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Calculation of exchange constants of the Heisenberg model in plane-wave-based
methods using the Green’s function approach

Dm. M. Korotin,1,* V. V. Mazurenko,2 V. I. Anisimov,1,2 and S. V. Streltsov1,2,†
1Institute of Metal Physics, S.Kovalevskoy St. 18, 620990 Yekaterinburg, Russia

2Department of Theoretical Physics and Applied Mathematics, Ural Federal University, Mira St. 19, 620002 Yekaterinburg, Russia
(Received 11 January 2015; revised manuscript received 7 April 2015; published 4 June 2015)

An approach to compute exchange parameters of the Heisenberg model in plane-wave-based methods is
presented. This calculation scheme is based on the Green’s function method and Wannier function projection
technique. It was implemented in the framework of the pseudopotential method and tested on such materials
as NiO, FeO, Li2MnO3, and KCuF3. The obtained exchange constants are in a good agreement with both the
total energy calculations and experimental estimations for NiO and KCuF3. In the case of FeO our calculations
explain the pressure dependence of the Néel temperature. Li2MnO3 turns out to be a Slater insulator with
antiferromagnetic nearest-neighbor exchange defined by the spin splitting. The proposed approach provides a
unique way to analyze magnetic interactions, since it allows one to calculate orbital contributions to the total
exchange coupling and study the mechanism of the exchange coupling.
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I. INTRODUCTION

Magnetic interactions are in the focus of theoretical
and experimental investigations of many modern materials.
Depending on the nature and localization of the magnetic
moments, one can use different model Hamiltonians to
describe the magnetic properties of the system. In the case
of the localized magnetic moments, the spin-Hamiltonian
approach based on the solution of the Heisenberg model can be
used. The corresponding Heisenberg Hamiltonian has the form

HHeis =
∑
〈ij〉

Jij Ŝi Ŝj , (1)

where Jij is the isotropic exchange interaction parameters.
One can also use different extensions of the Heisenberg
model taking into account symmetric and antisymmetric
parts of the anisotropic exchange coupling [1–3]. Within the
spin-Hamiltonian approach the problem of realistic description
of the magnetic properties is reduced to the problem of
unambiguous determination of the exchange interactions by
taking electronic structure and chemical bonding into account.
It can be done on different levels and by using different means.

One of the most popular approaches for ab initio inves-
tigation of solids is density functional theory (DFT). There
are a few methods to estimate exchange constants Jij within
DFT, i.e., to map the results of the DFT calculations onto the
Heisenberg model.

The most direct, and popular way to calculate Jij is
to calculate the total energies of the N + 1 magnetic con-
figurations, where N is the number of different exchange
constants [4–6]. Despite the robustness of this approach, it has
several serious drawbacks: (1) a number of different magnetic
configurations have to be calculated for complicated systems;
(2) all configurations must use the same magnetic moments
(important for the materials close to itinerant regime); and (3)
the result is purely a number, which is hard to analyze, i.e.,
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understanding which orbitals contribute the most and what
mechanism of exchange coupling (direct-exchange, super-
exchange, double-exchange, etc.) is present.

To overcome these shortcomings the Green’s function
method [7–9] can be utilized. Using DFT and Heisenberg
model, it produces analytical expressions for the changes in the
total energy with respect to small spin rotations. This approach
allows one not only to obtain all the exchange constants from
the calculation of a single magnetic configuration, but also to
find contributions to the total exchange coupling coming from
different orbitals (e.g., Jxy/xy , Jxy/x2−y2 , etc.). Moreover, this
method can easily be generalized to calculate the anisotropic
part of the exchange Hamiltonian [10].

Previously, the Green’s function approach was formulated
for localized orbitals methods, e.g., linear muffin-tin orbitals
(LMTO) method [11] or linear combination of atomic orbitals
(LCAO) [12,13]. However, modern high-precision schemes of
band structure calculations are mostly based on the methods,
which use a plane-wave-type basis. They are the full-potential
(linearized) augmented plane-wave (L)APW [14] and pseu-
dopotential [5] methods. As a result, a straightforward real-
ization of the Green’s function method becomes impossible
within plane-wave approaches and all its advantages cannot
be used in the modern ab initio DFT codes without direct
definition of a localized basis set.

