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From spiral to ferromagnetic structure in B20 compounds: Role of cubic anisotropy
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The cubic noncentrosymmetric structure of the B20 compounds produces the helical (homochiral) structure
with the wave vector ks = D/J balanced by the competition of two interactions: the large ferromagnetic exchange
interaction J and small antisymmetric Dzyaloshinskii-Moriya interaction D. The difference in the energies
between the ferromagnetic collinear and helical states can be experimentally measured by the critical magnetic
field Hc2 needed to transform the helix into the field-induced ferromagnet. We show that the cubic anisotropy,
first, can limit the stability of the helix phase in the range of small ks and, second, makes its own contribution to
the value of the critical field Hc2. We illustrate our findings taking an example of a transformation of the helix
structure to the ferromagnet at x → xc in the solid solutions Fe1−xCoxGe. We demonstrate that the mechanism of
the transformation is realized via the competition between the cubic anisotropy and the Dzyaloshinskii-Moriya
interaction.
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I. INTRODUCTION

The cubic B20 compounds have a noncentrosymmetric
crystallographic structure described by the P 213 space group.
Lack of the symmetry center of the crystal structure produces
the chiral spin-spin Dzyaloshinskii-Moriya (DM) interac-
tion [1,2]. The DM interaction results in appearance of the
spin helix with the certain chirality γm rigorously determined
by the structural chirality �c (left or right) [3–8]. However,
the relation between two chiralities (�c ↔ γm) is found
to be different for various B20 compounds. For Mn-based
compounds (Mn1−xFexSi and Mn1−xCoxSi) the crystalline
and magnetic chiralities have the same sense (�c · γm = 1),
while for the Fe based ones (Fe1−xCoxSi) the chiralities �c

and γm are opposite to each other (�c · γm = −1).
The experimental evidence was recently given for the

magnetic transition in the Mn1−xFexGe compounds, where
the helix chirality can be altered by mixing the two types of
magnetic atoms (Fe and Mn) [9,10]. Provided that left-handed
crystals are considered, the left-handed helix is observed
for the compounds with x < xc, while the right-handed
helix appears in the compounds with x > xc. The ferro-
magnetlike system with the wave vector ks → 0 is realized
at x → xc = 0.75. Further experiments have shown that
another FeGe type of compound (Fe1−xCoxGe) demonstrates
the same phenomenon of the flip of spin chirality at the
critical concentration xc = 0.6 [11]. It was found in both
cases that the change of the chirality undergoes through the
ferromagnetic state, characterized by the zero value of the wave
vector k = 0.

In accord with the model suggested by Bak and Jensen [12]
and independently by the group led by Kataoka [13], the major
ferromagnetic exchange interaction J together with the DM
interaction D stabilize the helical (homochiral) structure in
these systems below Tc. These two interactions are balanced
in the value of the helix wave vector,

ks = D/J. (1)

The anisotropic exchange interaction had been introduced into
the model since it can both change slightly the value and

fix the direction of the wave vector k along the principal
cubic axes. Kataoka and co-authors also noticed the impor-
tance of the cubic anisotropy, which can make the entire
helix structure unstable and stabilize the ferromagnetic state
instead, if the anisotropy energy is comparable with the DM
interaction [13].

Upon application of the magnetic field the helix, first, is
transformed to the single-domain conical state with k ‖ H at
the first critical field Hc1. Then, the conical state is transformed
to the collinear ferromagnetic state at the second critical field
Hc2 > Hc1. According to [14,15], the difference in energies
between the ferromagnetic collinear and helical states can be
experimentally measured by the critical field Hc2. This energy
difference is equal to

gμBHc2 ≈ Ak2
s , (2)

where A = J · S · a2 is the spin wave stiffness, S is the ordered
spin, and a is the lattice constant. Thus, the set experimental
parameters ks,Hc2, and S describes completely the magnetic
system of such compounds and allows one to estimate values
of the ferromagnetic exchange interaction J and the DM
interaction D.

