diagram shown in Fig. 1(b) comes from three-
magnon terms (8) in the Hamiltonian. As a result of simple but
tedious calculations we obtain for the contribution to the real
part of 
(ω,k) in the leading orders in k and ω0/J

∓Re

(3)(ε±

0k,k)

2
√

dk
= −3J0S

2N

∑
q

(J0 − Jq)2
(
Q

xy
q

)2(
J 2

0 − J 2
q

)3/2 (1 + 2Nq)

− J0S

2N

∑
q

Q
xy
q Q

xy

q+k0√
J 2

0 − J 2
q

(1 + 2Nq), (28)

where we set k = 0 under sums because the summation over
q ∼ 1 gives the main contribution.

One obtains in the first order in 1/S from
Eqs. (19), (25), (26), and (28) the following expression for
the spectrum at S ∼ 1 and k � 1:

ε±
1k =

√
(Dk)2

(
1 − 2L2k2 ± ω0

4J0
L1(ϕk) sin2 θk

)
+ �2,

(29)

where we imply the small renormalization of the magnon
velocity (27),

� =
√

24CSω0 (30)

is the gap in the spectrum, and the constant C is given
by Eq. (24). Notice that thermal corrections to the gap are
negligibly small at S ∼ 1. Equation (29) is plotted in Fig. 2 for
a specific set of parameters. Spectrum (29) has the following
form in the two limiting cases:

ε±
1k =

{
�, k � �/D,

Dk
(
1 − L2k

2 + �2

2(Dk)2 ± ω0
8J0

L1(ϕk) sin2 θk
)
, k � �/D.

(31)

As it was done in Refs. [13,17] for 2D and 3D FMs
with dipolar forces, it can be shown that coincidence is not
accidental of the numerical constants C in expressions for the
anisotropic correction to the ground state energy (23) and to
the gap (30). Namely, the anisotropy in the Hamiltonian of the

type C
Sω2

0
J

∑
i [(Sx

i )2(Sy

i )2 + (Sx
i )2(Sz

i )2 + (Sy

i )2(Sz
i )2]/S4 [cf.

Eq. (23)], where C is a positive constant, leads to the gap in
the classical spectrum of the form (30) if S � 1.

As is seen from Eqs. (19) and (31), the spectrum renor-
malization is very small at k � �/D, whereas quantum
fluctuations change it drastically at k � �/D. One has to
take into account this renormalization when discussing the
spin-wave damping. Then, we carry out below self-consistent
calculations of the damping. Notice that such self-consistent
consideration leads to the same result (29) for the real part of
the spectrum.

V. MAGNON DAMPING

It is well known that the magnon damping arises in
Heisenberg nonfrustrated AFs at T �= 0 in the second order
in 1/S and there is no damping at T = 0 [12]. Dipolar forces
give rise to the finite damping at T � 0 in the first order in 1/S

due to the three-magnon interaction (8) that leads to the loop
diagram shown in Fig. 1(b).

Contributions from the diagram presented in Fig. 1(b) to
the imaginary part of each self-energy part contain δ functions
describing the magnon decay and the confluence of two
magnons [it is clear from the explicit form of the bare Green’s
functions given by Eqs. (A1)]. For a magnon with momentum
k, one has 23 = 8 possible decay processes of the type

ε±
k − ε±

q − ε±
k−q = 0 (32)

which arise at any T and 8 confluence processes

ε±
k − ε±

q + ε±
k−q = 0 (33)

which exist at T �= 0 only. Their contributions to the imaginary
part of 
(ω,k) determining the damping are not equal and
depend on T and k. Figures 3(a) and 3(b) illustrate Eqs. (32)
and (33), respectively. The reader is referred to Appendix C
for a detailed analysis of Eqs. (32) and (33).

One obtains from Eq. (16) for the magnon damping in the
first order in 1/S

�±
k = ± Im
(ω = ε±

1k + iδ,k)

4
√

dkε
±
1k

. (34)

As it was mentioned above, one has to carry out self-
consistent calculations to find �±

k due to the considerable
renormalization of the real part of the spectrum by fluctuations
at k � �. The general expression for �±

k and corresponding
calculations are rather cumbersome. Fortunately, the results
become quite compact in limiting cases which are important
for our consideration and which we discuss below.

We assume in this section that S ∼ 1. As a consequence, it
is implied that D ∼ TN and � ∼ ω0.

A. T = 0

As it is discussed in Appendix C in more detail, the decay
processes contribute at T = 0 to the damping of “+”-magnon
branch only, whereas the “−” branch has infinite lifetime:

�−
k = 0. (35)
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FIG. 3. (Color online) Momenta q, k, and q − k (or k − q) of three magnons in the decay (a) and confluence (b) processes which are given
by Eqs. (32) and (33), respectively. Components q‖ and q⊥ of q are also shown which are parallel and perpendicular to k, correspondingly.

As a result of simple but tedious calculations we obtain at

k � sin θk

√
ω0
J

and sin θk �
√

�
Sω0

�+
k = k

ω3
0

J 2

(1 + 12cxy)2

27648πL2
L1(ϕk) sin4 θk cos2 θk

≈ k
ω3

0

J 2
1.9 × 10−5L1(ϕk) sin4 θk cos2 θk, (36)

and �+
k is negligible for other k and θk. Thus, one concludes

from Eq. (36) that �+
k � ε+

k at T = 0.
Temperature corrections to Eq. (36) become important

at T � Sω0 sin2 θk/k2. The order of magnitude of these
corrections can be obtained by multiplying Eq. (36) by

T k2

Sω0 sin2 θk
ln

(
Sω0

�
sin2 θk

)
. (37)

B. T �= 0

Confluence processes give the main contribution

to the damping when sin θk

√
ω0
J

� k � �
D

and
Sω0
k

sin2 θk � T � D:

�+
k = ω2

0

kJ

T

D

(1 + 12cxy)2

2304π
A3

√
1 − B(4 − B)

×
(

1 − f (ϕk)

4(1 + 18cxx + 6cxy)

)
sin2 2θk, (38)

�−
k = �+

k
f (ϕk)

4(1 + 18cxx + 6cxy) − f (ϕk)
, (39)

where the non-negative function

f (ϕk) = [1 + 36cxx − L1(ϕk)][L1(ϕk) − 1 − 12cxy]

L1(ϕk)
(40)

is introduced [cf. Eq. (22)] whose graphic is shown in Fig. 4
and

A = ω0

144L2Jk
L1(ϕk) sin2 θk ≈ 0.1

ω0

Jk
L1(ϕk) sin2 θk, (41)

B = 288L2�
2

S2ω2
0L1(ϕk)2 sin4 θk

= 6912CL2

SL1(ϕk)2 sin4 θk

≈ 1.05

SL1(ϕk)2 sin4 θk
. (42)

Equations (38) and (39) are valid for B < 1. Momenta of
summation q � k give the main contribution to Eqs. (39)
and (38).

