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Topologically nontrivial magnons at an interface of two kagome ferromagnets
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Magnon band structures of topological magnon insulators exhibit a nontrivial topology due to the
Dzyaloshinskii-Moriya interaction, which manifests itself by topologically protected edge magnons. Bringing
two topological magnon insulators into contact can lead to nontrivial unidirectional magnons located at their
common interface. We study theoretically interfaces of semi-infinite kagome ferromagnets in various topological
phases, with a focus on the formation and the confinement of nontrivial interface magnons. We analyze generic
magnon dispersions with respect to the number of band gaps and the respective winding numbers. Eventually,
we prove that interfaces of topologically identical phases can host nontrivial interface magnons as well.
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I. INTRODUCTION

For electrons, the spin-orbit interaction can induce band
inversions and thus can yield nonzero topological invari-
ants [1–3]. The bulk-boundary correspondence [4,5] relates
these invariants of the bulk and the topological edge states that
are protected by symmetry. The concepts of Berry curvature [6]
and Chern numbers have entered various contexts and laws
of condensed-matter physics. Topological arguments, first
applied to electronic systems [7], have been carried forward,
for instance, to phonons [8–10] as well as to magnons [11–13].

The application of topological concepts to magnons was
initiated in large part by the discovery of the magnon Hall
effect, that is, a transverse heat current upon application
of a longitudinal temperature gradient [14]. This effect is
explained by uncompensated magnon edge currents, and the
thermal Hall conductivity can be expressed in terms of a
Berry curvature [11,12]. The edge currents are associated with
topological edge states owing to the nontrivial topology of the
magnon band structure in “topological magnon insulators”
(TMIs) [13]. As for electrons, the nontrivial topology is
caused by the spin-orbit interaction which manifests itself
as Dzyaloshinskii-Moriya interaction [15,16]. It shows up
in systems that lack inversion symmetry, for example, in a
pyrochlore lattice or in its two-dimensional counterpart, the
kagome lattice [17].

The magnon Hall effect in kagome lattices is intimately
related to topological edge states; if a TMI provides edge
magnons all propagating in one and the same direction, the
sign of the thermal Hall conductivity is unique within the
entire topological phase to which the TMI belongs [18,19].
This finding is associated with the edges of the sample which
may be viewed as interfaces to vacuum. The latter immediately
suggests examining the formation of topological interface
magnons at an interface of two TMIs, a “territory” unexplored
to our knowledge.

In the present theoretical paper we report on such interface
magnon formations at the junction of two semi-infinite
commensurate and ferromagnetic kagome lattices. It turns out
that energy-resolved winding numbers are a versatile tool for
visualizing the bulk-boundary correspondence at the interface.
We moreover analyze the decay of the interface states in the
direction toward the bulk regions. Due to the rich topological

phase diagram of the kagome TMIs one can construct a sizable
number of interface magnon dispersions which differ with
respect to the number of interface band gaps and topological
states. On top of this we address the formation of nontrivial
interface magnons between topologically identical phases.

This paper is organized as follows. In Sec. II we sketch
the quantum-mechanical description of magnons in kagome
lattices, Berry curvature, and the Chern number (Sec. II A) and
the bulk-boundary correspondence and the Green’s function
renormalization method for calculating interface magnons
in semi-infinite systems (Sec. II B). Results are presented
in Sec. III: energy-resolved winding numbers dictating the
number of interface states (Sec. III A), the confinement of
nontrivial interface magnons (Sec. III B), and generic interface
magnon dispersions (Sec. III C). An outlook is given in Sec. IV.