In this paper we address the question of the applicability of
the above-mentioned model for the Fe1−xCoxGe compounds
close to the critical concentration xc. The manuscript is
organized in the following way. Section II summarizes the
experimental finding of Ref. [11]. We show inconsistencies
of the values of the ferromagnetic exchange interaction J

and the DM interaction D estimated using Eqs. (1) and (2)
close to the critical concentration xc. We discuss the essence
of the model [12,13] in Sec. III. We describe the role of the
cubic anisotropy in the possible transition from the helical
to the ferromagnetic state at small values of the helix wave
vector k. Particularly, we show in a simple phenomenological
calculation that it is the cubic anisotropy that is responsible for
the instability of the helical state and for the transformation of
the system to the ferromagnet close to xc. Section IV presents
the concluding remarks.
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II. TRANSITION FROM HELICAL TO FERROMAGNETIC
STATE

The Fe1−xCoxGe compounds with x running from 0.0 to 1.0
had been synthesized under high pressure as described in [16].
Neutron diffraction and magnetization measurements have
shown that these compounds are ordered into the spin helix
structure below the critical temperature Tc. The x dependence
of the critical temperature Tc is shown in Fig. 1(a). Tc decreases
monotonically with increase of x approaching 0 at x → 0.9.
The value of the ordered spin S per magnetic atom taken from
SQUID measurements are also presented in Fig. 1(a). It also
decreases with x but shows a “little shoulder” in the range of
x between 0.3 and 0.5. Figure 1(b) shows the x dependence
of the helix wave vector ks . In the Fe-rich part of compounds
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FIG. 1. (Color online) (a) Critical temperature TC and ordered
spin value S. (b) Helix wave vector ks . (c) Critical magnetic fields
Hc1 and Hc2. All experimental parameters are plotted in dependence
on the concentration x of Fe1−xCoxGe compounds.

ks decreases for x ∈ [0 ÷ 0.5], then it falls down to zero at
x ≈ 0.6, and increases again up to the value of ks = 0.14 nm−1

for x = 0.8. Accounting for the fact that the value of ks

approaches zero at xc ≈ 0.6 and the ordering temperature is
as high as Tc = 130 K, we conclude that this compound is
a ferromagnet. This can be only possible if the macroscopic
Dzyaloshinskii constant D is effectively vanishing. In any case,
the x dependence of the wave vector ks in the Co-rich part of
compounds [Fig. 1(b)] can be now interpreted as a change or
chirality at x ≈ 0.6.

The helix is transformed into the ferromagnet by application
of the magnetic field above the critical value Hc2 [Fig. 1(c)].
The values of the critical field Hc2 depends strongly on
concentration x, first, decreasing from pure FeGe to its
minimum (accompanied by |ks | → 0) at xc ≈ 0.6, and, then
increasing again at higher x. Thus, we observe a transformation
of the helix structure to the ferromagnet at x → xc at zero
field. Additionally, the weak anisotropic exchange and/or cubic
anisotropy should fix the direction of the magnetic helix along
the principal axes of the cubic symmetry. Upon application
of the magnetic field the helix wave vector k rotates toward
the field axis at the field Hc1, which is the measure for the
anisotropic interactions. The field Hc1 changes little with the
concentration x and is roughly equal to 0.03 T.

Figure 1(c) represents the H − x phase diagram of the
Fe1−xCoxGe compounds. The magnetic system is ordered in
the plane spin helix at zero field. The structure of the spin
helix is changed upon application of a field even smaller than
Hc1. The helix wave vector is fixed along the easy anisotropic
axis but its structure is distorted by the field. This distortion is
well recorded in the small-angle neutron diffraction measure-
ments as the high-order harmonics appeared in the scattering
picture [17]. This distorted helix is transformed into the cone
structure with the wave vector k along the field axis at Hc1.
The cone structure is stable in the field range between Hc1 and
Hc2. It becomes a ferromagnet with the spins aligned along
the field axis above Hc2.