For larger momenta, one obtains when k � sin θk

√
ω0
J

,

sin θk �
√

�
Sω0

, and T � Dk

�+
k = k2 ω2

0

J

T

D

(1 + 12cxy)2

768π
sin2 2θk

×
[

ln

(
S
√

Jω0

�
k sin θk

)
+

(
1 − 12cxy

1 + 12cxy

)2

×
(

1 − f (ϕk)

4(1 + 18cxx + 6cxy)

)
ln

( √
B

1 − √
1 − B

)]
,

(43)

�−
k = k2 ω2

0

J

T

D

(1 + 12cxy)2

768π
ln

( √
B

1 − √
1 − B

)
sin2 2θk,

(44)

where decay and confluence processes lead to the first and to
the second terms in the last brackets in Eq. (43), respectively,
and confluence processes determine �−

k .
It is seen from Eqs. (38) and (39) and (43) and (44) that the

damping �±
k decreases as k2 upon k decreasing down to k ∼√

ω0
J

in which region this decreasing changes into rising that

has the form 1/k4. This rising takes place up to k ∼ �/D near
which point the increasing turns into a rapid fall due to the gap
in the spectrum. Thus, �±

k has a peak at k ∼ �/D whose height
is of the order of ω0T/D and the ratio �±

k /ε±
k is proportional to

T/D � 1 at the peak position (see Fig. 5). Thus, one concludes
that magnons are well defined quasiparticles in quantum AF
with dipolar forces at T � TN .

0 π/4 π/2 3π/4 π
0

0.5

1

1.2

ϕk

f
(ϕ

k
)

FIG. 4. (Color online) Graphic of the function f (ϕk) given by
Eq. (40) that determines dependence of the damping on azimuthal
angle ϕk [see Eqs. (38), (39), (43), (48), and (49)].
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FIG. 5. Sketch of the ratio �±
k /ε±

k at T � S
√

Jω0. Asymptotic
at k � √

ω0/J is also shown. The peak hight at k ∼ �/D is
proportional to T/D � 1 for quantum spins and it is given by a
constant for S � 1 at D � T � TN . The peak height in quantum
AF can reach a value of the order of unity if the gap is sufficiently
reduced by the anisotropy competing with the dipolar one (23) (see
discussion in Sec. VI B).

VI. POSSIBILITY OF THE MAGNON BREAKDOWN

We obtain in the previous section that the damping rising
upon k decreasing stops at k ∼ �/D due to the gap in
the spectrum. One infers that a reduction of the gap value
could keep the damping increasing and lead to the long-
wavelength magnon breakdown. We discuss in this section
two possibilities of the gap decreasing. First, we consider
large spins S � 1. As the gap (30) obtained above is of the
next order in 1/S as compared to the bare spectrum, the gap
value can be reduced by increasing S. The second way to
decrease the gap value is to take into account a magnetocrys-
talline anisotropy competing with the dipolar one (23) (i.e., the
magnetocrystalline anisotropy favoring cube space diagonals
rather than cube edges). In this case, a negative contribution
arises to the gap (30) which can decrease the gap considerably
(see Appendix D for a more detail discussion of the possibility
to reduce the gap value in this way).

A. Large spins

It is well known that TN ∼ S2J , whereas D ∼ SJ . Then,
the temperature can lie in the range TN � T � D for
large enough S. Besides, quantum corrections to observables
decrease upon S increasing and they die out in the limit of
S → ∞. In contrast, ratios of temperature corrections to the
bare values of observables contain powers of T/S2J ∼ T/TN

so that temperature corrections remain finite in the limit of
classical spins (see, e.g., Ref. [13] for detail discussion of this
point). As a result, to calculate the gap at TN � T � D and
S � 1, one can replace Nq by T/εq in Eqs. (26) and (28) and
discard T -independent terms. We obtain in this way for the
gap instead of Eq. (30)

�2
� = C�S2ω2

0
T

S2J
, (45)

where the constant C� is defined as [cf. Eq. (24)]

C� = 3J 2

ω2
0

1

N

∑
q

(J0 − Jq)2
[(

Qxx
q − Q

yy
q

)2 − 4
(
Q

xy
q

)2]
(
J 2

0 − J 2
q

)2

≈ 0.018. (46)

The summation over q ∼ 1 gives the main contribution in
Eq. (46).

Damping estimation leads to Eqs. (38) and (39) for

sin θk

√
ω0
J

� k � ��
D

and TN � T � D, where now B = 0

and A is a constant of the order of unity. These expressions
give for ratios �±

k /ε±
k ∼ ω2

0T/k2JD2. Then, one obtains using
Eq. (45) near the peak position at k ∼ ��

D
and at fixed

ϕk and θk

�±
k

ε±
k

∼ const. (47)

Thus, we demonstrate a breakdown of a small fraction of
long-wavelength magnons (with k ∼ ��

D
and sin 2θk ∼ 1) for

S � 1 at small temperature T � TN .

B. Competing magnetocrystalline anisotropy

We assume now that the gap � in the spectrum (30) is
decreased by the competing magnetocrystalline anisotropy so
that � � √

Sω0. Counterparts of Eqs. (38) and (39) which are

valid at �
S
√

ω0 sin θk
� k � �

D
, sin θk �

√
�

Sω0
, and D � T �

�2

S2ω0k sin2 θk
have the form

�+
k = ω2

0

kJ

(
T

D

)4
π3(1 + 12cxy)2

5760

×
(

1 − f (ϕk)

4(1 + 18cxx + 6cxy)

)
sin2 2θk

≈ ω2
0

kJ

(
T

D

)4

6.1 × 10−4[1 − 0.16f (ϕk)] sin2 2θk,

(48)

�−
k = �+

k
f (ϕk)

4(1 + 18cxx + 6cxy) − f (ϕk)
. (49)

One concludes from these equations that the damping becomes
of the order of the real part of the spectrum near the peak
position at k ∼ �/D if the gap value is decreased so that the
inequality � � ω0(T/D)2 � ω0 holds.

We expect that there is a small chance of success to find a
cubic AF in which the magnetocrystalline anisotropy cancels
almost completely the dipolar gap. For instance, the anisotropy
in the most perfectly isotropic cubic AFs TlMnF3 [23] and
RbMnF3 [24–26] competes with the dipolar one being of the
same order of magnitude. But it turns out to be slightly greater
in these substances than the dipolar anisotropy so that the easy
directions are space diagonals of the cube. The resultant gaps
in these materials turn out to be even slightly greater than the
dipolar gap given by Eq. (30).

However, a way was proposed to change gradually values of
the anisotropy (and the gap) in TlMnF3 [27] and RbMnF3 [28]
by replacing a tiny amount of Mn2+ ions by Co2+. As Mn2+
ions are in spherically symmetric states with L = 0 and S =
5/2 in these compounds, the magnetocrystalline anisotropy
is tiny so that the anisotropy field favoring 〈111〉 directions
is equal to several oersteds only. In contrast, Co2+ ions have
L �= 0 and S = 3/2. As a consequence, the effect of spin-orbit
interaction is much more pronounced: the anisotropy field
selecting 〈100〉 direction is four orders of magnitude larger
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than that of Mn2+. Thus, two single-ion anisotropies on Mn2+
and Co2+ ions compete in mixed compounds TlMn1−xCoxF3

and RbMn1−xCoxF3. Due to the great difference between the
anisotropies magnitudes on Mn2+ and Co2+, a very small
x = x∗ is required to change the easy direction of the whole
sample from 〈111〉 to 〈100〉: x∗ ≈ 0.0004 and x∗ ≈ 0.00034
for TlMn1−xCoxF3 and RbMn1−xCoxF3, respectively. The gap
value is reduced considerably at x ≈ x∗.

