
PHYSICAL REVIEW B 91, 224403 (2015)

Magnetic phase diagram of the coupled triangular spin tubes for CsCrF4
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Using Monte Carlo simulations, we explore the magnetic phase diagram of triangular spin tubes coupled with
a ferromagnetic intertube interaction for CsCrF4. The planar structure of the coupled tubes is topologically
equivalent to the kagome-triangular lattice, which induces nontrivial frustration effects in the system. We
particularly find that, depending on the intertube coupling, various ordered phases are actually realized, such as
incommensurate order, ferromagnetic order, and cuboc order, which is characterized by the noncoplanar spin
structure of the 12 sublattices accompanying the spin chirality breaking. We also discuss the relevance of the
results to recent experiments on CsCrF4.
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I. INTRODUCTION

Recently, the triangular spin tube has attracted much
interest, where its geometrical frustration and quasi-one-
dimensionality cooperatively induce exotic magnetic behav-
iors. Indeed, theoretical investigations of the S = 1/2 quantum
spin tube [1] have revealed various interesting properties
such as a gapful ground state [2–8], field-induced chirality
order [9,10], etc. Moreover, extensive theoretical researches
have been performed for various quantum spin tubes, such
as integer-spin tubes [11], S = 3/2 triangular tubes [12,13],
and four-leg tubes [14]. Also, the triangular spin tube has
been a target of intensive experimental studies. For example,
several experiments on [(CuCl2tachH)3Cl]Cl2, which is an
S = 1/2 spin tube consisting of alternating triangles along
the tube direction, clarified various characteristic behaviors
originating from the tube structure [15,16]. Moreover, the
straight-type spin tubes CsCrF4 and α-KCrF4 have been
recently synthesized, which are respectively based on equilat-
eral and nonequilateral triangles [17–20]. These compounds
interestingly provide essential information about the shape
dependence of the unit triangle in spin tubes.

In CsCrF4, Cr3+ ions having S = 3/2 spin form a rigid
equilateral triangular tube (Fig. 1), where dominant exchange
couplings are antiferromagnetic and the intertube coupling is
estimated to be basically very small. Accordingly, no anomaly
associated with a phase transition was observed by bulk
measurements and electron spin resonance experiments down
to T = 1.5 K [18–20]. On the other hand, a recent experiment
on the ac susceptibility observed anomalous slow dynamics
suggesting a magnetic long-range order below 4 K [21]. In
addition, a very recent neutron diffraction experiment suggests
that this magnetic order is inconsistent with the naive 120◦
structure due to the conventional triangle lattice [22]. Thus, it
is expected that the equilateral-triangle structure and a small
but finite intertube coupling cooperatively induce a nontrivial
magnetic structure in CsCrF4, which could be indeterminate
in the bulk quantities.

In order to analyze the magnetic structure of CsCrF4, a key
observation is that Cr3+ has a relatively large spin S = 3/2,

and a certain spin order is suggested by magnetic diffraction
peaks in the neutron experiment [22]. Thus, we can expect
that the magnetic order of CsCrF4 is basically described by
the classical Heisenberg model defined on the triangular-tube
lattice. As depicted in Figs. 1 and 2, moreover, the intertube
coupling in the ab plane has the same lattice topology as
the kagome-triangular lattice [23], although the exchange
coupling along the c axis is dominant in the spin tube. Thus,
the lattice structure of CsCrF4 involves a frustration effect even
for ferromagnetic intertube coupling.

Of course, the Heisenberg model on the planar lattice
has no magnetic long-range order at a finite temperature.
In the present coupled tubes, however, the three-dimensional
(3D) couplings possibly stabilize a peculiar spin fluctuation
originating from the kagome-triangular structure. Using Monte
Carlo (MC) simulations, in this paper, we investigate finite-
temperature phase transitions of the classical Heisenberg
model on triangular spin tubes with intertube interaction. In
particular, we find that the 12-sublattice spin structure—cuboc
order—in the ab plane emerges in the regime of small
ferromagnetic intertube coupling. The cuboc order, which
was originally proposed for the ground state of the planar
kagome lattice model with next-nearest-neighbor interaction,
is characterized by a noncoplanar spin structure with triple
q wave vectors [24–26]. In spin tubes, this cuboc order can
be stabilized to be 3D long-range order by the strong leg
coupling of the tube at a finite temperature. We also discuss
the nature of the transitions for the cuboc phase, as well
as the incommensurate and ferromagnetic phases, depending
on the intertube coupling. Finally we discuss the relevance to
the CsCrF4 experiments.