In accord with the model [12,13], Eq. (1) gives ks as a
ratio between the isotropic spin exchange interaction J and
the DMI constant D. The sign of the wave vector ks describes
the chirality of the helical structure and is determined by the
sign of the Dzyaloshinskii constant sgn(D). The value of ks

is also bound to the critical field Hc2 via Eq. (2) [14,15].
Thus, using Eqs. (1) and (2) and the experimental data from
Figs. 1(a)–1(c), one is, seemingly, able to estimate the major
driving interactions J = A/(Sa2) and D/a. In this approach,
J is determined by the critical field Hc2 and ks . We denote the
exchange constants obtained in this approach as J (Hc2,k) and
D(Hc2,k). They are shown in Figs. 2(a) and 2(b) as a function
of x (here a is the lattice parameter).

The exchange constant J [quadratic symbols in Fig. 2(a)]
changes strongly with x. It shows a divergentlike behavior
at x → 0.6 that is certainly related to zero value of k. As it
is shown in Fig. 2(b) the constant D is independent on x at
x < 0.6 and then it changes the sign at x → 0.6.

It is worthy to note that the measured characteristic
parameters of the system (Hc2 and ks) show tendency to zero
at x = xc, what is interpreted as a transition from the spiral
to the ferromagnetic phase. At the same time the calculated
parameters, J (Hc2,ks) and D(Hc2,ks), have a little physical
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FIG. 2. (Color online) (a) Exchange constant J and (b) DM
constant D estimated using the model ([12,13] + [14,15]) and using
the model ([12,13] + [10]) in dependence on concentration x of
Fe1−xCoxGe compounds.

meaning: The exchange constant J (Hc2,ks) increases drasti-
cally at xc, while the DM constant D(Hc2,ks) does not vanish at
xc but shows steplike change only! The very fact of J tending
to infinity in the vicinity of xc, accompanying steplike abrupt
change of D shows that the model, characterized by Eqs. (1)
and (2), is unapplicable to the mixed Fe1−xCoxGe compounds.

Another approach to estimate the major energy constants
was used in [10]. The magnetic transition temperature kBTc is
roughly equal to J . Since the wave vector k is proportional to
D/J , therefore, the change of J and D with the concentration
x can be recalculated. In this approach the value of J (Tc)
changes smoothly with x similar to the x dependence observed
for the critical temperature Tc. The DM interaction constant
D(Tc,ks) shows a steep change with x in the range of x � 0.5.
It crosses the zero line, i.e., changing the sign around x = 0.6
and keeps a small negative value above xc. This behavior of
the effective constants of J (Tc) and D(Tc,ks) is consistent to
the hypothesis on the averaged exchange constants for Fe and
Co atoms in the mixed compounds.

It is interesting to note that these two approaches give the
same values of J and D for the MnSi compound [17]. We
note also that they work fairly well for the small values of x

(Fig. 2). This range of x differs from the whole range only by
the condition that the critical field Hc2, which is related to the
helix energy, is much larger than the critical field Hc1, which

is related to the anisotropy [Fig. 1(c)]. Thus one can conclude
that the anisotropy can at least interfere with DM interaction
upon formation of the spin helix.

It is shown in the following section (Sec. III) that Eq. (2)
must be corrected in order to make the first approach
working. The cubic anisotropy competes to the weakened DM
interaction. Moreover, it is able to suppress the formation of
the helix structure. This competition also introduces a new
term in the relation between Hc2 and ks [Eq. (2)], which can
be rewritten in the form given by Eqs. (27) and (28).

III. SPIN HELIX AND CUBIC ANISOTROPY

A. Bak-Jensen model

Let us outline the results of the previous studies obtained
for the helical state in ferromagnets distorted by the DM
interaction [12,14]. The corresponding Hamiltonian is a sum
of the exchange energy HEX, energy of the DM interaction
HDM, anisotropic exchange energy HAE, and Zeeman energy
HZ . They can be written as

HEX = −1

2

∑
JR−R′SR · SR′ ;

HDM = 1

2

∑
DR−R′ (∇ − ∇′)[SR × SR′ ];

HAE = 1

2

∑
FR−R′

{(∇xS
x
R

)(∇′
xS

x
R′

) + (∇yS
y

R

)(∇′
yS

y

R′
)

+ (∇zS
z
R

)(∇′
zS

z
R′

)}
;

HZ = −H
∑

SR, (3)

where H = gμBBin and Bin is an internal magnetic field [14].
In general form the spin helix can be represented as

SR = S[ĉ sin α + (Aeik·R + A∗e−ik·R) cos α], (4)

where k is the helix wave vector and α is the angle between
the spins and the spin rotation plane. Vector A is determined
as A = (â − ib̂)/2. Unit vectors â,b̂,ĉ form the right-handed
orthogonal frame and [â × b̂] = ĉ. Thus, one has (A · A) =
0,(A · A∗) = 1/2,[A × A∗] = iĉ/2.