It has been shown recently [29] that states near the magnon
band edges can become localized in disordered systems with
gapped spectrum. However, according to estimations made in
Appendix D, states with k � x(A′/J )2 ∼ 10−6 Å−1, where
A′ is the value of the magnetocrystalline anisotropy on Co2+,
remain propagating in materials under consideration. Besides,
the magnon damping due to the scattering on impurities is
negligible at such k. On the other hand, Eqs. (48) and (49)
predict the magnon breakdown at k � 10−3–10−4 Å−1 due to
the magnon interaction with each other if the gap is reduced
considerably. Notice also that momenta of summation q �
10−6 Å−1 are inessential in the calculations leading to Eqs. (48)
and (49). Then, TlMn1−xCoxF3 and RbMn1−xCoxF3 can be
suitable for testing of our predictions.

Unfortunately, it would be difficult to carry out corre-
sponding experiments because the characteristic values of
momenta of overdamped magnons are quite small being
of the order of 10−3–10−4 Å−1. However, bearing in mind
recent progress in neutron spin-echo technique [15,16], we
hope that the corresponding measurements will become
feasible in the near future. It is also possible that more
suitable substances will be found which have larger values
of momenta at which the discussed anomalies arise in the
damping.

It should be noted also that our conclusion about suitability
of the mixed compounds for the observation of the magnon
breakdown is based on estimations made in Appendix D in the
first order in x. As soon as defects change the bare spectrum
considerably at x ≈ x∗ and k � 1, these estimations must be
used with caution. In particular, one cannot fully exclude the
possibility of great spectrum change by terms of higher orders
in x. It is difficult to analyze the whole series in x but we point
out that all the expected contributions are small as compared

to those of the first order in x due to the smallness of all kinds
of anisotropy in comparison with the exchange constant.

VII. CONCLUSION

To conclude, we discuss magnon damping in Heisenberg
AF on a simple cubic lattice with dipolar forces at small
temperature T � TN . In accordance with previous results, it
is demonstrated that dipolar forces split the magnon spectrum
into two branches. The classical gapless spectra of long-
wavelength magnons in two branches are given by Eq. (19).
It is found that quantum and thermal fluctuations modify the
spectrum considerably near points k = 0 and k = k0: the gap
� [see Eq. (30)] appears in the spectrum. The gap is accompa-
nied by anisotropic corrections to the ground state energy (23)
which make cube edges easy directions for the staggered
magnetization. These effects are of order-by-disorder nature.
The renormalized spectrum of long-wavelength magnons is
given by Eq. (29).

It is shown that magnons are well defined quasiparticles
for all k at S ∼ 1 and the ratio �±

k /ε±
k has the peak at k ∼

�/D whose height is proportional to T/D � 1 (see Fig. 5).
We discuss some possibilities of observing a phenomenon
contradicting expectation of the quasiparticle concept: the
breakdown of some part of long-wavelength magnons. In
particular, it is shown that �±

k /ε±
k ∼ const (at fixed ϕk and

θk) near the peak position when S � 1 and TN/S � T � TN .
It is also shown that a single-ion anisotropy which competes
with the dipolar one (23) reduces the gap value enhancing the
peak height. The peak height can reach a value of the order of
unity for sufficiently small gap that signifies the breakdown of
long-wavelength magnons with momenta lying near the peak
position. The gap can be decreased and the magnon breakdown
can be stimulated also by replacing of a small amount of
magnetic atoms by those with single-ion anisotropy competing
with the dipolar one. We argue that this effect can be observed
in TlMn1−xCoxF3 and RbMn1−xCoxF3 at x ∼ 0.0004.
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APPENDIX A: GREEN’S FUNCTIONS AND GENERAL EXPRESSION FOR THE SPECTRUM

Solution of Eq. (12) has the following form in the spin-wave approximation (i.e., with zero self-energy parts):

G(ω,k) = (ω + Ek)
(
ω2 + B2

k+k0
− E2

k+k0

) + 2BkEkBk+k0 + E2
k

(
ω − Ek+k0

) − B2
k

(
ω + Ek+k0

)
[ω2 − (ε+

0k)2][ω2 − (ε−
0k)2]

,

F †(ω,k) = −Bk
(
ω2 + B2

k+k0
− E2

k+k0

) − 2BkEkEk+k0 + Bk+k0

(
B2

k + E2
k

)
[ω2 − (ε+

0k)2][ω2 − (ε−
0k)2]

, (A1)

F†(ω,k) = −Ek
[
Bk+k0

(
ω + Ek

) + Bk
(
ω − Ek+k0

)] − Bk
[
BkBk+k0 + (ω + Ek)

(
ω − Ek+k0

) + E2
k − B2

k

]
[ω2 − (ε+

0k)2][ω2 − (ε−
0k)2]

,

G(ω,k) = Bk
[
Bk

(
ω + Ek+k0

) − Bk+k0 (ω + Ek)
] + Ek

[−BkBk+k0 + (ω + Ek)
(
ω + Ek+k0

) + E2
k − B2

k

]
[ω2 − (ε+

0k)2][ω2 − (ε−
0k)2]

,
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where energies ε±
0k of the two magnon branches have the form (14). By setting ω0 = 0, one leads from Eqs. (A1) to the Green’s

functions of Heisenberg AF (see, e.g., Ref. [30]): F†(ω,k) = G(ω,k) = 0, G(ω,k) = Gc(ω,k), and F †(ω,k) = F
†
c (ω,k), where

Gc(ω,k) = SJ0 + ω

ω2 − S2
(
J 2

0 − J 2
k

) , (A2)

F †
c (ω,k) = − SJk

ω2 − S2
(
J 2

0 − J 2
k

) . (A3)

The explicit expression for 
(ω,k) introduced in Eq. (16) has the form


(ω,k) = δ
(ω,k) + δ
(ω,k + k0), (A4)

where

δ
(ω,k) = [
Bk

(
ω2 + B2

k+k0
− E2

k+k0

) + 2BkEkEk+k0 − Bk+k0

(
B2

k + E2
k

)](
�k + �

†
k

)
− [

Ek
(
ω2 + B2

k+k0
− E2

k+k0

) + 2BkEkBk+k0 − Ek+k0

(
B2

k + E2
k

)](
�k + �k

)
+ω

(
ω2 + B2

k+k0
− E2

k+k0
+ E2

k − B2
k

)
(�k − �k) + ω

[
Bk

(
Ek − Ek+k0

) + Ek
(
Bk + Bk+k0

)]
(Pk + P†

k)

−ω
[
Bk

(
Bk − Bk+k0

) + Ek
(
Ek + Ek+k0

)]
(Sk + Sk)

+ [
Ek

(
Bk+k0Ek − BkEk+k0

) + Bk
(
ω2 + BkBk+k0 − EkEk+k0 + E2

k − B2
k

)]
(Pk − P†

k)

+ [
Bk

(
BkEk+k0 − Bk+k0Ek

) + Ek
(
ω2 − BkBk+k0 + EkEk+k0 + E2

k − B2
k

)]
(Sk − Sk). (A5)