This paper is organized as follows. In Sec. II, we explain
details of the model and the possible orders. In Sec. III,
we describe details of MC simulations and definitions of
order parameters. In Sec. IV, we present results of MC
simulations and summarize the phase diagram with respect to
the intertube coupling. We also mention universalities of the
phase transitions. In Sec. V, we summarize the conclusions
and discuss the relevance to the CsCrF4 experiments.
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FIG. 1. (Color online) Lattice structure of triangular tubes with
an intertube interaction. (a) A triangular spin tube, where J1 is the
dominant antiferromagnetic coupling in the tube direction (c axis)
and J2 denotes the antiferromagnetic interaction in the unit triangle.
(b) The lattice structure in the ab plane. The triangles of solid lines
correspond to the J2 coupling in the spin tubes and the triangles of
broken lines denote the ferromagnetic intertube interaction J3.

II. MODEL AND ORDERS

As depicted in Fig. 1, a bundle of triangular spin tubes in
CsCrF4 runs in the c-axis direction and these tubes with the
intertube coupling cover the triangular lattice in the ab plane.
We thus consider the classical Heisenberg model on a stacked
triangular lattice, which reads

H = J1

∑
〈i,k〉c

S(r i) · S(rk) + J2

∑
〈i,j〉�

S(r i) · S(rj )

+ J3

∑
〈〈i,j〉〉

S(r i) · S(rj ), (1)

where r i represents the position vector of site i, and S(r i) =
Sx

i ex + S
y

i ey + Sz
i ez with |Si | = 1 denoting the vector spin at

the ith site. Note that eα (α ∈ x,y,z) indicates the unit vector
in the spin space, while the primitive lattice translation vectors
are represented as a, b, and c with |a| = |b| = |c| = 1 (Fig. 1).
Moreover, 〈i,k〉c denotes the sum of the nearest-neighbor spins
along the c axis, 〈i,j 〉� indicates the sum of spin pairs in
the unit triangle, and 〈〈i,j 〉〉 runs over spin pairs of the intertube
couplings in the ab plane. In this paper, we basically assume
the antiferromagnetic interactions J1 � J2 > 0 in the spin tube
and the ferromagnetic intertube interaction J3 < 0. Note that

FIG. 2. (Color online) (a) Topology of the coupled-spin-tube
lattice in the ab plane, equivalent to that of the kagome-triangular
lattice. (b) The ground-state phase diagram of the classical Heisenberg
model on the coupled triangular spin tubes. The left-going dashed
arrow shows the direction of the J3 parameter corresponding to the
finite-temperature phase diagram in Sec. IV.

a local density approximation (LDA) + U calculation gives
J1/J2 � 2.0 and J3/J2 � 0 with J2 � 20 K for CsCrF4 [27].

In analyzing possible ordering of the coupled-tube model,
an important point is that the dominant coupling J1 along
the tube direction does not cause any frustration. Thus,
the staggered pattern of the spin order formed in the ab

plane is realized in the c-axis direction. This implies that
the low-temperature spin structure is essentially attributed to
the frustrating interactions in the ab plane, which we will
actually justify with MC simulations in the next section. In the
following, we therefore assume staggered order in the c-axis
direction, and concentrate on the spin structure in the ab plane.

As in Fig. 2(a), the planar structure of the model is topo-
logically equivalent to the kagome-triangular lattice, where
J3 corresponds to the nearest-neighbor coupling competing
with the next-nearest-neighbor interaction J2 [23]. Then a
candidate for the ground-state order is classified by Fourier
transformation of the Hamiltonian. Defining the unit cell as a
triangle of the J2 coupling, we have

H = 1

2

∑
Jαβ(q)S−q,α · Sq,β , (2)

where Sq,α ≡ 1√
N

∑
r e−iq·r Sα(r). Here, r represents the po-

sition of a unit triangle, α ∈ {A,B,C} indicates the sublattice
index in the unit triangle, and N is the total number of unit tri-
angles in the system. In addition, Jαβ(q) ≡ ∑

α,β e−iq·rαβ Jαβ ,
where rαβ and Jαβ respectively denote the relative vector of
a spin pair and the corresponding coupling associated with
spins in the unit cell. Note that the wave vector q runs over
the first Brillouin zone in the ab plane. By determining the
lowest-energy state of Jαβ(q), we have the ground-state phase
diagram of Eq. (1) in the J2-J3 plane [Fig. 2(b)], which is
equivalent to that obtained in Ref. [23].

