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The electron-phonon interaction plays a crucial role in many fields of physics and chemistry. Nevertheless,
its actual calculation by means of modern many-body perturbation theory is weakened by the use of model
Hamiltonians that are based on parameters difficult to extract from the experiments. Such shortcoming can
be bypassed by using density-functional theory to evaluate the electron-phonon scattering amplitudes, phonon
frequencies, and electronic bare energies. In this work, we discuss how a consistent many-body diagrammatic
expansion can be constructed on top of density-functional theory. In that context, the role played by screening
and self-consistency when all the components of the electron-nucleus and nucleus-nucleus interactions are taken
into account, is paramount. A way to avoid overscreening is notably presented. Finally, we derive cancellation
rules as well as internal consistency constraints in order to draw a clear, sound, and practical scheme to merge
the many-body perturbation and density-functional theory.
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I. INTRODUCTION

In physics and chemistry, the interaction between electronic
and vibrational degrees of freedom is at the origin of a
multitude of phenomena. Focusing on solid state physics,
this coupling usually determines the electrical and thermal
conductivities of metals as well as the carrier lifetime in
doped semiconductors [1]. It also induces the transition to
a superconducting phase in many solids and nanostructures
[2]. The electron-nucleus coupling also plays a role in the
renormalization of electronic bands [3], carriers mobility in
organic devices [4], and dissociation at the donor/acceptor
interface in organic photovoltaics [5]. This coupling can
naturally interact with other couplings like the magnetic field
leading, for example, to the spin-Seebeck effect [6].

This effect is nowadays the subject of an intense re-
search activity for its crucial role in new emerging fields of
experimental and theoretical physics. The electron-nucleus
coupling plays a crucial role in the relaxation and dissipation
of photoexcited carriers in pump and probe experiments
[7,8]. Similarly, modern angle-resolved photoemission spectra
(ARPES) experiments have recently disclosed the complex
and temperature dependent structures appearing in the spec-
tral functions of several oxides [9]. These structures quite
remarkably resemble similar structures predicted to exist in
conjugated polymers [10,11] pointing to a strong effect whose
physical origin is still not completely clear.

From the theoretical point of view, the most up-to-date
scheme to calculate and predict the ground- and excited-state
properties of a wide range of materials is based on the merging
of density-functional-theory (DFT) [12] with many-body
perturbation theory (MBPT) [13].

DFT is a broadly used ab initio ground-state theory that
allows to calculate exactly the electronic density and total
energy without adjustable parameter. The merging of DFT
with perturbation theory gives the so-called density-functional

perturbation theory [14–16] (DFPT). The DFPT is a powerful
computational tool for the direct treatment of phonons.

However, the DFT computation of excited electronic state
properties like the band-gap energies is a known problematic
topic [12]. As a result, MBPT is nowadays the preferred
alternative to DFT for that purpose. It is based on the accurate
treatment of correlation effects by means of the Green’s
function formalism. MBPT is formally correct and leads to
a close agreement with experiment [17] but is extremely
computationally demanding. A natural way to solve this issue
is to merge the quick DFT calculation with the accurate MBPT
one. The latter method is often referred to as ab initio many-
body perturbation theory [13] (ai-MBPT). In this method,
DFT provides a suitable single-particle basis for the MBPT
scheme. This methods has been applied successfully to correct
the well-known band-gap underestimation problem of DFT
[18,19].

Although the ai-MBPT aims at calculating the excited
state properties with an unprecedent precision, it is commonly
applied by neglecting the effect of lattice vibrations. Even
today, most of the ai-MBPT results are compared with
finite-temperature experimental data [20]. Such comparison
is not even well motivated at zero temperature as the lattice
vibrations induce a zero-point motion effect that can be sizable
[10,11,21,22], e.g., on the order of 0.4–0.6 eV for the direct
and indirect band gaps of diamond [23,24]. This represent a
clear motivation to develop a coherent ab initio theory in
which the electron-phonon interaction is rigorously included
on top of ai-MBPT.

The need for such theory is exemplified by the very
fragmented historical development of the ab initio approach
to the temperature dependence of the electronic structure
due to the electron-phonon interaction. From the fifties to
the late eighties, a coherent ab initio framework was still
not devised and the electron-phonon interaction was initially
investigated and computed in a semiempirical context by
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Fan [25,26]. His theory had no adjustable parameters and
was based on the first-order perturbed Hamiltonian. During
the same period, Antončı́k [27], followed by others [28–
30], developed empirical Debye-Waller (DW) corrections to
the nuclear potential. Only in 1976, Allen and Heine [31]
rigorously unified the Fan and DW corrections in a common
framework. Their approach, combined with the use of a
semiempirical model, allows for a re-writing of the problem
in terms of first-order derivatives of an effective potential
only. Calculations of the electron-phonon renormalization
effects were then led by Cardona and coworkers [3,32–34],
including Allen. The resulting approach is now called the
Allen-Heine-Cardona (AHC) theory.