One obtains for the first 1/S corrections to 
(ω = ε±
0k + iδ,k) at k � 1 in the leading order in k and ω0/J

∓
(ω = ε±
0k + iδ,k)

2
√

dk
= SJ0

2

(
−1 ∓ (1 + 36cxx)

cos(2ϕk)

L1(ϕk)

)(
�k + �

†
k − �k − �k

)
(A6a)

+ SJ0

2

(
1 ∓ (1 + 36cxx)

cos(2ϕk)

L1(ϕk)

)(
�k+k0 + �

†
k+k0

+ �k+k0 + �k+k0

)
(A6b)

± iSJ0
1 + 12cxy

2

sin(2ϕk)

L1(ϕk)

(
Pk − P†

k + Sk − Sk + Pk+k0 − P†
k+k0

+ Sk+k0 − Sk+k0

)
(A6c)

− k
SJ0

2
√

3

(
�k − �k + �k+k0 − �k+k0

)
(A6d)

∓ kSJ0
1 + 36cxx

2
√

3

cos(2ϕk)

L1(ϕk)

(
�k − �k − �k+k0 + �k+k0

)
(A6e)

± ikSJ0
1 + 12cxy

2
√

3

sin(2ϕk)

L1(ϕk)

(
Sk + Sk − Sk+k0 − Sk+k0

)
(A6f)

+ k2 SJ0

24

(
1 ± (1 + 36cxx)

cos(2ϕk)

L1(ϕk)

)(
�k + �

†
k + �k + �k

)
(A6g)

+ k2 SJ0

24

(
−1 ± (1 + 36cxx)

cos(2ϕk)

L1(ϕk)

)(
�k+k0 + �

†
k+k0

− �k+k0 − �k+k0

)
(A6h)

∓ ik2SJ0
1 + 12cxy

24

sin(2ϕk)

L1(ϕk)

(
Pk − P†

k − Sk + Sk + Pk+k0 − P†
k+k0

− Sk+k0 + Sk+k0

)
, (A6i)

where self-energy parts are taken at ω = ε±
1k + iδ. All terms in Eq. (A6) contribute to results presented in the main text for the

damping due to decay processes, while only terms (A6a)–(A6c) give the leading contributions to the damping due to confluence
processes. Expressions for combinations of self-energy parts which arise in Eq. (A6) are presented in Appendix B.

APPENDIX B: EXPRESSIONS FOR SELF-ENERGY PARTS

In this Appendix we present expressions for some combinations of self-energy parts which arise in Eq. (A6). Only contributions
are shown below which are of the first order in 1/S and which originate from the loop diagram depicted in Fig. 1(b). To make
all expressions more compact, we move arguments of Green’s functions to subscripts and introduce the following notation:
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k = (ω,k), q = (ωq,q), and k0 = (0,k0):

�k + �
†
k − �k − �k = − S

2N
T

∑
ωq,q

[
(Fk−q − F†

k−q + Gk−q − Gk−q)
(
Fk0+q − F†

k0+q − Gk0+q + Gk0+q

)
Qxz

k−qQ
xz
q

+ (
Fk+k0−q − F

†
k+k0−q + Gk+k0−q − Gk+k0−q

)
(Fq − F †

q − Gq + Gq)Qxz
k+k0−qQ

xz
q

+ (
Fk+k0−q + F

†
k+k0−q − Gk+k0−q − Gk+k0−q

)
(Fq + F †

q + Gq + Gq)Qxz2
q

+ (Fk−q + F†
k−q − Gk−q − Gk−q)

(
Fk0+q + F†

k0+q + Gk0+q + Gk0+q

)
Qxz

q Qxz
k0+q

− 2i(Fk−q + Gk−q)
(
F†

k0+q − Gk0+q

)
Qxz

k−qQ
yz

k+k0
− 2i

(
Fk+k0−q + Gk+k0−q

)
(F †

q − Gq)Qxz
k+k0−qQ

yz

k+k0

+ 2i(F †
q + Gq)(Fk−q − Gk−q)Qxz

q Q
yz

k+k0
− 2i

(
F

†
k+k0−q − Gk+k0−q

)(
Fk0+q + Gk0+q

)
Qxz

q Q
yz

k+k0

+ 2i
(
F†

k0+q + Gk0+q

)(
Fk+k0−q − Gk+k0−q

)
Qxz

q Q
yz

k+k0
− 2i(F†

k−q − Gk−q)(Fq + Gq)Qxz
q Q

yz

k+k0

+ 2i
(
Fk+k0−q − Gk+k0−q

)
(F †

q + Gq)Qxz
q Q

yz

k+k0
+ 2i(Fk−q − Gk−q)