In Fig. 2(b), CsCrF4 is located near J3 � 0 and J2 > 0.
If J3 is antiferromagnetic, Eq. (1) is a triangular-lattice
antiferromagnet for which the ground state is the 120◦ struc-
ture. However, the neutron diffraction experiment suggested
that the order of CsCrF4 is not explained by a naive 120◦
structure [22]. We thus discuss the negative J3 (<0) region,
where the nontrivial exotic order phase actually emerges; In the
−J3 � J2 region, particularly, the minimum of Jαβ(q) located
at the M point in the Brillouin zone, where the noncoplanar
order with the 12 sublattices that is called “cuboc” order
can be stabilized. As −J3 increases, the incommensurate
order appears in the J2 < −J3 < 2J2 region, and finally
the ferromagnetic order becomes stable for −J3 � 2J2. This
ground-state phase diagram suggests that, in CsCrF4, the cuboc
state can be stabilized to be the 3D long-range order at a finite
temperature by the tube-leg coupling J1, even if the amplitude
of the intertube interaction J3 is very small.

Here, we briefly summarize the essential property of the
cuboc order in 0 < −J3 < J2, which was originally found in
the J1-J2 Heisenberg model on the kagome lattice [24–26]. The
cuboc order has a noncoplanar spin structure accompanying
the spontaneous symmetry breaking of the lattice translation.
Figure 3(a) shows the extended unit cell for the cuboc
order in the ab plane, where we assign a number to each
of four triangles, for later convenience. Then the strong
antiferromagnetic coupling J2 basically imposes the 120◦
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FIG. 3. (Color online) (a) The extended unit cell for the cuboc
order with the 12-sublattice structure. The label {A,B,C} indicates
each vertex in the unit triangle and the number {1,2,3,4} represents
the label of a triangle in the extended unit cell. (b) The arrow with
the numbers shows the spin directions forming the 120◦ structure
in the corresponding unit triangle. The four tilting 120◦ structures in
the extended unit cell form the tetrahedron represented by the dashed
lines.

structure in each triangle. A significant point is that the
120◦-structure planes can have a relative tilt among the four
triangles, so as to reduce the energy due to the frustrating J3

interaction. Gluing together the four tilting triangles of the
120◦ structure, we obtain a tetrahedron where the 12 spins in
the extended unit cell are attached. As shown in Fig. 3(b),
the three spins on the unit triangle of the original lattice
are mapped into the vertices of the corresponding triangle
on the tetrahedron, where the vector-spin chiralities existing
on the four 120◦ planes point in the radial direction from the
center of the tetrahedron. In this sense, the vector-spin chirality
associated with the tetrahedron can be a good order parameter
for the noncoplanar cuboc spin structure. Note that, if the spin
vectors are arranged at the origin of the spin space, we have
the same schematic diagram as in Refs. [24–26].

For the cuboc order, the magnetic propagation vectors
interestingly have a triple-q structure in the ab plane, reflecting
the above characteristic spin configuration. Let us write the
sublattice spin in the unit cell at position r as Sα(r), where
α ∈ {A,B,C} is the sublattice index in the unit triangle. Then
the cuboc order can be explicitly written as

SA(r) = cos

(
1

2
qa · r

)
ex√

2
− cos

(
1

2
qγ · r

)
ey√

2
,

SB(r) = cos

(
1

2
qγ · r

)
ey√

2
− cos

(
1

2
qb · r

)
ez√

2
, (3)

SC(r) = cos

(
1

2
qb · r

)
ez√

2
− cos

(
1

2
qa · r

)
ex√

2
,

where qa,qb are the reciprocal lattice vectors of the primitive
translation vectors a,b, and qγ ≡ qa − qb. This triple q is an
important feature of the cuboc phase and plays an essential role
in the analysis of the neutron diffraction experiment. Finally,
we note that, in the c-axis direction, the magnetic propagation
vector is qc/2, where a simple staggered pattern appears.