In the present paper we show how the Green’s function
approach can be adapted for the plane-wave-based methods
using the Wannier functions formalism. We implemented
this calculation scheme in the pseudopotential Quantum-
ESPRESSO code [15] and report the results concerning the
magnetic interactions in NiO, FeO, Li2MnO3, and KCuF3.

II. METHOD

Following Ref. [8], we used classical analog of Eq. (1) with
spins substituted by the unit vectors ei pointing in the direction
of the ith site magnetization:

H =
∑
〈ij〉

Jij eiej . (2)
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The value of the exchange constants for the conventional
classical Heisenberg model (with spins, not unit vectors) can
be obtained with a proper renormalization.

The power of the Green’s function method is in the applica-
tion of the local force theorem (see, e.g., Ref. [16]). When the
spins experience rotations over a small angle δφ, the resulting
change in the total energy in the DFT can be calculated via the
local force theorem [8]. This can only be done if the Hamil-
tonian of the system is defined in a localized orbitals basis
set (otherwise, it is not clear what parts of the Hamiltonian
have to be rotated). The result of the rotation is compared
with a similar procedure performed for the spin-Hamiltonian
Eq. (2), which allows us to derive an analytical expression
for the exchange integrals Eq. (8). The major difficulty in the
application of this approach to the modern plane-wave-based
calculation schemes is the absence of the localized basis set
in these methods. We propose to use the Wannier functions
(WF) projection procedure to avoid this restriction and show
its realization for the pseudopotential method.

It is important to note that the Heisenberg model is defined
for localized spin moments. Therefore, the basis set with
the most localized orbitals is the best for a mapping of the
DFT results on the Heisenberg model. Hence, the maximally
localized Wannier functions [17] represent the most natural
choice for such a mapping. Technically, the localization degree
and the symmetry of such wavefunctions can be controlled
in the projection procedure. One of the most widespread
procedures is an enforcement of maximum localization of WF
[18]. The second [19] is a constraint for the WF symmetry to
be the same as the symmetry of pure atomic d orbitals. In the
present paper, the second type of projection procedure is used.

The WFs were generated as projections of the pseudoatomic
orbitals |φnk〉 = ∑

T eikT|φT
n 〉 onto a subspace of the Bloch

functions |�μk〉 (the detailed description of WFs construc-
tion procedure within pseudopotential method is given in
Ref. [20]):

∣∣WT
n

〉 = 1√
Nk

∑
k

|Wnk〉e−ikT, (3)

where

|Wnk〉 ≡
N2∑

μ=N1

|�μk〉〈�μk|φnk〉. (4)

Here T is the lattice translation vector. The resulting WFs have
the symmetry of the atomic orbitals φn and describe the elec-
tronic states that form energy bands numbered from N1 to N2.

The matrix elements of the one-electron Hamiltonian in the
reciprocal space are defined as

H WF
nm,σ (k) = 〈Wnk|

⎛
⎝ N2∑

μ=N1

|�μk〉εσ
μ(k)〈�μk|

⎞
⎠ |Wmk〉, (5)

where εσ
μ(k) is the eigenvalue of the one-electron Hamiltonian

for band μ and spin σ .
Such a Hamiltonian matrix is produced as a result of the

WF projection procedure at the end of the self-consistent cycle
in the spin-polarized DFT or DFT+U calculations.

This matrix in the H WF
mm′,ij,σ form (where m and m′ numerate

orbitals on ith and j th sites, respectively) can be used for

the intersites Green’s function calculation at every k point in
reciprocal space:

Gmm′
ij,σ (ε,k) = [

ε + EF − H WF
mm′,ij,σ (k)

]−1
, (6)

where EF is the Fermi energy. The site indexes i and j run
through atoms within the primitive cell by default; however,
the intersite Green’s function between any two atoms of the
lattice sites i ′ and j ′ could be obtained via integration over
Brillouin zone (BZ):

Gmm′
i ′j ′,σ (ε) =

∫
BZ

Gmm′
ij,σ (ε,k)eik[(Ri′ −R0

i )−(Rj ′ −R0
j )]dk, (7)

where Gmm′
ij,σ (k) is the intersite Green’s function of the primitive

cell for given k point, Ri′ is the position of atom i ′ in the lattice,
and R0

i is the position of the same atom within the primitive
cell.