(
F†

k0+q + Gk0+q

)
Qxz

k0+qQ
yz

k+k0

− 4
(
Fk+k0−qF†

k0+q + Fk−qF
†
q + Gk+k0−qGk0+q + Gk−qGq

)
Q

yz2
k+k0

+ i
( − Fk0+q + F†

k0+q + Gk0+q − Gk0+q

)(
Fk+k0−q + F

†
k+k0−q − Gk+k0−q − Gk+k0−q

)
Qxz

q Q
yz

k−q

+ 2
( − Fk+k0−q + Gk+k0−q

)(
F†

k0+q − Gk0+q

)
Q

yz

k+k0
Q

yz

k−q

+i(Fk−q + F†
k−q − Gk−q − Gk−q)(−Fq + F †

q + Gq − Gq)Qxz
q Q

yz

k+k0−q

+ 2(−Fk−q + Gk−q)(F †
q − Gq)Qyz

k+k0
Q

yz

k+k0−q + 2
( − Fk+k0−q + Gk+k0−q

)(
F†

k0+q − Gk0+q

)
Q

yz

k+k0
Qyz

q

+ i
( − Fk0+q + F†

k0+q + Gk0+q − Gk0+q

)(
Fk+k0−q + F

†
k+k0−q − Gk+k0−q − Gk+k0−q

)
Qxz

q Qyz
q

+ i
(
Fk0+q + F†

k0+q − Gk0+q − Gk0+q

)
(−Fk−q + F

†
k−q − Gk−q + Gk−q)Qxz

k−qQ
yz

k0+q

+ i
( − Fk+k0−q + F†

k+k0−q − Gk+k0−q + Gk+k0−q

)
(Fq + F †

q − Gq − Gq)Qxz
k+k0−qQ

yz

k0+q

+ i(Fk−q + F†
k−q − Gk−q − Gk−q)(−Fq + F †

q + Gq − Gq)Qxz
q Q

yz

k0+q

+ i
(
Fk+k0−q + F†

k+k0−q − Gk+k0−q − Gk+k0−q

)
(−Fq + F †

q − Gq + Gq)Qxz
q Q

yz

k0+q

+ i
( − Fk0+q + F†

k0+q − Gk0+q + Gk0+q

)
(Fk−q + F

†
k−q − Gk−q − Gk−q)Qxz

k0+qQ
yz

k0+q

+ 2
(
F†

k0+q − Gk0+q

)( − Fk+k0−q + Gk+k0−q

)
Q

yz

k+k0
Q

yz

k0+q

+ 2
(
F†

k+k0−q − Gk+k0−q

)( − Fk0+q + Gk0+q

)
Q

yz

k+k0
Q

yz

k0+q + 2(F †
k−q − Gk−q)(−Fq + Gq)Qyz

k+k0
Q

yz

k0+q

+ 2(F †
q − Gq)(−Fk−q + Gk−q)Qyz

k+k0
Q

yz

k0+q + 2(−Fk−q + Gk−q)(F †
q − Gq)Qyz

k+k0
Q

yz

k0+q

− (
Fk+k0−q + F†

k+k0−q − Gk+k0−q − Gk+k0−q

)(
Fk0+q + F†

k0+q − Gk0+q − Gk0+q

)
Q

yz

k−qQ
yz

k0+q

− (Fk−q + F
†
k−q − Gk−q − Gk−q)(Fq + F †

q − Gq − Gq)Qyz

k+k0−qQ
yz

k0+q

− (
Fk+k0−q + F†

k+k0−q − Gk+k0−q − Gk+k0−q

)
(Fk0+q + F†

k0+q − Gk0+q − Gk0+q)Qyz
q Q

yz

k0+q

− (Fk−q + F
†
k−q − Gk−q − Gk−q)(Fq + F †

q − Gq − Gq)Qyz2
k0+q

]
, (B1)

�k + �
†
k + �k + �k = − S

2N
T

∑
ωq,q

[
4
(
Fk−qF†

k0+q + Fk+k0−qF
†
q + Gk−qGk0+q + Gk+k0−qGq

)
Qxz2

k

+ 2(Fk−q + Gk−q)
(
F†

k0+q + Gk0+q

)
Qxz

k Qxz
k−q + 2

(
Fk+k0−q + Gk+k0−q

)
(F †

q + Gq)Qxz
k Qxz

k+k0−q

+ 2
(
F†

k0+q + Gk0+q

)
(Fk−q + Gk−q)Qxz

k Qxz
q + 2(F†

k−q + Gk−q)
(
Fk0+q + Gk0+q

)
Qxz

k Qxz
q

+ 2(F †
q + Gq)

(
Fk+k0−q + Gk+k0−q

)
Qxz

k Qxz
q + 2

(
F

†
k+k0−q + Gk+k0−q

)
(Fq + Gq)Qxz

k Qxz
q

+ 2
(
Fk+k0−q + Gk+k0−q

)
(F †

q + Gq)Qxz
k Qxz

q + 2(Fk−q + Gk−q)
(
F†

k0+q + Gk0+q

)
Qxz

k Qxz
k0+q

+ (Fk−q + F†
k−q + Gk−q + Gk−q)

(
Fk0+q + F†

k0+q + Gk0+q + Gk0+q

)
Qxz

k−qQ
xz
q
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+ (
Fk+k0−q + F

†
k+k0−q + Gk+k0−q + Gk+k0−q

)
(Fq + F †

q + Gq + Gq)Qxz
k+k0−qQ

xz
q

+ (
Fk+k0−q + F

†
k+k0−q + Gk+k0−q + Gk+k0−q

)
(Fq + F †

q + Gq + Gq)Qxz2
q

+ (Fk−q + F†
k−q + Gk−q + Gk−q)

(
Fk0+q + F†

k0+q + Gk0+q + Gk0+q

)
Qxz

q Qxz
k0+q

+ 2i
( − Fk+k0−q + Gk+k0−q

)(
F†

k0+q + Gk0+q

)
Qxz

k Q
yz

k−q + 2i(−Fk−q + Gk−q)(F †
q + Gq)Qxz

k Q
yz

k+k0−q

+ i
(
Fk0+q + F†

k0+q + Gk0+q + Gk0+q

)( − Fk+k0−q + F
†
k+k0−q + Gk+k0−q − Gk+k0−q

)
Qxz

q Q
yz

k−q

+ i(−Fk−q + F†
k−q + Gk−q − Gk−q)(Fq + F †

q + Gq + Gq)Qxz
q Q

yz

k+k0−q

+ i
( − Fk0+q + F†

k0+q + Gk0+q − Gk0+q

)(
Fk+k0−q + F

†
k+k0−q + Gk+k0−q + Gk+k0−q

)
Qxz

q Qyz
q

+ 2i(F †
q − Gq)

(
Fk+k0−q + Gk+k0−q

)
Qxz

k Q
yz

k0+q + 2i(F †
k−q + Gk−q)

( − Fk0+q + Gk0+q

)
Qxz

k Q
yz

k0+q

+ 2i
(
F†

k0+q − Gk0+q

)
(Fk−q + Gk−q)Qxz

k Q
yz

k0+q + 2i(Fk−q + Gk−q)(F †
q − Gq)Qxz

k Q
yz

k0+q

+ 2i
(
F†

k+k0−q + Gk+k0−q

)
(−Fq + Gq)Qxz

k Q
yz

k0+q + 2i
(
Fk+k0−q + Gk+k0−q

)(
F†

k0+q − Gk0+q

)
Qxz

k Qyz
q

+ i
( − Fk0+q + F†

k0+q − Gk0+q + Gk0+q

)
(Fk−q + F

†
k−q + Gk−q + Gk−q)Qxz

k−qQ
yz

k0+q

+ i
(
Fk+k0−q + F†

k+k0−q + Gk+k0−q + Gk+k0−q

)
(−Fq + F †

q − Gq + Gq)Qxz
k+k0−qQ

yz

k0+q

+ i(Fk−q + F†
k−q + Gk−q + Gk−q)(−Fq + F †

q + Gq − Gq)Qxz
q Q

yz

k0+q

+ i
(
Fk+k0−q + F†

k+k0−q + Gk+k0−q + Gk+k0−q

)
(−Fq + F †

q − Gq + Gq)Qxz
q Q

yz

k0+q

+ i
( − Fk0+q + F†

k0+q − Gk0+q + Gk0+q

)
(Fk−q + F

†
k−q + Gk−q + Gk−q)Qxz

k0+qQ
yz

k0+q

− (
Fk+k0−q − F†

k+k0−q − Gk+k0−q + Gk+k0−q

)(
Fk0+q − F†

k0+q + Gk0+q − Gk0+q

)
Q

yz

k−qQ
yz

k0+q

− (Fk−q − F
†
k−q − Gk−q + Gk−q)(Fq − F †

q + Gq − Gq)Qyz

k+k0−qQ
yz

k0+q

− (
Fk+k0−q + F†

k+k0−q + Gk+k0−q + Gk+k0−q

)(
Fk0+q + F†

k0+q − Gk0+q − Gk0+q

)
Qyz

q Q
yz

k0+q

− (Fk−q + F
†
k−q + Gk−q + Gk−q)(Fq + F †

q − Gq − Gq)Qyz2
k0+q

]
, (B2)