III. MONTE CARLO SIMULATION

In the previous section, we discussed the ground-state
orders of the triangular spin tubes in the ab plane for −J3 � J2.
So far, investigations of the planar kagome-triangular-lattice
model have clarified that, although there exists no true long-
range order of the spin, the chirality degrees of freedom
associated with the cuboc order induce a Z2-symmetry-
breaking transition even at a finite temperature [24,25]. For the
coupled-tube system, which contains the full 3D couplings, we
can expect the finite-temperature transitions associated with
cuboc long-range order, incommensurate order, as well as
ferromagnetic order. In order to address the nature of these
finite-temperature transitions, we perform extensive Monte
Carlo simulations for the coupled-tube system of Eq. (1).

Here, we comment on the notation for the system size. In
the following, we basically represent the linear dimensions
of the system by the number of triangles associated with J2

couplings. Thus, La (Lb) means the number of triangles in the
a- (b-) axis direction, and Lc denotes the length of a tube in
the c-axis direction. In this paper, we basically deal with the
system of La = Lb = Lc ≡ L, for which the total number of
spins in the system is N = 3L3.

A. Details of the simulation

We employ Wolff’s cluster algorithm [28] combined with
the Metropolis local update. Usually, the Wolff algorithm
is not efficient for frustrated systems, where a large cluster
containing almost all of the spins is often generated. However,
we find that the coupled spin tubes have no frustration in the c

axis, which makes possible cluster growth of an efficient size in
the tube direction. Thus the Wolff algorithm works very well
for the coupled spin tubes. Note that the parallel tempering
method [29] is additionally used in practical computations, if
the relaxation to equilibrium is difficult. On the basis of the
above algorithm, we performed MC simulations for systems of
size L = 8,16, . . . ,36 with periodic boundary conditions. We
particularly explore the T -J3 phase diagram along the dashed
arrow in Fig. 2(b) with J2 = 1.0 fixed. Typical numbers of MC
samples are 219–223.

B. Order parameters

As pointed out in the ground-state phase diagram of
Fig. 2(b), the coupled triangular spin tubes have various
ordered states. To classify these ordered states in simulations,
we need to define appropriate order parameters. In particular,
the cuboc order has a noncoplanar spin structure with 12
sublattices in the ab plane, which is stacked in a staggered
fashion in the c-axis direction. Taking account of this structure,
we define the cuboc sublattice magnetization mα,β in a certain
ab plane, where α ∈ {A,B,C} indicates a vertex of a triangle,
and β ∈ {1,2,3,4} specifies a triangle in the extended unit cell
[Fig. 3(a)],

mα,β ≡ 1

Np

∑
rβ

′Sα(rβ), (4)

where rβ denotes the position of the triangle labeled by β

in the extended unit cell, and
∑′

rβ
represents the sum with
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respect to triangles having the same α in the plane. In addition,
the normalization Np ≡ L2/4 is the number of extended unit
cells in the ab plane. Then the sublattice magnetization order
parameter in the entire system is defined as

Mα,β ≡ 1

L

∑
ic

(−1)ic mα,β, (5)

where ic denotes the index of the tube direction [Fig. 1(a)].
In the −J3 > 2J2 region, the ground state of the system

is the ferromagnetic ordered state in a certain kagome-
triangular plane. Thus, we also introduce the ferromagnetic
order parameter as

mF ≡ 1

12

∑
α,β

mα,β, (6)

which detects the uniform magnetization in a kagome-
triangular plane. Then this in-plane ferromagnetic order is
tacked in a staggered way in the c-axis direction. Thus we
define the total ferromagnetic order parameter MF as

MF ≡ 1

L

∑
ic

(−1)ic mF . (7)

Cuboc order is basically detectable by the 12-sublattice
magnetization Mαβ . As was mentioned in the previous section,
moreover, there is another essential order parameter—the
chirality degrees of freedom—originating from the 120◦
structure on the unit triangle. For the unit triangle at r , we
define the vector-spin chirality [30],

κ(r) ≡ 2

3
√

3
[SA(r) × SB(r) + SB(r) × SC(r)

+ SC(r) × SA(r)] . (8)

An important point about the cuboc order is that the vector
chiralities associated with the four triangles in the extended
unit cell also have noncoplanar configuration. Thus, we
introduce the sublattice vector-chirality order parameter for
the cuboc state as

Kβ ≡ 1

LNp

∑
ic

∑
rβ

′κ(rβ), (9)

where
∑′

rβ
sums over κ carrying the sublattice index β of the

extended unit cell. Here, note that the vector-spin chirality
takes the same sign in the c-axis direction, although the
directions of the spins are alternately aligned.