In 1989, the first ab initio calculation of the temperature de-
pendence of the gap was attempted, by King-Smith et al. [35],
based on DFPT. Starting from there, several first-principles
calculations have been done, relying mainly on three types of
formalisms: (i) time averaging of the band gap obtained using
first-principles molecular dynamics simulations [36–40]; (ii)
frozen phonon (FP) calculations [24,41–45] and (iii) the AHC
approach implemented in a full ab initio framework by using
DFT and DFPT as a reference system [22–24,45,46].

All these approaches are based on an adiabatic and static
treatment of the electron-phonon interaction. This limitation
was overcome by using the dynamical version of MBPT by
Marini et al. [10,11,47] who focused on retardation effects.

Since then, there have been an increasing number of studies
in which the electron-phonon interaction is fully included in
the computation of the electronic structure, well beyond DFT.
Still, several basic questions remain. In particular, the use of an
electron-phonon interaction whose strength is computed from
DFT, in a formalism that goes beyond DFT, e.g., the ai-MBPT
approach, leads to several ambiguities due to the simultaneous
inclusion of different levels of correlation at the MBPT and
DFT/DFPT level.

Indeed, the DFPT electron-phonon interaction is natu-
rally screened as it is computed from the derivative of the
self-consistent Kohn-Sham potential with respect to atomic
displacements. This screening is taken as it is in the MBPT
part of the ai-MBPTscheme, although it is well known that
the diagrammatic technique also predicts the screening of
the electron-phonon interaction consistently with the kind
of correlation included in the self-energy [48,49]. It has
in fact been shown that the size of the zero-point motion
renormalization is significantly larger in the MBPT than in
the DFPT approaches [24].

Another important issue of the ai-MBPT approach is
the lack of a diagrammatic interpretation of the screening
of the Debye-Waller term. This screening arises quite naturally
in the DFPT [45] and AHC approaches [31]. It is easy to
show that it comes from the DFT self-consistent screened ionic
potential. Instead, in the pure MBPT treatment of electrons and
nuclei, this diagram is unscreened. The Debye-Waller diagram
is, however, usually taken as screened without justification in
most practical application because of the DFPT basis.

In addition, a nonrigid nuclei correction to the Debye-
Waller contribution [45] is predicted to exist within the DFPT
approach. However, this term is notably absent from the
standard derivation of the electron-phonon theory based on
the MBPT.

The last issue is even more fundamental. Most of the
electron-phonon interaction treatments that appears in text-
books, see, e.g., Refs. [48–50], are based on the study
of the homogeneous electronic gas (jellium). At variance
with any realistic material, the jellium model is based on
a drastic approximation: the ions are replaced by a jelly of
positive charge, in contrast with realistic materials where the
nuclei and their mutual interaction must be taken explicitly
into account. This is correctly done in DFT and DFPT
but not in the MBPT approach derived from the jellium
model.

This paper aims at answering all these questions by devising
a coherent, formal and accurate approach to merge the MBPT
scheme with DFT and DFPT. We present a consistent electron-
phonon interaction theory based on the MBPT formalism,
insisting specifically on the connection between the MBPT
and AHC approaches. This work is inspired by the seminal
works of Allen [51] and van Leeuwen [52], going further
by including the full description of the atomic potential into
account.

The merging procedure will lead to the natural definition
of a series of practical rules and advices about how to perform
electron-phonon calculations on top of DFT without double
counting problems. These series of rules are well justified
within the ai-MBPT scheme that, in its practical form used in
material science calculations, can be seen as a collection of
prescriptions only partially based on a solid theoretical ground
and rather inspired by the successful comparison with the
experiments of several different materials. This a posteriori
validation represents and important part of the ai-MBPT
approach.

The structure of the paper is as follows. Section II presents
the total Hamiltonian and introduces the notation. In Sec. III,
we draw a parallel between the electron-electron and the
electron-phonon self-energies to show what is the source of
the problems that arise in the merging of MBPT with DFT and
DFPT. Section IV properly defines the reference Hamiltonian
to be used as a zeroth order in the many-body expansion.
In Sec. V, the different interaction terms are described,
including the contributions from the nuclei-nuclei interaction.
In Sec. VI, we perform the formal diagrammatic summations
at different level of approximations: Hartree, Hartree-Fock,
and GW . We use the different levels of correlation of these
self-energies to discuss the different role played by self-
consistency diagrams and how the screening of the interaction
terms arises. At the same time, we derive cancellation rules
that highlight the crucial role played by the nuclei-nuclei
interaction.