We use spherical coordinates with angles φ,θ bound to the
spin helix. The basic vectors â,b̂, and ĉ can be given as

â = (cos φ, sin φ,0);

b̂ = (− sin φ cos θ, cos φ cos θ,−sin θ ); (5)

ĉ = (− sin φ sin θ, cos φ sin θ, cos θ ).

Inserting Eq. (4) in Eq. (3) we obtain in k2 approximation
an expression for the classical energy of the helical state,

EBJ = −S2J0

2
+

[
Ak2

S
+ F0I (k)

2

− 2D0(k · ĉ)

]
S2 cos2 α

2
− SH‖ sin α, (6)

where A = S(J0 − Jk)/k2 is the spin-wave stiffness [14],
the k-dependent functions are determined as Jk =∑

JR exp(k · R), I (k) = ∑
k2
j (â2

j + b̂2
j ) is a cubic invariant,

and H‖ = (H · ĉ). The subscript notation in EBJ stands to refer
to the Bak-Jensen (BJ) model [12].
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The energy EBJ is minimal with respect to the value of k if

Akj + SF0kj

(
â2

j + b̂2
j

)/
2 = SD0ĉj ;

(7)
Ak2 + SF0I (k)/2 = SD0(k · ĉ),

here the first line demonstrates a weak dependence of the
orientation of k on the crystal structure. Neglecting it we obtain
a helix wave vector:

ks = SD0ĉ/A. (8)

Substituting D0 = Aks/S into Eq. (6) we have as a result the
final expression for EBJ:

EBJ = −S2J0

2
− SAk2

s cos2 α

2

[
1 − SF0I (ĉ)

2A

]
− SH‖ sin α.

(9)

The second term corresponds to DM interaction and presents
the energy gain of the helical state as compared with the
ferromagnetic one. The cubic invariant I (ĉ) has minimum I =
0 and maximum I = 2/3 at ĉ = (1,0,0) and ĉ = (1,1,1)/

√
3,

respectively. As a consequence, at small magnetic fields
H � |F0|k2

s the vector ks points along the cubic edge or
diagonal for F0 > 0 and F0 < 0, respectively [12,14]. In the
opposite limiting case H � |F0|k2

s ∼ Hc1 one finds the helix
wave vector directed along the field axis ks ‖ H. Neglecting in
Eq. (9) the F0 term connected to the exchange anisotropy and
minimizing the energy with respect to the angle α, we obtain

sin α = H/Ak2
s . (10)

Equation (10) describes the effect of the field H on the spin
helix. When the field H = 0, then α = 0 implying existence of
the plane helix. When the field is applied H �= 0, then α �= 0
and the cone phase appears. At the critical field Hc2, when α =
π/2 and Hc2 = Ak2

s the cone transforms to the ferromagnet.
Finally, when H > Hc2 we have the ferromagnetic state [14].

B. Cubic anisotropy

As the anisotropic exchange is small in comparison with
the isotropic one, we neglect the F0 term in Eq. (9). Another
anisotropic term—the cubic anisotropy—should be consid-
ered.

The cubic anisotropy can be represented as

HCA = K
∑{(

Sx
R

)4 + (
S

y

R

)4 + (
Sz

R

)4}
. (11)

In ferromagnets SR = S and a contribution of the cubic
anisotropy to the classical energy can be written,

ECA = G

{
1; S ‖ (1,0,0),

1/3; S ‖ (1,1,1).
(12)

Here G = KS4 and the extrema of ECA are shown in the
right-handed side of Eq. (12). So directions (1,1,1) and (1,0,0)
are the easy axes for K > 0 and K < 0, respectively.