In the cuboc phase, both Mα,β and Kβ have finite values,
but MF = 0. In the ferromagnetic state, MF is finite, while
Kβ = 0. For the incommensurate phase between the cuboc
and ferromagnetic phases, we do not set up a direct order
parameter of the incommensurate spin configuration, because
it is very difficult to determine the pitch of the incommensurate
oscillation within a system size up to L = 36. However, it
should be noted that Mα,β = 0 and Kβ = 0 are basically seen
in the incommensurate phase.

IV. RESULTS

We present results of MC simulations for typical parameters
of the coupled spin tubes. As mentioned in Sec. II, the

FIG. 4. T -J3 phase diagram of the coupled triangular spin tubes
with J1 = J2 = 1.0. Cuboc order is realized at finite temperature by
intertube interaction.

parameters corresponding to CsCrF4 are that J1/J2 � 2 and
J3/J2 � 0. In this paper, we fix J2 = 1.0 and investigate
the intertube-coupling (J3) dependence for J1 = 1.0 and 3.0,
along the dashed arrow in the ground-state phase diagram
in Fig. 2(b). We then find no qualitative difference between
J1 = 1.0 and 3.0, so that we show the results for J1 = 1.0
below.

A. Phase diagram

In Fig. 4, we show the final phase diagram in the T -J3

plane, before presenting a detailed analysis of the simulations.
Note that the horizontal axis represents −J3, since we consider
the negative-J3 region. In the figure, it is verified that the
long-range orders at a finite temperature are consistent with the
ground-state phase diagram of the planar kagome-triangular
model in Fig. 2. For 0 < −J3 � 1, the cuboc phase is actually
realized, and, in 1 � −J3 � 2, incommensurate spin order
appears. Moreover, the system exhibits ferromagnetic order
for −J3 � 2, where the ferromagnetic coupling is dominant.

The phase boundary of the cuboc-disorder transition is
of second order for −J3 � 0.7, which can be determined
with a finite-size-scaling analysis. The universality of this
second-order-transition line is associated with the triple-q
structure of the cuboc order, and it is possibly different
from such a well-known universality as layered triangular
lattice. A detailed scaling analysis will be presented in the
following section. For 0.85 � −J3 � 1.1, however, the cuboc-
disorder transition changes to first order, where a double
peak of the energy histogram is observed. Note that a precise
identification of the transition is difficult around −J3 ∼ 0.8,
where a tricritical point is expected. For 1.1 � −J3 � 1.8, the
incommensurate-disorder transition line is estimated by the
peak position of the specific heat within finite-size systems up
to L = 32, where size extrapolation is difficult. For −J3 � 1.8,
the line of the disorder-ferromagnetic order transition is of
second order, for which the universality class is consistent
with the 3D ferromagnetic Heisenberg model. On the other
hand, the transitions between the incommensurate phase and
the other ordered phases are expected to be of commensurate-
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FIG. 5. (Color online) Results of MC simulations for −J3 = 0.5. (a) Specific heat C. (b) Mean-square average of the cuboc sublattice
magnetization 〈M2

A,1〉. (c) Binder cumulant for MA,1. (d) Finite-size-scaling plot for the cuboc order parameter, which yields Tc = 0.647 21(4),
ν = 0.435(4), and γ = 0.90(2).

incommensurate type. These transition lines associated with
the incommensurate order are also estimated within finite-size
results.