Finally, Sec. VII reviews the DFPT approach to the electron-
phonon coupling in order, in Sec. VIII, to compare the different
properties of the DFT and of the many-body approach. We
provide, in a practical and schematic way, a series of formal
properties of the many-body expansion performed on top of the
DFT reference Hamiltonian. We discuss, from a diagrammatic
perspective, the physical origin of the Debye-Waller terms
beyond the screened rigid-ion contribution (Sec. VIII C) and
a practical approach to calculate iteratively the nth-order
derivatives of the DFT self-consistent potential (Sec. VIII D
and Appendix B). Atomic (Hartree) units are used throughout
the paper.
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II. THE TOTAL HAMILTONIAN

We start from the generic form of the total Hamiltonian of
the system, that we divide in its electronic Ĥe, nuclear Ĥn (R)
and electron-nucleus (e-n) Ŵe-n (R) contributions,

Ĥ (R) = Ĥe + Ĥn (R) + Ŵe-n (R) , (1)

where R is a generic notation that represents a dependence on
the positions of the nuclei.

The electronic and nuclear parts are divided in a kinetic T̂

and interaction part Ŵ :

Ĥe = T̂e + Ŵe-e, (2)

Ĥn (R) = T̂n + Ŵn-n (R) . (3)

Note that the nuclear kinetic energy depends on the nuclear
momenta, and not on the actual positions of the nuclei. In
the above definitions, the operators are bare (undressed). The
analysis of the dressing of Ŵe-n that arises as a consequence
of the electronic correlations is one of the key objective of this
work. Indeed, in the many-body (MB) approach, this dressing
appears in the perturbative expansion in the form of electron-
hole pair excitations and therefore, cannot be introduced a
priori in the definition of the Hamiltonian.

The explicit expression for the bare (e-n) interaction term
is

Ŵe-n (R) =
∑

i

We-n (̂ri ,R̂) = −
∑
ls,i

Zs

|̂ri − R̂ls |

= −
∑
ls,i

Zsv(̂ri − R̂ls), (4)

where R̂ls is the nuclear position operator for the nucleus s

inside the cell l (the cell is located at position Rl), Zs is the
corresponding charge, r̂i is the electronic position operator of
the electron i and v(r − r′) = |r − r′|−1 is the bare Coulomb
potential. Similarly,

Ŵn-n (R) = 1

2

∑′
ls,l′s ′ ZsZs ′v(R̂ls − R̂l′s ′ ), (5)

Ŵe-e = 1

2

∑′
ij

v(̂ri − r̂j ), (6)

with
∑′

ij = ∑
i �=j .

We now use the notation O(R), or equivalently O(R), to
indicate a quantity or an operator that is evaluated with the
nuclei frozen in their equilibrium crystallographic positions
(R). We expand the Hamiltonian as a Taylor series up to second
order in the nuclear displacements,

Ĥ (R) ≈ Ĥ (R) +
∑
lsα

∂Rlsα
H (R)�R̂lsα

+ 1

2

∑
lsα,l′s ′β

∂2
RlsαRl′s′β

H (R)�R̂lsα�R̂l′s ′β, (7)

where α and β are Cartesian coordinates and

�R̂lsα ≡ (R̂lsα − Rlsα 1̂). (8)

The equilibrium crystallographic positions R are defined, in
the present context, as the positions minimizing the expectation
energy of the Born-Oppenheimer Hamiltonian (with fully

correlated electrons), i.e., all the contributions to the total
Hamiltonian, except the nuclear kinetic energy,

ĤBO (R) = Ĥe + Ŵn-n (R) + Ŵe-n (R) . (9)

Those positions are equivalently defined by the condition that
the expectation of the Born-Oppenheimer force FRls

acting on
the nucleus located at position Rls is zero

FRls
≡ −∂Rls

〈ĤBO (R)〉|Rls=Rls
= 0 ∀{l,s}. (10)

The average in Eq. (10) is done on the exact electronic ground
state of the Born-Oppenheimer Hamiltonian. Still, the present
theory will go beyond the Born-Oppenheimer approximation
by considering fluctuations around the equilibrium positions.