II. THEORY

A. Ferromagnetic kagome lattice: Model Hamiltonian
and Chern number

The quantum-mechanical description of magnons in a
ferromagnet is based on the Heisenberg model [20] with the
Hamiltonian

H = Hiso + HDM

= −
∑
m�=n

[
J n

m ŝm · ŝn − Dn
m · (ŝm × ŝn)

]
. (1)

Two spin operators ŝm and ŝn, at sites m and n, respec-
tively, are coupled by the isotropic symmetric Heisenberg
exchange (J n

m = Jm
n ) and the antisymmetric Dzyaloshinskii-

Moriya (DM) interaction (Dn
m = −Dm

n ; Refs. [15,16]). For
completeness, one could introduce the coupling of the spins
to an external magnetic field or the anisotropic symmetric
exchange. However, these contributions are irrelevant for our
purpose.

The eigenstates of Hiso are collective one-magnon excita-
tions of spin 1 (� ≡ 1). They read

|k〉 = 1√
N

∑
m

eik·Rm |Rm〉, (2)

where |Rm〉 denotes a state with all spins aligned with the max-
imum z component, except that at site m, whose z component
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FIG. 1. (Color online) Sketch of facing semi-infinite kagome
phases A (left, green) and B (right, blue), which share a common
interface (dashed line) along the y direction. Each phase is divided
into the thinnest principal layers possible (green and blue layers,
respectively) if only nearest and next-nearest interactions are present
in the Hamiltonian; four atomic layers form one principal layer from
which four are numbered (on the top; −2, . . . ,+1). The six white
dots in B indicate the principle-layer basis.

is reduced by 1. The solution of Eq. (1) in terms of one-magnon
states is an approximation in which magnon-magnon interac-
tions are neglected; it corresponds to keeping only bilinear
terms in the infinite series of bosonic creation and annihilation
operators, achieved by the Holstein-Primakoff transforma-
tion [21]. This “linear spin-wave theory” is valid at low
temperatures, for which only a few magnons are excited [22].

The Dzyaloshinskii-Moriya interaction is nonzero in lat-
tices that lack inversion symmetry. A two-dimensional kagome
lattice meets this requirement; it consists of a three-atomic
basis forming equilateral and corner-sharing triangles (Fig. 1).
According to Moriya’s symmetry rules [16], the DM vectors
Dn

m are perpendicular to the kagome lattice, that is, Dn
m =

Dn
m ẑ. The sign of Dn

m depends on the chirality of the triangles:
it is positive (negative) for counterclockwise (clockwise)
chirality.

Moriya’s symmetry rules allow for an in-plane component
of the DM vectors in a kagome system if and only if
the kagome plane is not a mirror plane of the crystal, as
is the case in jarosites [23]. Furthermore, pseudokagome
ferromagnets or ferrimagnets that consist of buckled kagome
layers allow for more complicated DM vectors; examples
are the Cu3Bi(SeO3)2O2X (X = Br, Cl, I) family [24,25] and
the staircase kagome ferromagnet Co3V2O8 [26]. These
systems can be described by our strictly two-dimensional
model with two approximations: (i) the buckled kagome lattice
has to be projected onto the plane, resulting in a distorted
in-plane geometry, and (ii) a magnetic field perpendicular
to the kagome plane has to ensure a ferromagnetic ground
state. The consequences of this magnetic field are twofold; it
not only causes a uniform energy shift of the magnon band
structure due to the Zeeman energy but also renders in-plane
DM components irrelevant up to quadratic order in the spin
deviation [14].

Because of the DM interaction a magnon accumulates an
additional phase φn

m upon propagation from site m to n (see

the supplemental online material in Ref. [14]). This becomes
evident when using a representation of Eq. (1) in terms of
ladder operators ŝ± = ŝx ± iŝy ,

H = −
∑
m�=n

[
J̃ n

m

2

(
eiφn

m ŝ−
mŝ+

n + e−iφn
m ŝ+

mŝ−
n

) + J n
mŝz

mŝz
n

]
, (3)

with J̃ n
m exp(iφn

m) = J n
m + iDn

m. The eigenfunctions of H in
Eq. (3) are again the one-magnon states defined in Eq. (2).
The DM interaction can be viewed as introducing a vector
potential which causes a textured flux within the plaquettes of
the kagome lattice [27], in analogy to the Haldane model for an
electronic topological insulator [28]. Thus, the DM interaction
lifts crossings in the magnon dispersion, and one is concerned
with a nonzero Berry curvature [6]