The resulting Gmm′
i ′j ′,σ (ε) is used in the analytic expression

for the exchange integrals as obtained in the Green’s function
method [8]:

Jij = − 1

2π

∫ EF

−∞
dε

∑
mm′

m′′m′′′

Im
(
�mm′

i Gm′m′′
ij,↓ �m′′m′′′

j Gm′′′m
ji,↑

)
, (8)

where Gmm′
ji,↑ (Gmm′

ij,↓ ) is the real-space intersite Green’s function
for spin-up (-down) obtained in Eq. (7) and

�mm′
i =

∫
BZ

[
Hmm′

ii,↑ (k) − Hmm′
ii,↓ (k)

]
dk. (9)

The proposed scheme allows us to compute per-orbital
contribution to the exchange interaction between two atoms.
Without spin-orbit coupling the �mm′

i matrix is diagonal in the
spin subspace, but it is not necessarily diagonal in the orbital
subspace. However, one may always transform �mm′

i to the
diagonal form (e.g., changing the global coordinate system
of the crystal to the local one, when axes are directed to the
ligands; or simply diagonalizing onsite Hamiltonian matrix in
the WF basis set):

�mm′
i =

∑
k

T mk
i �̃kk

i

(
T km′

i

)∗
. (10)

Then Eq. (8) can be rewritten as

J kk′
ij = − 1

2π

∫ EF

−∞
dε

∑
kk′

Im
(
�̃kk

i G̃kk′
ij,↓�̃k′k′

j G̃k′k
ji,↑

)
, (11)

where

G̃kk′
ij,σ =

∑
mm′

T km
i G̃mm′

ij,σ

(
T m′k′

j

)∗
. (12)

Equation (11) allows us to calculate exchange coupling
between the kth orbital on site i and the k′th orbital on site j .

In the end of this section we would like to stress that one
should carefully choose the orbital set used in the projection
procedure. First of all, technically it should be the set and
the energy window for the projection, which give the band
structure identical (or close to) initial. Second, this set should
be physically reasonable. For example, if one deals with
compounds (like NiO and KCuF3), where the main exchange
mechanism is expected to be superexchange via, e.g., ligand p
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FIG. 1. (Color online) Schematic view of the NiO crystal struc-
ture. The blue spheres denote oxygen ions, while the gray and magenta
spheres denote two magnetic types of Ni. The figure was drawn using
VESTA [21] software.

orbitals, then corresponding states have to be included in the
projection procedure. This, in turn, provides an additional tool
to study the exchange paths and mechanism of the magnetic
coupling, whether it is due to direct- or superexchange.

III. RESULTS AND DISCUSSION

A. NiO

NiO is one of the typical systems on which different
calculation schemes are tested. It is a charge-transfer insulator
with a band gap ∼4 eV [22] and local magnetic moment of
1.77 μB [23]. NiO crystallizes in the rocksalt (NaCl) structure
and exhibits an antiferromagnetic ordering of type-II fcc (AFM
II-type) [24], with planes of opposite spins being repeated
in alternating order along [111]; see Fig. 1. This type of
magnetic ordering is due to the strong next-nearest-neighbor
(nnn) coupling between nickel ions via oxygen’s 2p shell. The
Néel temperature is TN = 523 K [25].

Since accounting for strong electronic correlations is crucial
in the case of NiO [26], we used the LSDA+U method
[27] for the calculation of electronic and magnetic properties.
The onsite Coulomb repulsion and intra-atomic Hund’s rule
exchange parameters were chosen to be U = 8.0 eV and
JH = 0.9 eV, respectively [26]. We used the Perdew-Zunger
exchange-correlation potential [28], 45 and 360 Ry for the
charge density and kinetic energy cutoffs, and 512 k points in
the Brillouin zone (BZ). The unit cell consists of two formula
units to simulate AFM II-type.