III. THE PROBLEM

The problem we aim at solving is how to treat the effect of
the two last terms in the right-hand side of Eq. (7) and how
to do it by merging the MB approach, well-established for the
treatment of ĤBO(R), with a DFT description of the reference
electronic and nuclear systems.

When Ĥ (R) ≈ ĤBO(R) the Hamiltonian represents indeed
a purely electronic problem, for which the MB approach is
well-established in the literature [13,49,50,53]. It relies on
the definition of an electronic self-energy �(r,r′; ω) that is a
complex and nonlocal function in frequency and space. � can
be approximated by following different strategies available
in the literature (like the well-known GW approximation
[54]). For periodic solids, once the self-energy is known, the
calculation of the correction to an energy level |nk〉 can be
obtained by solving the corresponding Dyson equation (n is a
band index and k the corresponding wave vector).

Usually, the MB methodology starts from an independent-
particle (IP) electronic Hamiltonian that includes only the
kinetic electronic operator and the electron-nucleus operator,

ĤIP(R) ≡ T̂e + Ŵe-n(R). (11)

The analysis of the correlated electronic Hamiltonian,

Ĥcorr(R) = ĤIP(R) + Ŵe-e, (12)

is addressed through the diagrammatic expansion. A simple
approximation to the solution of the Dyson Equation that fully
captures the role played by correlation effects is the on-the-
mass-shell approximation where

εnk ≈ ε
(0)
nk + 0〈nk|�(

r,r′; ε(0)
nk

)|nk〉0, (13)

where |nk〉0 and ε
(0)
nk are the nth single-particle eigenstate

and eigenenergy of the independent-particle (IP) Hamiltonian
ĤIP(R).

In the present context, where we must consider different
configurations of nuclei, and determine also the equilibrium
geometry through Eq. (10), the initial correlation present in
the reference system for the diagrammatic expansion must
be carefully analyzed. Adding the nucleus-nucleus energy to
ĤIP (R) gives

Ĥ0 (R) ≡ T̂e + Ŵe-n (R) + Ŵn-n (R) , (14)

namely, the Born-Oppenheimer Hamiltonian without electron-
electron interaction operator Ŵe-e. This initial Hamiltonian Ĥ0
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does not include electron-electron correlations, and can be
used as the starting point of a MB approach to the electronic
problem. However, using this Hamiltonian instead of the
true Born-Oppenheimer Hamiltonian means that no electronic
correlation energy contribution appears in the total energy
and in the definition of the equilibrium nuclear positions
through Eq. (10). This would lead to a completely irrealistic
description of the starting nuclear geometry and vibrational
frequencies. Indeed, e.g., the latter could be imaginary, and this
would lead to unusual technical problems with the canonical
transformation from the displacement operator to the phonon
creation and annihilation operators. Thus the extension of
the electronic-only MB approach to the case where nuclear
displacements are considered cannot use such a starting point.

As DFT provides a treatment of energy and forces that
include the electron-electron interaction, it yields a better
starting point than Eq. (14). DFT is an exact mean-field theory
in the sense that all electronic correlation effects are embodied
in a mean-field exchange-correlation (xc) potential Vxc [ρ] (̂r),
which replaces the full electron-electron interaction operator
Ŵe-e, and depends on the ground-state density ρ. The bracket
[ ] in V̂xc denotes a functional dependence.

By adding to Vxc [ρ] (̂r) the Hartree potential, VH [ρ] (̂r),
we get the total DFT potential:

VHxc [ρ] (̂r) =
∑

i

VH [ρ] (̂ri) + Vxc [ρ] (̂ri) , (15)

with

VH [ρ] (r) =
∫

dr′v(r − r′)ρ(r′). (16)

DFT is exact in the sense that the corresponding Kohn-
Sham (KS) Hamiltonian

ĤKS (R) = T̂e + V̂Hxc [ρ] + Ŵe-n (R) , (17)

provides, when the nuclear positions are given, a set of
electronic eigenvectors whose corresponding density is the
exact ground-state density of ĤBO (R) (Hohenberg-Kohn
theorem [12]).

The Hohenberg-Kohn theorem also states that V̂Hxc[ρ] and
the ground-state energy are functional of the exact electronic
density ρ. It follows that, once the correct exchange-correlation
functional is used, DFT gives the exact equilibrium nuclear
positions through Eq. (10).