�j (k) ≡ i
∑
i �=j

〈i(k)|∇kH(k)|j (k)〉 × 〈j (k)|∇kH(k)|i(k)〉
[εi(k) − εj (k)]2

,

(4)

which is aligned along ẑ, �j (k) = �z
j (k) ẑ, that is, perpendicu-

lar to the kagome plane. The Berry curvature is calculated from
the eigenvectors |i(k)〉 and the corresponding eigenenergies
εi(k) [wave vector k = (kx,ky), band index i] of the 3 × 3
Hamilton matrix which is constructed from the Hamiltonian
in Eq. (3). Its k derivative ∇kH(k) is performed analytically.
Thus, for a given set of exchange parameters {J n

m,Dn
m}, we not

only can calculate the magnon dispersion but also have access
to its topology: the Brillouin zone (BZ) integral over the Berry
curvature,

Cj ≡ 1

2π

∫
BZ

�z
j (k) dk2, (5)

defines the integer Chern number Cj of the j th bulk magnon
band (j = 1,2,3). The sum

∑
j Cj of all Chern numbers equals

zero.
The evaluation of the integral in Eq. (5) can become

complicated if two bands get very close, with the result that
the Berry curvature becomes very large [see the denominator
of Eq. (4)]. For certain parameters {J n

m,Dn
m} there are even

degeneracies of the otherwise nondegenerate ferromagnetic
magnon branches. In this case, the band gap closes, the Berry
curvature diverges, and the Chern number is not defined. This
set of parameters defines the topological phase boundaries.
For nondegenerate magnon dispersions, we evaluate the Chern
numbers by applying Gaussian integration on a 200 × 200 k
mesh, which yields results with an accuracy better than 10−5.

B. Winding numbers and nontrivial interface magnons

The Chern numbers Cj allow us to infer the nontrivial
edge modes of a system, i.e., the bulk-boundary correspon-
dence [1,4,5]. The winding number

νA
i ≡

∑
j�i

CA
j (6)

of a material in topological phase A determines the number,
|νi |, and the propagation direction, sgn(νi), of nontrivial edge
magnons within the ith band gap.

The bulk-boundary correspondence holds for interfaces as
well. For phases A and B sharing a common interface (Fig. 1),
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the winding number of mutual interface band gaps is given by

ν I
l = νA

m − νB
n , (7)

where m and n denote those band gaps of A and B, respectively,
that form the lth mutual interface band gap. This definition is
fully in line with that given in Ref. [29]. The interface winding
numbers determine the number and propagation direction of
topological interface magnons.

To investigate interface magnons we consider two semi-
infinite solids, A and B, sharing an interface along the y

direction (Fig. 1). The magnon band structure is analyzed in
terms of the spectral density which is computed by a Green’s
function renormalization technique [30,31] and is now briefly
sketched. The facing semi-infinite crystals are decomposed
into principal layers for which the exchange interaction is only
among adjacent principal layers. For interactions restricted
to nearest and next-nearest neighbors the thinnest principal
layers are shown in Fig. 1. The resulting Hamilton matrix is
block tridiagonal in the principal-layer indices. By means of
the iterative renormalization process the effective interlayer
interactions converge to zero, and the principal-layer-resolved
Green’s function blocks Gnm(ε + iη,ky) are obtained for given
energy ε and parallel momentum ky ; the indices −∞ < n,m <

∞ denote the principal layers. The principal-layer-resolved
spectral densities are obtained from the blocks Gnn,

Nn(ε,ky) = − 1

π
lim

η→0+
Im tr Gnn(ε + iη,ky). (8)

The limit η → 0+ is not taken, but η = 0.0005 meV. All Gnm

can be computed from the interface block G00 by transfer
matrices. This highly efficient approach avoids any finite-size
effects that may occur in slab calculations [32].