Pk − P†
k − Sk + Sk = − S

2N
T

∑
ωq,q

[
2(F †

q + Gq)(Fk−q − Gk−q)Qxz
k+k0

Qxz
q − 2

(
F

†
k+k0−q − Gk+k0−q

)(
Fk0+q + Gk0+q

)
Qxz

k+k0
Qxz

q

+ 2
(
F†

k0+q + Gk0+q

)(
Fk+k0−q − Gk+k0−q

)
Qxz

k+k0
Qxz

q − 2(F†
k−q − Gk−q)(Fq + Gq)Qxz

k+k0
Qxz

q

+ (Fk−q − F†
k−q + Gk−q − Gk−q)(Fq + F †

q + Gq + Gq)Qxz
k−qQ

xz
q

+ (
Fk0+q + F†

k0+q + Gk0+q + Gk0+q

)(
Fk+k0−q − F

†
k+k0−q + Gk+k0−q − Gk+k0−q

)
Qxz

k+k0−qQ
xz
q

+ (Fk−q − F†
k−q + Gk−q − Gk−q)(Fq + F †

q + Gq + Gq)Qxz2
q

+ (
Fk0+q + F†

k0+q + Gk0+q + Gk0+q

)(
Fk+k0−q − F

†
k+k0−q + Gk+k0−q − Gk+k0−q

)
Qxz

q Qxz
k0+q

+4i
(
Fk+k0−qF†

k0+q + Fk−qF
†
q + Gk+k0−qGk0+q + Gk−qGq

)
Qxz

k+k0
Q

yz

k+k0

+ 2i(Fk−q + Gk−q)(F †
q + Gq)Qxz

k−qQ
yz

k+k0
+ 2i

(
Fk+k0−q + Gk+k0−q

)(
F†

k0+q + Gk0+q

)
Qxz

k+k0−qQ
yz

k+k0

+ 2i(Fk−q + Gk−q)(F †
q + Gq)Qxz

q Q
yz

k+k0
+ 2i

(
Fk+k0−q + Gk+k0−q

)(
F†

k0+q + Gk0+q

)
Qxz

k0+qQ
yz

k+k0

− i
(
Fk+k0−q + F

†
k+k0−q − Gk+k0−q − Gk+k0−q

)
(Fq + F †

q + Gq + Gq)Qxz
q Q

yz

k−q

+ 2
(
Fk+k0−q − Gk+k0−q

)
(F †

q + Gq)Qyz

k+k0
Q

yz

k−q + 2(Fk−q − Gk−q)
(
F†

k0+q + Gk0+q

)
Q

yz

k+k0
Q

yz

k+k0−q

− i(Fk−q + F†
k−q − Gk−q − Gk−q)

(
Fk0+q + F†

k0+q + Gk0+q + Gk0+q

)
Qxz

q Q
yz

k+k0−q

− i(Fk−q − F†
k−q + Gk−q − Gk−q)

(
Fk0+q − F†

k0+q − Gk0+q + Gk0+q

)
Qxz

q Qyz
q

− 2(Fk−q + Gk−q)
(
F†

k0+q − Gk0+q

)
Q

yz

k+k0
Qyz

q − 2
(
Fk+k0−q + Gk+k0−q

)
(F †

q − Gq)Qyz

k+k0
Q

yz

k0+q
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+ 2i
(
F†

k0+q − Gk0+q

)(
Fk+k0−q − Gk+k0−q

)
Qxz

k+k0
Q

yz

k0+q + 2i
(
F†

k+k0−q − Gk+k0−q

)(
Fk0+q − Gk0+q

)
Qxz

k+k0

×Q
yz

k0+q + 2i(F †
q − Gq)(Fk−q − Gk−q)Qxz

k+k0
Q

yz

k0+q + 2i(F †
k−q − Gk−q)(Fq − Gq)Qxz

k+k0
Q

yz

k0+q

− i(Fk−q − F
†
k−q + Gk−q − Gk−q)(Fq − F †

q + Gq − Gq)Qxz
k−qQ

yz

k0+q

− i
(
Fk+k0−q − F†

k+k0−q + Gk+k0−q − Gk+k0−q

)(
Fk0+q − F†

k0+q + Gk0+q − Gk0+q

)
Qxz

k+k0−qQ
yz

k0+q

− i(Fk−q − F
†
k−q + Gk−q − Gk−q)(Fq − F †

q + Gq − Gq)Qxz
q Q

yz

k0+q

− i
(
Fk+k0−q − F

†
k+k0−q + Gk+k0−q − Gk+k0−q

)
(Fq − F †

q − Gq + Gq)Qxz
q Q

yz

k0+q

− i
(
Fk+k0−q − F†

k+k0−q + Gk+k0−q − Gk+k0−q

)(
Fk0+q − F†

k0+q + Gk0+q − Gk0+q

)
Qxz

k0+qQ
yz

k0+q

+ (
Fk+k0−q + F†

k+k0−q − Gk+k0−q − Gk+k0−q

)
(−Fq + F †

q − Gq + Gq)Qyz

k−qQ
yz

k0+q

+ ( − Fk0+q + F†
k0+q − Gk0+q + Gk0+q

)
(Fk−q + F

†
k−q − Gk−q − Gk−q)Qyz

k+k0−qQ
yz

k0+q

+ (
Fk0+q + F†

k0+q − Gk0+q − Gk0+q

)
(−Fk−q + F

†
k−q − Gk−q + Gk−q)Qyz

q Q
yz

k0+q

+ ( − Fk+k0−q + F†
k+k0−q − Gk+k0−q + Gk+k0−q

)
(Fq + F †

q − Gq − Gq)Qyz2
k0+q

]
, (B3)

Pk − P†
k + Sk − Sk

= − S

2N
T

∑
ωq,q

[ − 2(Fk−q + Gk−q)(F †
q − Gq)Qxz

k Qxz
k−q − 2

(
Fk+k0−q + Gk+k0−q

)(
F†

k0+q − Gk0+q

)
Qxz

k Qxz
k+k0−q

+ 2(Fk−q − Gk−q)(F †
q + Gq)Qxz

k Qxz
q + (Fk−q + F†

k−q + Gk−q + Gk−q)(Fq − F †
q − Gq + Gq)Qxz

k−qQ
xz
q

+ (
Fk0+q − F†

k0+q − Gk0+q + Gk0+q

)(
Fk+k0−q + F

†
k+k0−q + Gk+k0−q + Gk+k0−q

)
Qxz

k+k0−qQ
xz
q

+ (Fk−q − F†
k−q − Gk−q + Gk−q)(Fq + F †

q + Gq + Gq)Qxz2
q + 2

(
Fk+k0−q − Gk+k0−q

)(
F†

k0+q + Gk0+q

)
Qxz

k Qxz
k0+q

+ (
Fk0+q + F†

k0+q + Gk0+q + Gk0+q

)(
Fk+k0−q − F

†
k+k0−q − Gk+k0−q + Gk+k0−q

)
Qxz

q Qxz
k0+q

+4i
(
Fk−qF†

k0+q + Fk+k0−qF
†
q + Gk−qGk0+q + Gk+k0−qGq

)
Qxz

k Q
yz

k

+ 2i
(
F†

k0+q + Gk0+q

)
(Fk−q + Gk−q)Qxz

q Q
yz

k + 2i(F†
k−q + Gk−q)

(
Fk0+q + Gk0+q

)
Qxz

q Q
yz

k

+ 2i(F †
q + Gq)