In practice, an exact expression for V̂Hxc is not known
and several approximations for it have been proposed in the
literature [12]. In any case, even the simple local-density
approximation (LDA) [55,56], provides quite reasonable
structural properties. Thus DFT represents a concrete and
accurate reference Hamiltonian to be used as zeroth order for a
diagrammatic expansion that will allow vibrational degrees of
freedom to be included. Formally, at the equilibrium geometry,
one decomposes the correlated Hamiltonian as

Ĥcorr(R) = ĤKS(R) + Ŵe-e − V̂Hxc[ρ]. (18)

At this point, the perturbative expansion is performed in terms
of Ŵe-e − V̂Hxc instead of Ŵe-e. This is the theoretical basis of
the standard ai-MBPT scheme [13].

If DFT is used as a reference non-interacting system
Eq. (13) does not hold anymore. Its extension can be shown to

be

εnk ≈ εKS
nk + KS〈nk|[�xc

(
r,r′; εKS

nk

) − Vxc [ρ] (̂r)
]|nk〉KS,

(19)

where |nk〉KS is the nth single-particle eigenstate of ĤKS with
energy εKS

nk . Note that in Eq. (19) only the �xc and Vxc terms
appears as the Hartree terms in � and VHxc cancels out.

Equation (19) reveals the simplicity of the ai-
MBPT scheme. The accuracy and universality of DFT avoids
the use of ad hoc parameters and the prize to pay (at least in the
electronic case) is to simply subtract from the self-energy the
xc potential. This simplicity represents one of the key reasons
for the wide-spread use of ai-MBPT.

At this point, one would be tempted to follow the same
strategy in the electron-phonon case by adding to Eq. (18),
the nuclear Hamiltonian, Ĥn, and the contributions from Ŵe-n

that are linear and quadratic in the atomic displacements. This
is, however, formally not correct. Indeed, when the nuclei are
allowed to be displaced from their equilibrium configuration,
the DFT (or more directly, DFPT) will be expanded in a Taylor
series,

ĤKS (R) ≈ ĤKS(R) + �ĤKS (R), (20)

with, however,

�ĤKS (R) �= Ĥ (R) − Ĥ (R). (21)

This is due to the fact that, in �ĤKS (R), the electron-phonon
interaction terms are statically screened by the electronic
dielectric function while in the Taylor expansion of Eq. (7)
they are bare, unscreened. In other words, the ground-state
density ρ present in Eq. (17) actually depends implicitly on
the nuclear coordinates. In practice, this means that the effect
of V̂Hxc [ρ] does not appear only as an additive term in the
Dyson equation but it screens the interaction potentials Ŵe-n

and Ŵn-n.
An additional problem, partially connected to the potential

double counting of correlation when DFT is used as the
reference Hamiltonian, is due to the fact that most of the
electron-phonon theory has been devised in the jellium
model where the nuclei appear only as static and frozen
positive charges. As a consequence, strong approximations
on the perturbative expansion are used in textbooks. This is
inconsistent with the microscopic description of the nuclear
lattice and indeed represents the most critical shortcoming of
the commonly applied approaches. In all the aforementioned
applications of the ai-MBPT schemes (AHC and beyond),
Ŵn-n is neglected and Ŵe-n is screened by hand directly in the
initial Hamiltonian.

From these simple arguments, we can argue that, although
ai-MBPT is a well-established scheme [13], its extension to
the electron-phonon problem is still far from being formally
defined. We would like to apply the MBPT technique to the
perturbative expansion of Eq. (7) where the non-interacting
Kohn-Sham Hamiltonian and its derivatives as calculated by
DFT and DFPT are used. We propose to apply the standard
diagrammatic MBPT on the total bare Hamiltonian, given by
Eq. (7), explicitly taking into account all interaction terms. We
will then examine the properties of the �ĤKS operator in order
to draw a clear and formal comparison between ai-MBPT and
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DFPT. In this way, we aim at creating a consistent framework
where the role played by screening and self-consistency
is clearly evidenced even when all the components of the
electron-nucleus and nucleus-nucleus interactions are taken
into account.

IV. THE REFERENCE, INDEPENDENT-PARTICLE
HAMILTONIAN

As it emerges from the discussion of the previous section,
the choice of the noninteracting Hamiltonian to be used
as a reference for the perturbative expansion represents the
connection with DFT and thus provides the ab initio basis for
the entire theoretical derivation. This is particularly important
for the definition of the phonon modes. Therefore we start
by introducing a splitting of the total Hamiltonian in an
independent particle part (for independent electrons as well
as independent phonons) plus interaction terms:

Ĥ (R) = Ĥ0 (R) + �Ĥ (R) . (22)

Equation (22) is more suited than Eq. (7) to the MB treatment.
The reference independent-particle Hamiltonian is