III. RESULTS AND DISCUSSION

For the following we assume that both phases, A and
B, share a common ideal kagome lattice. The basis atoms
within each phase are identical, implying identical spins (here,
s = 1

2 ) and exchange parameters. That is, phase A has a
unique set of exchange parameters which consists of nearest-
neighbor exchange JN, next-nearest-neighbor exchange JNN,
and nearest-neighbor Dzyaloshinskii-Moriya interaction D.
The same holds for B but with a different set of exchange
parameters. The explicit choice of the parameter sets is given
in the captions of the figures showing calculated magnon
dispersions. The exchange parameters of the interface equal
the arithmetic mean of those of A and B.

The rich topological phase diagram of ferromagnetic
kagome lattices has been extensively studied in Refs. [18,19].
Four topologically different phases were found with respect
to the ratios JNN

JN
and D

JN
(Fig. 2). Each phase is uniquely

characterized by its triple of Chern numbers C = (C1,C2,C3)
and the corresponding winding numbers ν = (ν1,ν2) [see the
definitions in Eqs. (5) and (6), respectively].

To construct an interface we choose two kagome phases
with different ratios JNN

JN
and D

JN
; that is, they are located at

different points within the topological phase diagram but not
necessarily within different topological phases.
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FIG. 2. (Color online) Topological phase diagram of ferromag-
netic kagome lattices with respect to the ratios JNN

JN
and D

JN
. The

tinted topological phases are identified by their Chern numbers
C = (C1,C2,C3) and winding numbers ν = (ν1,ν2).

A. Energy-resolved winding numbers

Being bosons, all magnons contribute to currents at a finite
temperature. Hence, all gaps of the band structure have to
be considered for the bulk-boundary correspondence which is
conveniently visualized by energy-resolved winding numbers

νP(ε) = 1

2π

∑
n

∫
BZ

�z
n,P(k) �[ε − εn,P(k)]dk2, (9)

where P = A,B; �(x) denotes the Heaviside step function.
νP(ε) is an integer within the band gaps of A or B. Thus, the
energy-resolved interface winding number

ν I(ε) ≡ νA(ε) − νB(ε) (10)

is an integer within the common band gaps of A and B. It
dictates the number and propagation direction of the nontrivial
interface magnons in the considered band gap.

A positive (negative) winding number indicates propaga-
tion in the positive (negative) y direction for a sample which
occupies the left-hand half space, for example, A in Fig. 1;
the opposite holds for a sample occupying the right-hand
half space, that is, B in Fig. 1. This property is evident from
Figs. 3(a) and 3(c). Here, both A and B occupy the left-hand
half space, while the right-hand half space is vacuum.

The energy-resolved winding number νA(ε) for A with
Chern triple (−1,2,−1) starts from zero at ε = 0 [black line
in Fig. 3(a)] and then decreases to −1 within the energy range
of the lowest bulk band. Subsequently, it rapidly increases
to +1 within the rather flat second bulk band. Eventually,
it drops to zero above the uppermost bulk band. In general,
νA(ε) takes noninteger values within the energy range of the
bulk bands, which is not relevant within this study. However,
within the gaps it is integer and represents the number and the
slope of the edge states, as is obvious from the spectral density
for this A/vacuum interface. νB(ε) for the B/vacuum interface
exhibits a similar evolution; see Fig. 3(c) for B with Chern
triple (−1,0,1). Because the winding number is not inverted
when passing the second band gap, both edge magnons traverse
in the same direction (negative slope), which is different from
phase A [Fig. 3(a)].