B. Cuboc phase

Let us begin with a detailed analysis of the cuboc phase. In
Figs. 5 and 6, we present MC results for the cuboc phase.
The specific heat C and the mean-square average of the
cuboc sublattice magnetization 〈M2

A,1〉 are shown in Figs. 5(a)
and 5(b). First of all, the specific heat C has a sharp single
peak at Tc ∼ 0.65, and the sublattice magnetization MA,1 also
exhibits the phase transition behavior at the same temperature.
In order to precisely determine the transition point, we
calculate the Binder cumulant [31] of the cuboc sublattice
magnetization 〈M4

A,1〉/〈M2
A,1〉2. The result for −J3 = 0.5 is

shown in Fig. 5(c), where the curves for various system sizes
cross at Tc = 0.6470(5). This implies that the transition is
of second order, prompting us to determine the universality
class of the cuboc transition with a finite-size-scaling analysis.
Assuming the scaling form for the susceptibility of the cuboc
sublattice magnetization,

χ ≡ LNp

〈
M2

A,1

〉
/T ∝ Lγ/ν�(tL1/ν) (10)

with t = (T − Tc)/Tc, we perform a Bayesian estimation for
the critical exponents ν, γ , and Tc [32]. Figure 5(d) shows the
resulting finite-size-scaling plot for χ with the best-fit values
ν = 0.435(4), γ = 0.90(2), and Tc = 0.647 21(4). Here, we
note that Tc is consistent with the result of the Binder cumulant,
although it is obtained independently of the Binder-cumulant

result. Taking account of the error originating from the
choice of the data window, we finally adopt ν = 0.44(2) and
γ = 0.91(3) for the critical exponents of the cuboc sublattice
magnetization.

As mentioned before, the sublattice vector-spin chirality
is also another essential order parameter of the cuboc order.
Figure 6(a) shows 〈K 2

1〉 for −J3 = 0.5, where the transition
occurs at the same Tc as for the sublattice magnetization
MA,1. This behavior is consistent with the observation that
the specific heat has a single peak at Tc. Thus, we can expect
that the cuboc magnetization and the chirality degrees of
freedom exhibit a simultaneous transition. We then perform
a finite-size-scaling analysis for the chirality susceptibility
with χK ≡ LNp〈K 1

2〉/T ∝ LγK/ν�K (tL1/ν). In Fig. 6(b),
we present the finite-size-scaling plot with Tc = 0.647 42(4),
ν = 0.433(8), and γK = 0.57(2), which are also obtained
with the Bayesian estimation [32]. Taking account of the
data-window dependence, we finally identify the exponents
associated with the vector-spin chirality as ν = 0.43(2) and
γK = 0.55(4). Here, it should be noted that, although no a
priori assumption on Tc and ν was set up in this scaling
analysis, the resulting Tc and ν are consistent with those for χ ,
while γK is clearly different from γ . These facts suggest that
the singular part of the free energy scales with

fs ∝ L−dfs(tL
1/ν,hLy,hKLyK ), (11)

where y [= ( γ

ν
+ d)/2] and yK [= ( γK

ν
+ d)/2] are the eigen-

values of the linearized renormalization-group transformation
corresponding to the fields conjugated to the cuboc magneti-
zation and the chirality, respectively. Thus we have concluded
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FIG. 6. (Color online) Results of the vector-spin chirality for −J3 = 0.5. (a) Mean-square average of the sublattice vector-spin chirality
〈K 2

1〉. (b) Finite-size-scaling plot for 〈K 2
1〉, which yields best-fit values Tc = 0.647 2(4), ν = 0.433(8), and γK = 0.57(2).

that the transition of the spin and chirality degrees of freedom
is simultaneous. Here, the exponents obtained for the cuboc
transition are clearly different from those of the layered
triangular-lattice antiferromagnet, although a simultaneous
transition was also observed [33–36]. The universality of the
cuboc transition might be characterized by an effective chiral
Ginzburg-Landau-Wilson theory associated with the triple-q
structure [35,37,38]. However, the detailed analysis of the
effective model is an interesting future issue. Here, we remark
that Mα,β and Kβ are confirmed to be consistent among the
all combinations of sublattice indices α and β. On the basis of
the analysis above, we have finally drawn the second-order-
transition line of the cuboc phase in Fig. 4.