Ĥ0 (R) = T̂e + T̂n + Ŵe-n(R) + Ŵn-n(R) + �Ŵ ref
n-n (R) ,

(23)

where Ŵe-n and Ŵn-n are evaluated at the equilibrium geometry.
We have introduced a reference nucleus-nucleus interaction
�Ŵ ref

n-n, a second-order contribution within the Taylor expan-
sion in the nuclear displacements, that provides the reference
phonon modes to be used in the diagrammatic expansion. This
�Ŵ ref

n-n can be defined from DFPT:

�Ŵ ref
n-n (R) = 1

2

∑
lsα,l′s ′β

∂2
RlsαRl′s′β

EBO (R)�R̂lsα�R̂l′s ′β,

(24)

with EBO the Born-Oppenheimer total energy of the sys-
tem calculated within DFT. By construction, the phonon
frequencies and eigenvectors will be equal to those of
the Born-Oppenheimer approximation based on the corre-
lated electronic Hamiltonian. Therefore, Eq. (23) defines
an independent-particle Hamiltonian beyond the equilibrium
geometry. The remaining interaction part, up to second order
in nuclear displacements, is

�Ĥ (R) = Ŵe-e + �Ŵe-n (R) + �Ŵn-n (R) − �Ŵ ref
n-n (R) ,

(25)

where

�Ŵe-n (R) = Ŵe-n (R) − Ŵe-n(R), (26)

and

�Ŵn-n (R) = Ŵn-n (R) − Ŵn-n(R). (27)

At this point, we can introduce the eigenstates of the nuclear
harmonic oscillations of Ĥ0, written in terms of the canonical
transformation

�R̂lsα =
∑
qλ

(2NMsωqλ)−1/2ηα (qλ|s) eiq·Rls (b̂†−qλ + b̂qλ),

(28)

where (q,λ) is a generic DFPT phonon mode with momentum
q, energy branch λ and energy ωqλ. N is the number of q points
in the whole Brillouin zone (BZ). We assume the q-point grid
to be uniform so that we have also N k points for the single-
particle representation. Ms is the nuclear mass, ηα (qλ|s) is
the polarization vector of the atom s in the unit cell l in the
Cartesian direction α, while b̂qλ and b̂

†
qλ, respectively, are the

annihilation and creation operators of the phonon mode (q,λ),
respectively.

We now introduce a second quantization formulation for
the electrons. If φnk (r) is the Ĥ0 electronic eigenfunction, we
introduce the field operator

ψ̂ (r) = 1√
N

∑
k

ψ̂k (r) , (29)

with

ψ̂k (r) =
∑

n

φnk (r) ĉnk, (30)

with ĉnk the annihilation operator of an electron. By using
field operators, the independent-particle Hamiltonian can be
written in a second quantization form:

Ĥ0 (R) =
∑
nk

εnkĉ
†
nkĉnk +

∑
qλ

ωqλ

(
b̂
†
qλb̂qλ + 1

2

)
, (31)

where the first term corresponds to T̂e + Ŵe-n(R) and the
second one to T̂n (R) + �Ŵ ref

n-n (R). The Born-Oppenheimer
energy of the ground state at equilibrium geometry has been
redefined to be the zero of energy (hence, e.g., Ŵn-n(R)
disappears from this expression).

The introduction of a reference nucleus-nucleus potential
�Ŵ ref

n-n (R) in Ĥ0 (R) was the crucial step to be able to map it
with its second quantization form. Indeed, it is well known that
phonon dynamics is actually decoupled from the electronic
one, as shown in many references [48,52]. Nonetheless, the
phonon dynamics can describe accurately the vibrational
properties of a real system only if it feels the electronic
screening. Such screening is accounted for in DFPT by the
reference potential �Ŵ ref

n-n (R) operator.

V. THE ELECTRON-PHONON INTERACTION TERMS

Thanks to the definition of the reference part of the
Hamiltonian, Eq. (23), we have that the final splitting in
independent-particle and interaction terms easily follows from
Eq. (7). The first two orders of the Taylor expansion of Ĥ are

�Ĥ (R) = Ŵe-e + �Ĥ (1) (R) + �Ĥ (2) (R) , (32)

with

�Ĥ (1) (R) ≡
∑
lsα

∂Rlsα
[We-n (R) + Wn-n (R)]�R̂lsα, (33)

and

�Ĥ (2) (R) ≡ 1

2

∑
lsα,l′s ′β

∂2
RlsαRl′s′β [We-n (R) + Wn-n (R)]

×�R̂lsα�R̂l′s ′β − �Ŵ ref
n-n (R) . (34)
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By using Eq. (28) we can manipulate Eqs. (33) and (34) in
order to introduce the electron-phonon interaction in the basis
of the phonon modes. We analyze separately the first- and
second-order terms.