Inserting Eq. (4) into Eq. (11) and adding to Eq. (9) we get
the expression for the helix energy in the magnetic field, which
takes into account the cubic anisotropy:

E = −(
SAk2

s

/
2
)

cos2 α + G[C sin4 α + (3/8)B cos4 α

+ 3I sin2 α cos2 α] − SH‖ sin α. (13)

The cubic invariants C,B,I are given by

C =
∑

ĉ4
j ; B =

∑ (
â2

j + b̂2
j

)2
; I =

∑
ĉ2
j

(
â2

j + b̂2
j

)
.

(14)

They depends on angles φ,θ determining ĉ direction and
considered in the Appendix.

Taking into account the relations given by Eq. (A6) we
rewrite Eq. (13) in the form which is more convenient for
further analysis:

E = −SAk2
s

2
(1 − sin2 α) + G

8
[(3 − 5C)(−7 sin4 α

+ 6 sin2 α + 1) + 8C] − SH‖ sin α. (15)

Here the first term is the energy of the spiral with wave
vector ks which appears as a result of the competition between
ferromagnetic exchange constant J and DM interaction D. The
second term represents the anisotropic energy of the spiral and
depends on the angles θ and φ of orientation of vector ĉ. The
energy of the cubic anisotropy in this form is a function of one
cubic invariant C only and of powers of sine of conical angle
α.

The minimum of this energy determines the spin structure
and magnetic field behavior of the B20 helimagnets in this
classical approximation.

C. Stability of spiral in zero field

In zero field the energy Eq. (15) is minimal for the planar
helix (α = 0) and ĉ ‖ (1,1,1) in case of G > 0. Using Eq. (A3)
we obtain for the helix energy E = −SAk2/2 + G/2. The
helix exists if this energy is smaller than the anisotropic energy
G/3 of the ferromagnetic state. The corresponding condition
is given, by

SAk2 > G/3. (16)

Otherwise the helix is unstable and the system is stabilized in
the ferromagnetic state.

In the case of G < 0 the spiral points along the (1,0,0) axis
and we have the following condition for the stability of the
helical state in zero magnetic field:

SAk2 > |G|/2. (17)

D. Magnetic field behavior

Let us consider the case of the positive anisotropy G > 0.
Suppose the field is arbitrary oriented in the range of φ from
0 to π/4 and θ from 0 to π/2, then we have

E = SAk2
s

2
sin2 α + G

16
W (−7 sin4 α + 6 sin2 α + 1)

− SH cos(θ − θH ) cos(φ − φH ) sin α − SAk2
s

2
+ GC,

(18)

where θH and φH denote the angles of the magnetic
field direction. We put cubic invariant W (θ,φ) ≡ 10C − 6
[Eq. (A7)]. The planar spiral (α = 0) aligned along the
(1,1,1) axis, i.e., (θ,φ) = (π/2 − arctan(1/

√
2),π/4), will

turn toward the (θH ,φH ) with increasing the field. This rotation
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of the helix axis is followed by the increase of the conical
angle α. The minimum of the energy E determines the helix
configuration. The corresponding condition is given by

∂E/∂α = 0, ∂E/∂(θ,φ) = 0. (19)

To estimate the critical field Hc1 (of orientation of the helix
along the field direction) consider the limiting case of the
magnetic field along the hard axis (0,0,1). Thus θH = 0,φH =
π/4 in Eq. (18) and θ runs from π/2 − arctan(1/

√
2) (diagonal

of the cube) to 0 with constant φ = π/4. Solving the system
Eq. (19) with respect to α and substituting θ = 0 one can
obtain the conical angle at the field Hc1:

sin2 αc1 = 4

7

(
1 + r −

√
r2 + 2r + 9

16

)
, r >

√
1

30
, (20)

where r = SAk2
s /12G is a ratio of the DM interaction and the

cubic anisotropy. Using Eqs. (19) and (20) we have the critical
magnetic field Hc1 which depends on the cubic anisotropy G

and on the ratio r:

Hc1 = G

S
sin αc1(7 sin2 αc1 + 12r − 3), r >

√
1

30
. (21)

Obviously, critical magnetic field Hc1 so much less how much
the orientation of the magnetic field is closer to the easy axis.