First of all, we have calculated the dominating exchange
interactions for the Heisenberg model Eq. (1) between
second-nearest neighbors, J1 (see Fig. 1), using conventional
total energy technique, and obtained J1 = 18.8 meV, which
agrees extremely well with experimental estimation of J1 =
19.0 meV [29].

The small effective Hamiltonian used for the Green’s
function calculation according to Eq. (6) was obtained by the
Wannier function projection procedure as described in Sec. II.
The Wannier functions were constructed as a projection of
the Ni 3d and O 2p pseudoatomic orbitals onto subspace
of Bloch functions defined by the 16 energy bands, which

predominantly have the Ni 3d and O 2p character: 2 formula
units × (5 Ni 3d plus 3 O 2p orbitals) = 16.

The exchange constants calculated by the Green’s function
method are J1 = 18.9 meV and J2 = −0.4 meV, which
agree with both the total energy and experimental estimations.
Moreover, they allow us to perform an analysis of partial
contributions from different orbitals. An orbital-resolved ma-
trix (in meV) for the largest exchange interaction J1 between
the next-nearest neighbors along z (c) direction [calculated
according to Eq. (11)] is given as

Jmm′
1 =

⎛
⎜⎜⎜⎝

−18.9 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎠. (13)

Here the following order of the 3d orbital is used: 3z2 − r2,
zx, zy, x2 − y2, xy; and the axes of the coordinate system
are shown in Fig. 1. Thus, one may see that the exchange
coupling between the next-nearest neighbors is due to overlap
between 3z2 − r2 orbitals centered on different sites. This
is the 180◦ superexchange interaction via the 2pz orbital
of the oxygen sitting between two Ni ions in the z (c)
direction, which has to be strong and AFM according to
Goodenough-Kanamori-Anderson rules [30]. In contrast, the
exchange interaction between nearest neighbors, J2, occurs
via two orthogonal p orbitals and is expected to be weak and
ferromagentic (FM) [30].

The imaginary parts of the onsite and intersite Green’s
functions are shown in Fig. 2. The intersite Green’s function
(lower panel) corresponds to the strongest 180◦ exchange
coupling, J1. The exchange constants, defined in Eq. (8), is the
energy integral of two Green’s functions and two � functions,
which do not depend on ε. Therefore, it is important to explore
an energy dependence of the Green’s function.

One can see that the imaginary part of the onsite Green’s
function (upper panel) doesn’t change its sign over the entire
energy interval and after normalization the function is exactly
equal to density of electronic states. The energy integral of the
imaginary part of the onsite Green’s function up to the Fermi
level gives the total number of electrons on corresponding
orbitals. This value is predictable and slight changes of the
onsite Green’s function peak positions and widths will not
change the resulting number of electrons significantly.

The intersite Green’s function, shown in the lower panel
of Fig. 2, changes its sign several times. It means that in a
general case the energy integral up to the Fermi level has
an unpredictable sign and the value strongly depends on the
Green’s function peak positions and widths, i.e., on band
structure calculation results.

B. KCuF3

KCuF3 is renowned due to its orbital order, which defines
its magnetic properties. The single hole in the eg subshell of
Cu2+ ion (its electronic configuration is 3d9) is localized on
the alternating z2 − x2 and z2 − y2 orbitals present in the ab

plane (i.e., antiferro-orbital order), which results in the weak
ferromagnetic coupling in this plane. In contrast, there is a
ferro-orbital ordering in the c direction, which leads to a strong
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FIG. 2. (Color online) Imaginary part of the spin-up onsite (up-
per panel) Green’s function of Ni ion and intersite (lower panel)
Green’s function for the pair of the Ni ions along c axis (i.e.,
corresponding to J1). The Green’s function for the eg states is shown
by solid black curve, and for the t2g states by the solid red curve. Zero
energy corresponds to the Fermi level.

antiferromagnetic interaction along this axis. As a result in the
essentially three-dimensional (3D) crystal one may observe the
formation of nearly ideal one-dimensional antiferromagnetic
Heisenberg chains [31,32].