(
Fk+k0−q + Gk+k0−q

)
Qxz

q Q
yz

k + 2i
(
F

†
k+k0−q + Gk+k0−q

)
(Fq + Gq)Qxz

q Q
yz

k

+ 2i
(
Fk+k0−q − Gk+k0−q

)
(F †

q − Gq)Qxz
k Q

yz

k−q + 2i
(
Fk+k0−q − Gk+k0−q

)
(F †

q − Gq)Qxz
k Q

yz

k0+q

− i
(
Fk+k0−q − F

†
k+k0−q − Gk+k0−q + Gk+k0−q

)
(Fq − F †

q − Gq + Gq)Qxz
q Q

yz

k−q

+ 2i(Fk−q − Gk−q)
(
F†

k0+q − Gk0+q

)
Qxz

k Q
yz

k+k0−q + 2i(Fk−q − Gk−q)
(
F†

k0+q − Gk0+q

)
Qxz

k Qyz
q

− i(Fk−q − F†
k−q − Gk−q + Gk−q)

(
Fk0+q − F†

k0+q − Gk0+q + Gk0+q

)
Qxz

q Q
yz

k+k0−q

− i(Fk−q − F†
k−q − Gk−q + Gk−q)

(
Fk0+q − F†

k0+q − Gk0+q + Gk0+q

)
Qxz

q Qyz
q

− i(Fk−q + F
†
k−q + Gk−q + Gk−q)(Fq + F †

q − Gq − Gq)Qxz
k−qQ

yz

k0+q

− i
(
Fk+k0−q + F†

k+k0−q + Gk+k0−q + Gk+k0−q

)(
Fk0+q + F†

k0+q − Gk0+q − Gk0+q

)
Qxz

k+k0−qQ
yz

k0+q

− i(Fk−q − F
†
k−q − Gk−q + Gk−q)(Fq − F †

q + Gq − Gq)Qxz
q Q

yz

k0+q

− i
(
Fk+k0−q − F

†
k+k0−q − Gk+k0−q + Gk+k0−q

)
(Fq − F †

q − Gq + Gq)Qxz
q Q

yz

k0+q

− i
(
Fk+k0−q − F†

k+k0−q − Gk+k0−q + Gk+k0−q

)(
Fk0+q − F†

k0+q + Gk0+q − Gk0+q

)
Qxz

k0+qQ
yz

k0+q

− 2(F †
q − Gq)

(
Fk+k0−q + Gk+k0−q

)
Q

yz

k Q
yz

k0+q + 2(F †
k−q + Gk−q)

(
Fk0+q − Gk0+q

)
Q

yz

k Q
yz

k0+q

− 2
(
F†

k0+q − Gk0+q

)
(Fk−q + Gk−q)Qyz

k Q
yz

k0+q + 2
(
F†

k+k0−q + Gk+k0−q

)
(Fq − Gq)Qyz

k Q
yz

k0+q

+ ( − Fk+k0−q + F†
k+k0−q + Gk+k0−q − Gk+k0−q

)
(Fq + F †

q − Gq − Gq)Qyz

k−qQ
yz

k0+q
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+ (
Fk0+q + F†

k0+q − Gk0+q − Gk0+q

)
(−Fk−q + F

†
k−q + Gk−q − Gk−q)Qyz

k+k0−qQ
yz

k0+q

+ (
Fk0+q + F†

k0+q − Gk0+q − Gk0+q

)
(−Fk−q + F

†
k−q + Gk−q − Gk−q)Qyz

q Q
yz

k0+q

+ ( − Fk+k0−q + F†
k+k0−q + Gk+k0−q − Gk+k0−q

)
(Fq + F †

q − Gq − Gq)Qyz2
k0+q

]
. (B4)

APPENDIX C: ANALYSIS OF THE DECAY
AND CONFLUENCE PROCESSES

Omitting the dipolar interaction, the spectrum of Heisen-
berg AF has the form εk = Dk − DL2k

3 at k � 1 [cf.
Eq. (19)]. One leads to the following expressions for the decay
and confluence processes, respectively, using this spectrum:

εk − εq − εk−q = D(k − q − |k − q|) − 3DL2kq(k − q)

= − Dkq2
⊥

2q(k − q)
− 3DL2kq(k − q) < 0,

(C1)

εk − εq + εq−k = D(k − q + |q − k|) + 3DL2kq(q − k)

= Dkq2
⊥

2q(q − k)
+ 3DL2kq(q − k) > 0,

(C2)

where q‖ and q⊥ are components of q which are parallel
and perpendicular to k (see Fig. 3), respectively, and we
assume that q and k are nearly parallel each other (i.e., q‖ ≈ q

and q⊥ � q). It is seen from Eqs. (C1) and (C2) that both
confluence and decay processes are impossible without dipolar
forces.

1. Decay processes

Among eight allowed decay processes (32) only the
following ones appear to be possible if we take into account
the dipolar forces:

ε+
k − ε−

q − ε−
k−q

= −3DL2k
3

(
q̃(1 − q̃) + ζ

1 − q̃(1 − q̃)

q̃(1 − q̃)
− η

)

− Dq2
⊥

2kq̃(1 − q̃)
= 0, (C3)

ε+
k − ε−

q − ε+
k−q

= −3DL2k
3

(
q̃(1 − q̃) + ζ

1 − q̃(1 − q̃)

q̃(1 − q̃)
− ηq̃

)

− Dq2
⊥

2kq̃(1 − q̃)
= 0, (C4)

ε+
k − ε+

q − ε−
k−q

= −3DL2k
3

(
q̃(1 − q̃) + ζ

1 − q̃(1 − q̃)

q̃(1 − q̃)
− η(1 − q̃)

)

− Dq2
⊥

2kq̃(1 − q̃)
= 0, (C5)

where q̃ = q/k, 0 < q̃ < 1, and

ζ = �2

6L2D2k4
= �2

72L2J 2S2k4
, (C6)

η = ω0L1(ϕk) sin2 θk

72L2Jk2
. (C7)

It is seen that Eq. (C3) can have a solution if the following
inequality holds:

1

z

[
z2 + ζ (1 − z) − ηz

]
< 0, (C8)

where z = q̃(1 − q̃) and 0 < z < 1/4. Solving the quadratic
equation, one finds that Eq. (C8) is satisfied when

z− < q̃(1 − q̃) < z+, (C9)

z± = 1
2 (ζ + η ±

√
(ζ + η)2 − 4ζ ). (C10)

It is convenient to discuss a limiting case of η � ζ that reads

k �
√

J

ω0

�

D sin θk
. (C11)

The opposite limit of η � ζ has no meaning because it could
be realized for ζ > 4 only in which case z > 1. One has from
Eq. (C10) at η � ζ

z+ ≈ η, z− ≈ ζ

η
. (C12)

The requirement z+ � z− reads

sin θk �
√

�

Sω0
. (C13)

It is seen from Eq. (C7) that η � 1 if (C11) holds. As a result
there are two intervals for q̃ inside which inequality (C9) is
satisfied:

q̃ ∈
(

ζ

η
,η

)
, (C14)

q̃ ∈
(

1 − η,1 − ζ

η

)
. (C15)

It is easy to demonstrate that solutions of Eqs. (C4) and (C5)
exist only for q̃ lying inside intervals (C15) and (C14),
respectively.