To obtain the critical field of the phase transition Hc2 we
can consider the equation,

SH = 7

4
GW (θH ,φH ) sin3 α

+
(

SAk2
s − 3

4
GW (θH ,φH )

)
sin α, (22)

where (θ,φ) are already equal to (θH ,φH ). Equation (22)
describes the helix behavior in the field above Hc1. The value of
the magnetic field Hc2 of the ferromagnetic transition depends
on the orientation of the field. As one can see the cubic invariant
W is negative for those (θ,φ) which are close to the cube
diagonal and is positive for those (θ,φ) close to the cube edge.

If W (θH ,φH ) � 0, then Eq. (22) has a solution for sin α = 1
at

Hc2 = Ak2
s + W (θH ,φH )

G

S
. (23)

If W (θH ,φH ) < 0, then the result depends on the ratio of
the DMI and the cubic anisotropy. In the case of SAk2

s /G �
18|W |/4, Eq. (22) has a solution for sin α = 1 at

Hc2 = Ak2
s − |W (θH ,φH )|G

S
. (24)

In the opposite case of SAk2
s /G < 18|W |/4, we have the

first-order phase transition to the ferromagnetic state at the
critical field,

Hc2 = sin αc2

(
2

3
Ak2

s + 1

2
|W (θH ,φH )|G

S

)
, (25)

and the corresponding critical cone angle,

sin αc2 =
√

4

21|W |
SAk2

s

G
+ 1

7
. (26)
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FIG. 3. (Color online) Dependence of the critical magnetic field
Hc2 (in units G/S) on the orientation of the magnetic field within the
φ = π/4 plane changing from (0,0,1) to (1,1,1) directions for two
variants of the ratio of the DM interaction and the cubic anisotropy.
The top dashed line corresponds to the ratio SAk2

s /G, which does
not imply any first-order phase transition in any field direction. The
bottom dashed line corresponds to the minimal stable value of the
SAk2

s /G equals 1/3. The red area shows the condition of the first-
order phase transition, which depends on the angle θ and the ratio
SAk2

s /G.

Figure 3 shows the dependence of the critical field Hc2

on the field direction in a particular case of the field
oriented between the hard (0,0,1) axis and the easy (1,1,1)
axis. Equations (21)–(23) are plotted, for instance, for the
case Ak2

s = 12G/S and Ak2
s = 5G/S. The ratio SAk2

s /G

determines the position of the curve along the Hc2 axis
and the cubic invariant W [Eq. (A8)] determines its form.
For Ak2

s < 12G/S the curve has a part corresponding to
the first-order phase transition to the ferromagnet described
by Eq. (25). The critical field Hc2 and critical cone angle
[Eq. (26)] are also plotted in Fig. 4 as functions of the ratio r

in the case of the field oriented along the (1,1,1) axis.
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FIG. 4. (Color online) Dependence of the sine of the critical cone
angle αc2 and the critical magnetic field [along the (1,1,1) direction]
of the first-order phase transition Hc2 on the ratio SAk2

s /G.
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For polycrystalline samples we have to average the action
of the magnetic field applied to all directions. So W (θ,φ)
[Eq. (A7)] should be averaged on θ,φ and thus we obtain

Hc2 = Ak2
s + 9

16

G

S
, G > 0. (27)

If G < 0, the first critical field has the same form as Eq. (21)
but for r = SAk2

s /8|G|. Since Eq. (22) includes G only in
terms G · W , it is easy to see that in the case of negative
anisotropy G < 0 replacement G → −|G| is equivalent to
replacement W → −|W |. Obviously, after averaging of W we
will get for the second critical field:

Hc2 = Ak2
s − 9

16

|G|
S

, G < 0. (28)

IV. CONCLUDING REMARKS

The phenomenological model [12] resulting in the he-
lix spin structure is built on the hierarchy of interac-
tions: ferromagnetic exchange interaction, antisymmetric
Dzyaloshinskii-Moriya interaction, and the anisotropic ex-
change interaction. The cubic anisotropy was not initially
included in this model, nevertheless, as it was noticed in [13]
and is shown in Sec. III, it plays an important role in cases
when the value of the helix wave vector ks becomes relatively
small.