The first order can be written by using Eqs. (28)–(30) as

�Ĥ (1) (R)

=
∑
qλ

{[∑
k

∫
0
drψ̂†

k (r) ξqλ (r) ψ̂k−q (r)

]
+ �qλ

}

× (b̂†−qλ + b̂qλ), (35)

with

ξqλ (r) = ∂(qλ)We-n (r,R) . (36)

The function ∂(qλ)We-n (r,R) represents the derivative of the
electron-phonon interaction along the phonon mode (q,λ). The
definitions of the ∂(qλ) operator and the ξqλ (r) function are
given in Appendix A. Note that, in Eq. (35), the real-space
integral is performed in the unit cell

∫
0 and not in the whole

crystal. This is because the sum running on all unit cell replicas
has been used to impose the momentum conservation at each
vertex of the interaction terms [see Eq. (A13)].

A similar derivation can be done for �qλ, which represents
the first-order derivative of the nucleus-nucleus potential:

�qλ = ∂(qλ)Wn-n (R) . (37)

The second-order terms can be worked out in a similar way
leading to the final form for their contribution to the electron-
phonon interaction Hamiltonian:

�Ĥ (2) (R) =
∑

qλ,q′λ′

{[∑
k

∫
0
drψ̂†

k (r) θqλ,q′λ′ (r) ψ̂k−q−q′ (r)

]

+ �qλ,q′λ′

}
(b̂†−qλ + b̂qλ)(b̂†−q′λ′ + b̂q′λ′). (38)

In Eq. (38), we have introduced the functions θ and � whose
definition is quite similar to Eqs. (36) and (37):

θqλ,q′λ′ (r) = 1
2∂2

(qλ)(q′λ′)We-n (r,R) , (39)

�qλ,q′λ′ = 1
2∂2

(qλ)(q′λ′)Wn-n (R) − �W ref
n-n (R)

∣∣
(qλ)(q′λ′), (40)

with �W ref
n-n (R) |(qλ)(q′λ′) the reference nucleus-nucleus po-

tential written in the phonon modes basis by plugging
Eq. (28) into Eq. (24). The explicit expressions for θ and
for ∂2

(qλ)(q′λ′)Wn-n (R) are given in Appendix A, Eqs. (A18) and
(A19).

Finally, the total Hamiltonian Ĥ (R), up to second order in
the nuclear displacements, can be written as

Ĥ (R) =
∑
nk

εnkĉ
†
nkĉnk +

∑
qλ

ωqλ

(
b̂
†
qλb̂qλ + 1

2

)
+ 1

2

∫
dr1dr2 ψ̂† (r1) ψ̂† (r2) v (r1 − r2) ψ̂ (r2) ψ̂ (r1)

+
∑
qλ

[∫
0
drψ̂†

k (r) ξqλ (r) ψ̂k−q (r) + �qλ

]
(b̂†−qλ + b̂qλ) +

∑
qλ,q′λ′

[∫
0
drψ̂†

k (r) θqλ,q′λ′ (r) ψ̂k−q−q′ (r) + �qλ,q′λ′

]
× (b̂†−qλ + b̂qλ)(b̂†−q′λ′ + b̂q′λ′). (41)

The diagrammatic transposition of the four electron-phonon
interaction terms in Eq. (41) is given in Fig. 1. We see that
we have two terms with electronic legs (• and �). Those give
direct contributions to the electronic propagator. In addition,
there are two purely nuclear contributions (

⊗
and �) that

do not contribute directly to the electron propagator but can
be combined with the two electronic interactions and still
contribute to the electronic self-energy, as it will be clear in the
following. Those are commonly neglected in textbook theories
of the electron-phonon interaction. However, from Eqs. (37)
and (40), we see that there is no reason, a priori, to assume
that both �qλ and �qλ are zero.

The �qλ and �qλ interaction terms do not have electronic
legs because they arise from the purely nuclear potential
[Wn-n (R)]. Nevertheless, at it is evident from the above
discussion, they can exchange momentum with the electronic
subsytem. Energy, instead, is not exchanged as the nuclear
potential is a static function. The momentum exchange reflects
the change in the nuclear-nuclear potential induced by a
nuclear displacement. This term is neglected in the jellium
model because, as it will be clear in the following, the
only allowed modes are acoustic excitations for which the

zero-frequency limit corresponds to the zero momentum limit.
This contribution vanishes as explained in Sec. VI A 1.