We turn to the first-order transition in the region of
0.85 � −J3 � 1.1. Figure 7 shows MC results for −J3 = 1.0.
In Fig. 7(a), the specific heat C also has a sharp single peak at
Tc ∼ 0.675. In Figs. 7(b) and 7(c), moreover, we can observe
that mean-square averages of the cuboc sublattice magnetiza-
tion 〈M2

A,1〉 and of the vector-spin chirality 〈K 2
1〉 also exhibit

the phase transition behavior at the same temperature Tc,
illustrating the simultaneous transition of the spin and chirality
degrees of freedom. In the figures, we can also observe that
both of 〈M2

A,1〉 and 〈K 2
1〉 for L = 24 and 32 show small

jumps at Tc, suggesting that the transition is of first order.
We have computed the energy histogram around Tc to confirm
its double-peak structure at Tc = 0.675 [Fig. 7(d)]. Thus, we
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FIG. 7. (Color online) Results of MC simulations at −J3 = 1.0. (a) Specific heat C. (b) Mean-square average of the cuboc sublattice
magnetization 〈M2

A,1〉. (c) Mean-square average of the sublattice vector-spin chirality 〈K 2
1〉. (d) Energy histogram around the transition point

for L = 32. The double-peak structure emerges at Tc = 0.675, indicating that the transition is of first order.
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FIG. 8. (Color online) Results for −J3 = 3.0. (a) Specific heat C. (b) Mean-square average of the uniform magnetization 〈M2
F 〉. (c) Binder

cumulant for MF . (d) Finite-size-scaling plot for the susceptibility of χF . The fitting result is consistent with the 3D Heisenberg universality
class [39–42].

conclude that the transition in 0.85 � −J3 � 1.1 is of first
order.

Finally, we would like to comment on the tricritical point
expected around −J3 ∼ 0.8. On varying J3, we have checked
that the double peak of the energy histogram appears down to
−J3 = 0.85, while the crossing point of the Binder cumulant
emerges up to −J3 = 0.7. Thus, the tricritical point is possibly
located around −J3 ∼ 0.8. Within the present system size of
the MC simulation, however, a precise identification of the
tricritical point is difficult. The detailed analysis of this respect
is a future issue.

C. Ferromagnetic phase

In the −J3 � 2.0 region, the ferromagnetic coupling be-
comes dominant, and the system forms ferromagnetic order
in a kagome-triangular layer, accompanying the second-order
phase transition. In Fig. 8, we show results of MC simulations
at −J3 = 3.0. The specific heat C in Fig. 8(a) indicates a peak
at Tc ∼ 2.2, and the magnetization 〈M2

F 〉 in Fig. 8(b) also
exhibits the phase transition behavior. Note that the sublattice
spin chirality 〈K 2

1〉 is checked to be always zero in the region
of the ferromagnetic phase.

In order to precisely determine Tc, we further calculate
the Binder cumulant 〈M4

F 〉/〈M2
F 〉2. The result is shown

in Fig. 8(c), where the crossing point appears at Tc =
2.233(3). We also perform a finite-size-scaling analysis of
the susceptibility χF ≡ 12LNp〈M2

F 〉/T , using the Bayesian
estimation. The finite-size-scaling plot in Fig. 8(d) collapses
well to a scaling function with Tc = 2.235(5), ν = 0.70(2), and
γ = 1.40(5). Note that these exponents are clearly consistent

with the 3D ferromagnetic Heisenberg class: ν � 0.71 and
γ � 1.40 [39–42]. Thus, we can conclude that the universality
class of the transition for the ferromagnetic order is the
conventional 3D ferromagnetic Heisenberg class.

D. Incommensurate phase

Let us finally discuss the incommensurate phase in the
1.1 � −J3 � 2 region, which is sandwiched between the
cuboc and ferromagnetic phases. In Fig. 9(a), we show the
specific heat C at −J3 = 1.5, where a phase transition is
illustrated by a rounded peak of C around Tc ∼ 0.7. However,
a size extrapolation to extract the bulk behavior is usually
difficult for incommensurate order, where the pitch of the
oscillation does not match the system size. Thus, we basically
estimate the transition temperature by the peak position of the
specific heat at L = 32.

Turning to the transition line between the incommensurate
and ferromagnetic phases, we can expect a commensurate-
incommensurate type of transition, where the wave vector of
the order may continuously sift from the � point toward the M
point, following the ground-state phase diagram in Fig. 2(b).
Figure 9(b) shows the uniform magnetization 〈M2

F 〉 for −J3 =
1.9, where we observe that it takes a finite value in 0.35 �
T � 1.2, but rapidly decays below T ∼ 0.35. This behavior
indicates that ferromagnetic order appears in the range 0.35 �
T � 1.2, but it abruptly changes into incommensurate order
in the low-temperature region of T � 0.35. We thus define the
boundary between ferromagnetic and incommensurate phases
as the middle point of the onset and offset of 〈M2

F 〉 for L = 32.
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FIG. 9. (Color online) Results of MC simulations for the incommensurate phase. (a) Specific heat C for −J3 = 1.5, which shows a
rounded peak at T ∼ 0.7. (b) Mean-square average of the ferromagnetic magnetization 〈M2

F 〉 at −J3 = 1.9, which abruptly decays in the
incommensurate order region.