Before discussing the A/B interface, we recall that the
spectral density and winding number of a vacuum/B interface
can be obtained from those of the B/vacuum interface by
vertically flipping Fig. 3(c), that is, by turning ky → −ky
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FIG. 3. (Color online) Bulk-boundary correspondence and
energy-resolved winding numbers. (a) and (c) display
energy-resolved winding numbers νA(ε) and νB(ε) (black lines) for
an A/vacuum and a B/vacuum interface, respectively. These are
superimposed on the spectral density of the rightmost principle layer
(color scale, with white indicating zero spectral weight and dark
orange indicating maximum weight). (b) shows the same quantities
as (a) and (c) but for an A/B interface. Phase A with Chern triple
(−1,2,−1): JN = 23/20D = 23/10JNN = 0.46 meV; phase B with
Chern triple (−1,0,1): JN = 2D = 1 meV, JNN = 0 meV.

(not shown here). The spectral density of the A/B interface,
depicted in Fig. 3(b), exhibits three band gaps since the second
bulk band of A is located within the lower band gap of B; the
upper bulk band of B tops the entire magnon dispersion of A.
As a consequence, there is no topological interface magnon
within the lowest band gap, according to ν I

1 = νA
1 − νB

1 =
(−1) − (−1) = 0. For the second interface band gap, one has
to subtract the first winding number of phase B from the second
winding number of phase A, ν I

2 = νA
2 − νB

1 = (1) − (−1) =
+2; hence, there are two topological interface magnons with
positive dispersion. The winding number of the third interface
band gap reads ν I

3 = −νB
2 = −(−1) = +1, as the winding

number of A equals zero at these energies. In total there are
three (| − 2 − 1| = 3) nontrivial interface magnons, all with
positive velocity.

B. Localization of topological interface states

The confinement of topological edge magnons has been
studied in Refs. [13,19]: the probability amplitude of edge
magnons drops to zero within approximately ten atomic
layers, confining them strongly to the sample edges. In the
following, the localization of interface magnons is analyzed
and compared to those of the associated edge magnons,
utilizing the same systems as for Fig. 3.

We focus on two interface magnons and pick out represen-
tative (ε,ky), specified by the green and blue dots in the inset
of Fig. 4. The spectral densities are maximal at the interface
layer but drop rapidly toward both bulk regions (green and
blue histograms), that is, in both the +x and −x directions.
Hence, the interface magnons are confined to a narrow strip,
less than 20 atomic layers wide, around the interface. Their
localization is close to that of the respective topological edge
magnons (at an interface with vacuum, edge magnons cannot
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FIG. 4. (Color online) Localization of topological magnons at an
A/B interface. The site-resolved spectral density is shown vs layer
index for two interface magnons (blue and green histogram). The
respective (ε,ky) is marked by the blue (green) dot in the inset, which
reproduces Fig. 3(b). Parameters are as in Fig. 3.

“spill over” into the vacuum, in contrast to magnons at an
A/B interface). For a lattice constant a of 7.024 Å, associated
with the vanadium sublattice of Lu2V2O7 (Ref. [14]), the
confinement width is less than 4 nm (the spacing of atomic
layers parallel to the interface is a

4 for the geometry in
Fig. 1). Being topologically protected, these modes follow
unconditionally any geometry of the interface, e. g., corners.

C. Analysis of generic interface magnon dispersions

The exemplary interface dispersion relation shown in Fig. 3
foreshadows the variety of different interface band structures
with respect to the energy positions of the band gaps of phases
A and B. The two band structures of phases A and B, each
with N bands and Chern numbers CA

i and CB
i (i = 1, . . . ,N ),

respectively, produce N − 1 winding numbers νA
j and νB

j (j =
1, . . . ,N − 1). Depending on the exchange parameters, the
number of gaps at the interface can range from zero up to
M = 2(N − 1). The lower limit M = 0 is obtained if the bulk
bands of A match energetically the band gaps of B and vice
versa; the upper limit M = 2(N − 1) requires the bulk bands of
one phase to fit into the band gaps of the other phase, thereby,
“splitting” these band gaps. We recall that the lowest bands
of A and B have a common minimum energy because of the
Goldstone modes; this is in contrast to interfaces of fermion
band structures in which the Fermi levels of A and B coincide.