2. Confluence processes

Possible confluence processes have the form

ε−
k + ε+

q−k − ε+
q

= 3DL2k
3

(
q̃(q̃ − 1) + ζ

q̃(q̃ − 1) + 1

q̃(q̃ − 1)
− η

)

+ Dq2
⊥

2kq̃(q̃ − 1)
= 0, (C16)
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ε−
k + ε−

q−k − ε+
q

= 3DL2k
3

(
q̃(q̃ − 1) + ζ

q̃(q̃ − 1) + 1

q̃(q̃ − 1)
− ηq̃

)

+ Dq2
⊥

2kq̃(q̃ − 1)
= 0, (C17)

ε+
k + ε−

q − ε+
q−k

= 3DL2k
3

(
q̃(q̃ − 1) + ζ

q̃(q̃ − 1) + 1

q̃(q̃ − 1)
− ηq̃

)

+ Dq2
⊥

2kq̃(q̃ − 1)
= 0, (C18)

and there are also other three processes which differ from the
presented ones by replacement of q by k − q. Comparing
Eqs. (C3)–(C5) and (C16)–(C18) one concludes that it is
necessary to analyze similar inequality on z = q̃(q̃ − 1)

1

z
[z2 + ζ (1 + z) − ηz] < 0. (C19)

Inequality (C19) is satisfied if

z− < q̃(q̃ − 1) < z+, (C20)

z± = 1

2
(η − ζ ±

√
(η − ζ )2 − 4ζ ). (C21)

One has in the limiting case of η � ζ

q̃ ∈
(

1 + ζ

η
,1 + η

)
(C22)

so that q ∼ k inside this interval.
The opposite limiting case of η � ζ is also possible for Eqs.

(C17) and (C18). This limiting case corresponds to q � k and

�

D
� k �

√
J

ω0

�

D sin θk
. (C23)

In order Eqs. (C17) and (C18) have solutions, q̃ should lie
between roots of the equation z2 − ηz + ζ = 0, i.e., in the
interval

q̃ ∈
[

η

2

(
1 −

√
1 − 4ζ

η2

)
,
η

2

(
1 +

√
1 − 4ζ

η2

)]
. (C24)

Quantities A and B defined by Eqs. (41) and (42), respectively,
are related to ζ and η as follows: A = η/2 and B = 4ζ/η2.

APPENDIX D: COMPETING SINGLE-ION ANISOTROPY
AND EFFECT OF IMPURITIES

We discuss in this Appendix the effect of a cubic magne-
tocrystalline anisotropy on the properties of Heisenberg AF
with dipolar forces considered in the main text. Assuming for
simplicity that S is large, one can model the effect of the cubic
anisotropy by the following single-ion interaction:

A

S2

∑
i

[(
Sx

i

)2(
S

y

i

)2 + (
Sx

i

)2(
Sz

i

)2 + (
S

y

i

)2(
Sz

i

)2]
. (D1)

We imply below that ω2
0/SJ ∼ |A| � ω0 � J . Let us assume

also that the anisotropy constant A′ and the spin value S ′ differ

from A and S, respectively, at some randomly distributed sites,
whose concentration is equal to x � 1. As a result, bilinear
part of the Hamiltonian (7) acquires the following correction
if the staggered magnetization is directed along a cube edge:

Hanis
2 = 2AS

∑
k

a
†
kak + 2(αA′ − A)S

∑
n

χ (n)a†
nan, (D2)

where α = S ′/S, χ (n) = 1 at sites occupied by impurities,
and χ (n) = 0 at other sites. Discussion of the Hamiltonian
H2 + Hanis

2 can be carried out in the first order in x using
the T -matrix approach as it is done, e.g., in Ref. [31]. The
situation here is simplified greatly by two circumstances:
(i) |A|,|A′| � J , and (ii) sums over k of Green’s functions
F (ω,k), F †(ω,k), G(ω,k), G(ω,k), F(ω,k), and F†(ω,k) at
ω � SJ are of the order of ω0/SJ 2, whereas such sum for
G(ω,k) = G(−ω, − k)∗ is much greater being of the order
of 1/SJ . As a consequence, the greatest contributions from
Eq. (D2) arises in �k and �k. Then, one obtains from Eqs. (A6)
and (D2) for the correction to 
(ω,k) at k � 1:

∓
anis(ω = ε±
0k + iδ,k)

2
√

dk

= 4S2J0

(
A + x(αA′ − A) + 2x(αA′ − A)2S

1

N

×
∑

q

SJ0

(ε±
0k + iδ)2 − S2

(
J 2

0 − J 2
q

)
)

. (D3)

To derive the last term in Eq. (D3), we set ω0 = 0 in∑
q[G(ω,q) + G(ω,q)] and use Eq. (A2) for the normal

Green’s function. The imaginary part of the last term in
Eq. (D3) determines the magnon damping due to the scattering
on impurities, whereas its real part is negligibly small
compared to the second term because |A|,|A′| � J . Using
Eqs. (25) and (D3), we obtain for the square of the gap in the
spectrum

�̃2 = �2 + 4S2J0[A + x(αA′ − A)], (D4)

where � is the contribution to the gap from dipolar forces
given by Eq. (30). The magnon damping due to the scattering
on impurities is estimated from Eqs. (34) and (D3) as

�k ∼ xS
(αA′ − A)2

J
. (D5)

It is seen from Eq. (D4) that the gap in the spectrum can
vanish if the anisotropies of dipolar origin (23) (accompanied
by the gap �), A and A′ compete. The change of the sign of �̃2

signifies that the easy direction switches from a cube edge to
a cube space diagonal. For instance, the competition arises in
TlMn1−xCoxF3 and RbMn1−xCoxF3 between A < 0 (favoring
the cube space diagonals) on the one hand and A′ > 0 and the
dipolar anisotropy (favoring the cube edges) on the other hand.
The gap (D4) vanishes in this case when x is equal to

x∗ = �2 + 4S2J0A

4S2J0(A − αA′)
. (D6)

Notice that x∗ given by Eq. (D6) is much smaller than unity
in TlMn1−xCoxF3 and RbMn1−xCoxF3 because A′ � |A| and
�2 ∼ 4S2J0|A|.
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The above consideration is justified when εk � �k. It is
seen from Eq. (D5) that this condition can be invalid for some
k. For instance, εk � �k at x ∼ x∗ if

k � x
(αA′ − A)2

J 2
. (D7)

The invalidity of the inequality εk � �k can signify a localiza-
tion of states near the magnon band bottom (see, e.g., Ref. [29]
and references therein). Then, Eq. (D6) is just an estimation of
the concentration value at which the easy direction switches
because Eq. (D4) is invalid when �̃ is smaller than �k
given by Eq. (D5). In TlMn1−xCoxF3 and RbMn1−xCoxF3

at x ∼ x∗, inequality (D7) reads as k � 10−6 Å−1. As soon as
the great damping due to magnon interaction is expected in
these compounds at k � 10−3–10−4 Å−1, these materials can
be suitable for the experimental observation of the magnon
breakdown discussed in the main text.

It should be noted also that as soon as defects change the
bare spectrum considerably at x ≈ x∗ and k � 1, the results
obtained above must be used with caution. In particular, one
cannot exclude the possibility of great spectrum change by
terms of higher orders in x. It is difficult to analyze the whole
series in x but we notice that all the expected contributions
are small as compared to those considered above due to the
smallness of ratios A/J and A′/J .
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