On the other hand, we note that the transition line between
the incommensurate and cuboc phases is difficult to estimate
from the result within L = 32. Thus, the border between the
incommensurate and cuboc phases in Fig. 4 is just a guide for
eyes.

V. SUMMARY AND DISCUSSION

In this paper, we have investigated phase transitions of
the coupled triangular spin tubes associated with CsCrF4. An
essential point is that a two-dimensional section of the coupled
tubes forms a kagome-triangular plane, which drives the
system into exotic orders such as cuboc order, incommensurate
order, and ferromagnetic order. In particular, the cuboc
order is characterized by the 12-sublattice noncoplanar spin
structure carrying triple q wave vectors, which accompanies
the noncoplanar structure of the vector-spin chirality as
well. Performing extensive Monte Carlo simulations, we
have demonstrated that these phases are actually realized
for the coupled tubes with negative intertube coupling J3

at a finite temperature. The resulting phase diagram was
summarized in Fig. 4. Then, a particular finding is that the
transition to the cuboc order in −J3 � 0.7 is described by the
simultaneous second-order transition of the spin and chirality
degrees of freedom. The universality of this transition might be
characterized by a noncoplanar spin structure accompanying
the chirality, which might be described by an effective chiral
Ginzburg-Landau-Wilson theory associated with the triple-q
structure [35,37,38]. For 0.85 � −J3 � 1.1, the transition is
of first order, where the double peak of the energy histogram
is confirmed. However, the analysis of the expected tricritical
point is a remaining issue. On the other hand, for −J3 � 1.9,
we have confirmed that the ferromagnetic transition belongs
to the 3D Heisenberg universality class.

From the experimental view point, CsCrF4 is described by
the weak-J3-coupling limit of the present model. A neutron
scattering experiment on CsCrF4 actually suggests that a
possible spin order is not the naive 120◦ structure [22],
and thus a finite-temperature transition to the cuboc phase
can be expected. However, we should also take account of
another fact: a specific-heat experiment on CsCrF4 captures
no anomaly down to 1.5 K, while the bulk phase transition
to the cuboc phase should theoretically be accompanied by

a certain anomaly of the specific heat. A reason for this
inconsistency is an anisotropic interaction effect. Since the
intertube coupling J3 of CsCrF4 is basically very small, the
Dzyaloshinsky-Moriya interaction [43,44], which is actually
suggested in CsCrF4 due to its crystal structure [19], can
compete with the small J3 coupling. Then, such an anisotropy
effect may affect the cuboc order configuration, and a transition
with a small-scale anomaly could be easily modified into a
weak crossover. A direct comparison of the neutron scattering
experiment of CsCrF4 with the cuboc order is highly desirable.
In addition to the above, we should also analyze how the
quantum fluctuation affects the stability of the cuboc order,
which is another significant problem to understand the CsCrF4

experiment.
In this paper, we have basically investigated the strong-leg-

coupling region (J1 � J2  |J3|), since our motivation is in
the spin tube system. Our result implies that the leg coupling
certainly stabilizes the cuboc order to be a true long-range
order with a simultaneous transition of the spin and chirality.
On the other hand, the cuboc order was originally proposed
for the planar kagome model with next-nearest-neighbor
coupling, where the spin and Z2 chirality transitions are
separated [24,25]. Recently, a cuboc-type spin fluctuation was
actually suggested for kapellasite, which may be described
by an S = 1/2 kagome antiferromagnet containing up to
third-nearest-neighbor couplings [45]. Theoretical investiga-
tions stimulated by kapellasite also have revealed interesting
properties attributed to the kagome structure [46–49]. Thus,
it is an essential problem to understand how the 3D cuboc
class can be connected to the spin-liquid-like behavior with Z2

chirality breaking in the limit of the planar kagome-triangular
model.
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