For ferromagnetic kagome lattices there are N = 3 bands
and at most M = 4 band gaps at the interface. With respect
to the number of interface gaps, there are various types of
interface band structures. In the following we address three of
them in detail (Fig. 5). The examples given on the right-hand
side of Fig. 5 show not only the decay of the interface magnons
toward the bulk regions but also the decay of the bulk magnons
within the half space of the other phase. The color scales
in these figures were chosen for clarity and do not allow a
quantitative comparison, particularly with the results shown in
Fig. 4.

For the interface dispersion shown in Fig. 5(a), all bulk
bands of phase A match those of phase B, resulting in two
interface winding numbers ν I

i = νA
i − νB

i , i = 1,2. Hence,
there are no topological interface magnons if A and B belong
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FIG. 5. (Color online) Bulk-boundary correspondence applied to magnon interface modes. (a)–(c) show three selected interface band
structures that differ with respect to the number of interface band gaps and winding numbers. On the left-hand side one-dimensional magnon
dispersions ε(ky) are sketched, with bulk bands in gray and winding numbers given within the band gaps. The right-hand panels display the
evolution of the spectral density per principle layer (top; labeled −3, . . . , +3) across the interface (layer 0). The Chern triples C of phases
A and B as well as the corresponding winding numbers are indicated. Exchange parameters of A: (a) JN = 2D = 1 meV, JNN = 0 meV, (b)
JN = 23/20D = 23/10JNN = 0.46 meV, and (c) JN = 20/7D = 1 meV, JNN = 0 meV; B: (a) JN = 13/7JNN = 13/11D = 0.65 meV, (b) JN = 2D =
1 meV, JNN = 0 meV, and (c) JN = 13/6D = 1.3 meV, JNN = 0 meV.

to the same topological phase (νA
i = νB

i ). The right panel of
Fig. 5(a) depicts the spectral density per principle layer across
an interface of topologically different phases: A with Chern
triple (−1,0,1) and B with (−1,2,−1). As a consequence,
there is no nontrivial interface magnon within the first interface
band gap [ν I

1 = νA
1 − νB

1 = (−1) − (−1) = 0], but the second
interface band gap hosts two interface magnons [ν I

2 = νA
2 −

νB
2 = (−1) − (+1) = −2], both with negative velocity; their

spectral weights decay toward the bulk regions, which is
evident from the fading color.

The exemplary dispersion of Fig. 5(b) reproduces that
of Figs. 3 and 4, whose formation has been discussed in
Sec. III A. This configuration hosts interface magnons even
for topologically identical phases, which is readily explained
by the topmost interface band gap: its winding number equals
νB

2 = −1.

The configuration sketched in Fig. 5(c) shows the max-
imum number of M = 4 interface band gaps. As an ex-
ample we chose topologically identical phases with Chern
triple (−1,0,1), a particularly interesting phase because
all of its winding numbers are identical, that is, −1.
Hence, the winding numbers of the lower three inter-
face band gaps vanish: ν I

1 = ν I
2 = ν I

3 = νA
1 − νB

1 = νA
2 − νB

1 =
νA

2 − νB
2 = (−1) − (−1) = 0. Only the interface winding

number of the topmost gap is nonzero, and there is a single in-
terface magnon with positive velocity in this gap [see the right-
hand side of Fig. 5(c)]. Furthermore, there are two trivial inter-
face magnons showing up within the second interface gap; they
are easily identified because they do not bridge the band gap.

For completeness, other generic band structures are
sketched in Fig. 6. One may think of and may discuss even
more generic interface magnon dispersions. However, these
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FIG. 6. Bulk-boundary correspondence of magnon interface
modes. (a)–(f) display generic interface band structures with different
combinations of interface band gaps and winding numbers. Bulk
bands are sketched in gray; winding numbers are given within the
gaps.

might be realized by unphysical combinations of exchange
parameters and thus can be rendered irrelevant with respect to
experiments.