The compound has a distorted cubic perovskite crystal
structure (shown in Fig. 3) with space group I4/mcm. The
copper ions have octahedral fluorine surrounding. These
octahedra are elongated along one of the directions. At room
temperature, there are two different structural polytypes with
antiferro (a-type) and ferro-like (d-type) stacking of the ab

planes along the c axis [33].
Altogether, the electronic and structural properties of

KCuF3 have previously been intensively studied by employing
density functional theory and its extensions like the DFT+U
approach [26]. The DFT+U calculations led to a correct
insulating ground state with the spin and orbital ordering
[34–36] that are in agreement with experimental data. We used
the GGA+U approach as a starting point for the exchange
interaction parameters calculation.

For the density functional calculations, we used the Perdew-
Burke-Ernzerhof [37] GGA exchange-correlation functional
together with Vanderbilt ultrasoft pseudopotentials. We set the
kinetic energy cutoff to 50 Ry (400 Ry) for the plane-wave
expansion of the electronic states (core-augmentation charge).

J1

J2

J3

FIG. 3. (Color online) Schematic view of the KCuF3 crystal
structure. The blue and green spheres denote Cu ions of two different
types, while the violet spheres denote F ions. The potassium ion in
the center of the cell is not shown for clarity.

The self-consistent calculation was performed with the 4 ×
4 × 4 Monkhorst-Pack k-point grid. We set the effective onsite
Coulomb interaction as Ueff = U − JH = 6.6 eV [36]. To
reproduce the magnetic and orbital ordering of the polytype a,
we used a cell containing four formula units.

The basis of the WFs has a dimension of 56. It includes 20
Cu-d-like WFs (5 functions for every Cu site) and 36 F-p-like
WF. We generated the Cu WF using a linear combination of
pseudoatomic Cu-d orbitals to obtain a more clear physical
basis for the Green’s function formalism.

The strongest exchange interaction was found to be between
nearest Cu ions along the c axis, J1 = 17 meV (antiferro-
magnetic). As it was mentioned above, this is because of the
ferro-orbital order in this direction, given by J1 ∼ t2/U (where
t is corresponding hopping integral). The calculated value
agrees with different experimental estimations of J1, which
was found be 16.1 meV [38] using analysis of the specific heat
data, 16.2 meV [39] based on the temperature dependence of
the magnetic susceptibility, and 17 meV [40] or 17.5 meV [41]
in neutron measurements.

The exchange coupling in the ab plane, given by J2 ∼
t2JH /U 2, has to be much weaker, since there is an antiferro-
orbital order. Our calculations give J2 = 0.5 meV. The
additional “diagonal” exchange, J3, was estimated to be
−1 meV.

The onsite and intersite Green’s functions for KCuF3 are
shown in Fig. 4. The main contribution to exchange interaction
in c direction comes from the overlap between the similar
WFs centered on different Cu ions (i.e., z2 − y2/z2 − y2 or
z2 − x2/z2 − x2).

C. FeO

FeO together with NiO is one of the most studied
monoxides. The crystal structure of these oxides is quite
similar and shown in Fig. 1 (there are small rhombohedral
distortions in the magnetically ordered phase of FeO), but
magnetic properties of FeO strongly depend on the amount
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FIG. 4. (Color online) Imaginary part of the spin-down onsite
(upper panel) Green’s function of Cu ion and intersite (lower panel)
Green’s function for two Cu ions corresponding to J1. The Green’s
function for eg states is shown by the solid black line, for t2g states
by the solid red one. Zero energy corresponds to the Fermi level.

of defects in samples. The ordered moment changes from
3.2 to 4.5 μB , while Néel temperature TN is ∼200 K (FeO
orders in the AFM II-type structure; the same as NiO) [42].
Due to geophysical importance of FeO the investigations
were mostly concentrated on the pressure dependence of its
magnetic properties. Possible presence of the pressure-driven
spin-state transition was studied by different methods starting
from the conventional DFT calculations to more elaborated
methods based on the dynamical mean-field theory (DMFT)
[43–45]. However, in addition to this transition there is also
unconventional change of TN with the pressure [46]. Thorough
study of this effect in a wide pressure range is beyond the scope
of the present paper, but we estimated the change of the Néel
temperature for moderate pressures.