Particularly, the model [12] does not impose any limitations
on the value ks that can be infinitively small. Similar to it, there
is no limitation on the value of the critical field Hc2, which
can go infinitively small as well. Note that the anisotropic
exchange interaction, being part of the exchange interaction,
cannot impose any limitation on these values of ks and Hc2. On
the contrary, the cubic anisotropy, first, leads to the conditions
limiting the stability of the helix phase in the range of small ks

[Eqs. (16) and (17)] and, second, makes its own contribution
to the value of the critical field Hc2 [Eqs. (27) and (28)].

Moreover, it was shown that the critical field Hc2 depends
on the orientation of the magnetic field relative to the
crystallographic axes, due to the contribution of the cubic
anisotropy in Eqs. (27) and (28). The critical field increases
(decreases) in the case when the energy of cubic anisotropy is
positive (negative). It is also shown that, when DM interaction
is weakened, the first-order phase transition occurs from the
conical to ferromagnetic phase for certain orientations of
magnetic field. The critical cone angle for these cases are
given by Eq. (26).

As an illustration of the role of the cubic anisotropy in
the magnetic system of the B20 compounds, we take an
example of a transformation of the helix structure to the
ferromagnet at x → xc in the solid solutions Fe1−xCoxGe.
This transformation is a result of the different signs of
the Dzyaloshinskii-Moriya interaction and the different helix
chiralities related to the different magnetic atoms (Fe and
Mn). In accord with the hypothesis on the averaged exchange
constants in the mixed compounds, the DM constant is
effectively vanishing at xc, while the isotropic exchange is
positive and finite. We have shown that the mechanism of
the transformation is realized via the competition between the
Dzyaloshinskii-Moriya interaction and the cubic anisotropy. In
accord with the Eqs. (16) and (17) there should be a range of the

concentrations close to xc, where the Fe1−xCoxGe compounds
should be ferromagnetic. The competition is well noticeable
in the helical phase as soon as the second critical field Hc2

becomes comparable to the first critical field Hc1.
In general, we have proven the possibility for existence

of the ferromagnetic phase in the noncentrosymmetric cubic
magnets with Dzyaloshinskii-Moriya interaction.
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APPENDIX: CUBIC INVARIANTS

For completeness we give explicit expressions for the cubic
invariants. Thus we have for the cubic anisotropy,

ECA = G[(cos4 φ + sin4 φ) sin4 θ + cos4 θ ], (A1)

and Eq. (12) is a result of the standard calculations.
Inserting the expressions Eq. (5) in I (ĉ) of Eq. (9), we

obtain

I (ĉ) = [2 sin2 φ cos2 φ + (1 + sin4 φ + cos4 φ) cos2 θ ] sin2 θ.

(A2)

Extrema of this function are obtained from this expression and
given below Eq. (9).

We have two invariants in Eq. (14). The first one is given
by

C =
∑

c4
j =

{
1; ĉ ‖ (0,0,1)
1/3; ĉ ‖ (1,1,1). (A3)

Here the extreme values of C are given in the right-handed
side.

The second invariant is determined as

B =
∑ (

a2
j + b2

j

)2 = (cos2 φ + sin2 φ cos2 θ )2

+ (sin2 φ + cos2 φ cos2 θ )2 + sin4 θ, (A4)

and we get for the extrema,

B =
{

2; ĉ ‖ (0,0,1)
4/3; ĉ ‖ (1,1,1). (A5)

There are simple relations between cubic invariants:

C − B = 1, I + C = 1, I + B = 2. (A6)

The extrema of cubic invariant W ≡ 10C − 6:

W =
{

4; ĉ ‖ (0,0,1)
−8/3; ĉ ‖ (1,1,1). (A7)

At φ = π/4 W has the simple form:

W (θ,φ = π/4) = 15 cos4 θ − 10 cos2 θ − 1. (A8)
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