The band structure shown in Fig. 6(a) is of particular
interest if A and B are in the same topological phase; then
the winding numbers of the lower two interface band gaps
vanish, in contrast to Fig. 5(b), in which the second interface
band gap may possess a nonzero winding number.

An exceptional case is given in Fig. 6(b), which displays
the maximum of four band gaps: by construction, the entire
magnon band width of phase A is located within the lowest
band gap of B. For all topological kagome phases shown in
the phase diagram (Fig. 2) there are interface magnons within
the upper two band gaps of the interface dispersion since both
νB

1 and νB
2 are nonzero.

At first glance, Figure 6(c) looks like a mirror image of
Fig. 6(d); however, they are topologically different. This is
due to the interface winding number of the second interface
gap. Choosing an interface of topologically identical phases
results in topological interface magnons within this gap as long
as the two winding numbers of said topological phase differ
(ν1 �= ν2).

Figure 6(e) presents the case without interface gaps and
therefore without topological interface magnons regardless of
the topological phases of A and B. In contrast, the magnon
dispersion in Fig. 6(f) has at least one interface band gap; this

gap possesses a nonzero winding number for all topological
kagome phases shown in Fig. 2.

IV. OUTLOOK

Because topological interface magnons transport heat (and
spin) unidirectionally and are confined to a few-nanometer-
wide strip along the interface, one could construct strongly
confined magnon waveguides [33]. Therefore, it is desirable
to identify materials whose common interface hosts nontrivial
interface magnons with a single propagation direction in order
to maximize the net current. Our study provides recipes for
combining materials with different magnon dispersions to
achieve the desired effect. We recall that even interfaces made
of materials that are within the same topological phase can
host nontrivial interface magnons; these could be realized by
band engineering based on alloying.

To come closer to real materials, we note that the
organometallic magnet Cu(1,3-benzenedicarboxylate) pro-
vides structurally perfect stacked kagome lattices built up by
the Cu atoms [34]. Below 1.77 K the nearly noninteracting
planes host ferromagnetic order with an intraplane interaction
ratio of D

JN
= 15 % (D = D · ẑ) [35]. If the next-nearest-

neighbor interaction is small, the system belongs to the
topological phase (−1,0,+1) (see Fig. 2) and hosts two
topological edge modes propagating in the same direction.
Other representatives of this crystal family might have similar
properties, thus allowing for the formation of topological
interface magnons at junctions.

For the future, detailed ab initio calculations or inelastic
neutron scattering experiments are inevitable. From these,
one can determine the exchange parameters and topological
phases of topological magnon insulators, to name a few, the
pyrochlore oxides Lu2V2O7 (for neutron scattering experi-
ments, see Ref. [36]), Ho2V2O7, and In2Mn2O7, all of which
show the magnon Hall effect [37]. In2Mn2O7 is believed to
belong to a different topological phase than the other two
pyrochlores because its thermal Hall conductivity has opposite
sign. Thus, there is a great possibility of finding topological
interface magnons at a junction of In2Mn2O7 and one of the
other two representatives.

As the topological edge magnons are still awaiting their
direct experimental detection, for example, by spin-polarized
electron-energy-loss spectroscopy [38] or time-resolved spec-
troscopies [39], we propose an indirect proof performing
a “pump and probe” experiment. Given an interface with
topological magnons, local heating at the interface by a laser
will excite not only the isotropic bulk magnons but also
said topological modes. If the two systems are chosen such
that the topological interface magnons are propagating in the
same direction [as, for example, in Fig. 5(b)], a deformed
thermographic profile is expected. This deformation can be
estimated by the ratio of the longitudinal and transverse
thermal conductivities κxy

κxx
, i.e., the thermal Hall angle, which

is of the order of 10−3 for Lu2V2O7 (Ref. [14]).
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