We used experimental crystal structure for zero pressure
[42], and optimized it (keeping the symmetry) for the pressure
of 15 GPa. Standard PBE pseudopotentials from the Quantum-
ESPRESSO pseudopotentials library were used for the self-
consistent ground-state calculation. The plane-wave energy
cutoff value was set to 45 Ry. Integration over the reciprocal
cell was performed on 6 × 16 × 16 regular k-points grid.
The Hubbard’s parameters U = 5 eV and JH = 0.9 eV were
calculated by one of us for FeO in the same pseudopotential
code previously [45]. The WF basis consists of 16 Wannier

functions. It includes states with Fe-d and O-p orbitals
symmetry for two formula units.

The second nearest-neighbor exchange coupling (see Fig. 1)
was found to be J1 = 2.1 meV for the Heisenberg model
written in Eq. (1). In the mean-field approximation the Néel
temperature for the fcc lattice and AFM of II-type can be
estimated as 6J1

1
3S(S + 1), which gives TN ∼ 300 K, while

experimental T
exp
N ∼ 200 K. This is a common feature of the

mean-field theories to overestimate the transition temperature
in 1.5–2 times (e.g., the situation in NiO is rather similar;
if one would even use experimental J1 = 19 meV, the Néel
temperature will be strongly overestimated). What is more
representative is the ratio between TN for different pressures.
Experimentally, T P=15

N /T P=0
N ≈ 1.45 [46], while theoretically

we obtained T P=15
N /T P=0

N = 1.4. Thus, one doesn’t need to
use such a sophisticated technique as DMFT to describe
pressure dependence of the Néel temperature in FeO (at
least for moderate pressures), which can be explained by
the modification of average Fe-O-Fe distance. Indeed, in the
Mott-Hubbard systems the superexchange between half-filled
orbitals is defined by effective hopping parameter t̃dd via ligand
2p orbitals [30],

J ∼ t̃2
dd

U
, (14)

and t̃dd ∼ t2
pd

�CT
, where �CT is the charge-transfer energy [47]

and tpd is the hopping between ligand p and metal d orbitals.
Since this hopping scales as tpd ∼ 1/d7/2 [13], where d is the
distance between ligand and transition metal ion, then

T P=15
N

T P=0
N

=
(

dP=0
Fe-O

dP=15
Fe-O

)14

. (15)

Such a crude estimation surprisingly works quite well. Ac-
cording to our GGA calculations going from zero to 15 GPa
pressure dFe-O changes on 2.7%. Then according to Eq. (15),
T P=15

N

T P=0
N

= 1.45, exactly as observed experimentally [46].

D. Li2MnO3

Compounds with general formula A2BO3, where A is
an alkali metal, Li or Na, and B is a metal have layered
crystal structure with B ions forming honeycomb lattice; see
Fig. 5. They attract much attention not only due to possible
technological application as battery cathode materials [48], but
also represent special interest for the fundamental science. For
example, Na2IrO3 is considered as a possible realization of
the Kitaev model [49], while Li2RuO3 shows unusual valence
bond liquid phase at high temperatures [50] and spin-gapped
state below 540 K (at least in polycrystalline samples) [51,52].
In contrast to these systems in Li2MnO3 the long-range
antiferromagnetic state is formed at TN = 36 K with all Mn
neighbors in the ab plane ordered AFM [53]. This result is
rather unexpected, since in the 90◦ Mn-O-Mn geometry one
might expect strong FM interaction between half-filled t2g and
empty eg orbitals of Mn4+ ions [30,53,54].

We performed GGA and GGA+U calculations of the
exchange parameters in Li2MnO3 using Perdew-Burke-
Ernzerhof [37] exchange-correlation potential. The crystal
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FIG. 5. (Color online) Crystal structure of Li2MnO3. Mn ions,
shown by blue balls, are in octahedral surrounding of the O ions (red
balls) and form honeycomb lattice, with Li (green balls) in the center
of the honeycombs. These 2D hexagonal planes are stacked in the c

direction with Li ions in between.

structure was taken from Ref. [53] for T = 6 K. The magnetic
structure is AFM G-type, when all neighboring Mn are AFM
coupled [53]. The kinetic energy cutoff was chosen to be 45 Ry
(450 Ry) for the plane-wave expansion of the electronic states
(core-augmentation charge) and we used 64 k points for the
integration over the BZ.

The magnetic moments on Mn ions in the GGA approach
were found to be 2.5 μB , which is consistent with 4+ oxidation
state. The total and partial DOS are shown in Fig. 6. This is
the feature of the Mn4+ ion with the half-filled t2g subshell
(electronic configuration 3d3), that the spin splitting (i.e., the
splitting between spin-majority and spin-minority subbands)
is quite large and therefore already magnetic GGA calculation
gives insulating ground state with the band gap 1.9 eV. On
the one hand, this is much larger than experimental activation
energy � ∼ 0.7 eV deduced from the resistivity measurements
[53], which, however, cannot be considered as a direct and
precise way to estimate the band gap. On the other hand, this
strongly suggests that the Hubbard correction, U , is not that
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FIG. 6. (Color online) Spin-polarized density of electronic states
for Li2MnO3 obtained in the magnetic GGA calculation. Zero energy
corresponds to the Fermi level.

important for the descriptions of the top of the valence and
the bottom of the conduction bands. Indeed, many other Mn
oxides can be described by the LSDA or GGA methods without
account of any Hubbard correlations [55–58].

Our GGA+U calculation shows that even quite large U =
4.5 eV only slightly increases the value of the band gap (on
0.3 eV), which shows that the band gap is indeed defined
by the spin splitting (as clearly seen from Fig. 6) and not
by the Coulomb correlations. Therefore, the use of the GGA
approximation seems to be plausible for the description of the
magnetic properties of Li2MnO3. This additionally allows us
to test the Green’s function approach for the calculation of the
exchange constants without Hubbard’s U .

We found that in the GGA approximation exchange
coupling between nearest neighbors is J = 23 K (AFM) for
the Heisenberg model defined in Eq. (1). In the mean-field
approximation this gives Curie-Weiss temperature θGGA =
87 K. This is again somewhat larger than experimental
θexp ∼ 50–60 K [53], but it agrees with what one may expect
from the mean-field theory. An account of the onsite Coulomb
repulsion in the GGA+U calculation leads to gradual growth
of the FM component and results in total exchange J = −16 K
(FM) for U = 4.5 eV and JH = 0.9 eV (as were used, e.g.,
in NaMn7O12 [59] or in Mn4(hmp)6 [60]), which agrees
with Goodenough-Kanamori-Anderson rules [30,53] but is
inconsistent with experiment [53].

Thus, the results of the GGA calculations, where Li2MnO3

turns out to be a Slater insulator with the band gap appearing
due to a spin splitting, seem to be reasonable. In the first
order of the perturbation theory the exchange interaction in
this situation is expected to be AFM. It can be described not
by Eq. (14) but rather as

J ∼ t2
dd

�exc
, (16)

where �exc is the exchange splitting, which in the GGA is
given by the sublattice magnetization M and Stoner parameter
I as �exc = IM [61].

IV. CONCLUSION

We have presented the implementation of the Green’s func-
tion approach for the Heisenberg model exchange parameters
calculation. The localized electronic states were described by
the Wannier functions with the symmetry of atomic orbitals.
This basis set allowed us to overcome the limitations of modern
plane-wave-based calculation schemes and perform a complex
analysis of the intersite exchange interaction with the density
functional theory or its extensions such as DFT+U. The results
were tested on four transition metal compounds: NiO, FeO,
KCuF3, and Li2MnO3. The obtained values are in a good
agreement with experimental estimations.
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