Thus any coherent and accurate framework that aims at
providing a consistent way of introducing screening and
correlation in the perturbative expansion of Eq. (41) will also
have to answer to the key question about the role played by
the nucleus-nucleus interaction.

VI. THE PERTURBATIVE EXPANSION

Now that the total Hamiltonian has been split in the bare
Hamiltonian, Eq. (31), and in the interaction contributions,
Ŵe-e, �Ĥ (1) (R) [Eq. (35)], and �Ĥ (2) (R) [Eq. (38)], it is
possible to perform a standard diagrammatic analysis. In the
following, we will work in the finite temperature regime where
the electronic Green’s function is defined [49] as

G (1,2) ≡ −Tr{ρ̂ (β) Tt [ψ̂ (1) ψ̂† (2)]}. (42)

In Eq. (42) β = (kBT )−1 and T is the temperature. Tt

represents the time ordering product, the ĉnk (t) opera-
tor is written in the Heisenberg representation, ρ̂ (β) =
e−β(Ĥ−μN̂)/Tr[e−β(Ĥ−μN̂)], with μ the chemical potential and
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G
(0)
k (t)

(a)
D

(0)
qλ (t)

(b)

k k− q

qλ

• = ξqλ (r)
(c)

qλ

= Ξqλ

(d)

k − q− qk

qλ

q λ

= θqλ,q λ (r)
(e)

q λqλ

= Θqλ,q λ

(f)

FIG. 1. Diagrammatic representations of the electron and phonon
propagators [diagrams (a) and (b)] and of the first- [ξ , diagram (c)
and �, diagram (d)] and second- [θ , diagram (e) and �, diagram (f)]
order interaction terms in the Taylor expansion of Ĥ in powers of the
nuclear displacements. All interaction terms are written in the basis
of the phonon displacements. More definitions can be found in the
text.

N̂ the total electronic number operator. We have introduced
global variables to represent space and time components 1 ≡
(r1,t1). The average spanned by the trace operator runs over all
possible interacting states weighted by the density operator ρ̂.

By using Eq. (29), we can expand the Green’s function in
the electronic basis defined by the reference Hamiltonian:

G (1,2) = 1

N

∑
nn′k

Gk(1,2)

= 1

N

∑
nn′k

φnk (r1) φ∗
n′k (r2) Gnn′k (t1 − t2) , (43)

with

Gnn′k (t) ≡ −Tr{ρ̂ (β) Tt [ĉnk (t) ĉ
†
n′k(0)]}. (44)

The electronic Green’s function can also be expressed in a
matrix representation as

[Gk (1,2)]nn′ = φnk (r1) φ∗
n′k (r2) Gnn′k (t1 − t2) . (45)

We will later use the same generic representation of Eqs. (43)–
(45) for the self-energy operator.

The noninteracting electronic Green’s function G
(0)
nn′k (t)

is diagonal in the band index and it reduces to a simple
exponential [49]:

G
(0)
nn′k (t) ≡ δnn′e−(εnk−μ)t

× [f (εnk) θ (−t) − (1 − f (εnk)) θ (t)] , (46)

with f (ε) ≡ (eβ(ε−μ) + 1)−1 the Fermi-Dirac distribution
function. A similar expression holds for the noninteracting

phonon propagator defined similarly to Eq. (42), with bosonic
phonon (b̂qλ + b̂

†
−qλ) operators replacing the electronic

ones:

D
(0)
qλ (t) ≡ −[1 + n(ωqλ)][e−ωqλt θ (t) + eωqλt θ (−t)]

−n(ωqλ)[eωqλt θ (t) + e−ωqλt θ (−t)], (47)

with n(ε) ≡ (eβε − 1)−1 the Bose-Einstein distribution func-
tion. Thanks to the standard many-body approach and pertur-
bative expansion, it is possible to rewrite Gk (t) in terms of
G(0)

k (t) and the electronic self-energy operator �k by means
of the Dyson equation [49]

Gk (1,2) = G(0)
k (1,2) +

∫
d3d4G(0)

k (1,3) �k (3,4) Gk (4,2) ,

(48)

where the �k matrix has been introduced following a definition
similar to Eq. (45). Equation (48) is written in diagrammatic
form in Fig. 2(a). Note that in Eq. (48) the time variables t3
and t4 runs in the range [0,β].

In the following sections, we will write � using approxima-
tions with an increasing level of correlation, self-consistency,
and screening in order to investigate the effect of the different
electron-phonon interaction terms. The solution of the Dyson
equation corresponds to an infinite series in terms of the
Green’s function and the self-energy. Consistently with the
harmonic approximation [the expansion with respect to the
nuclear displacements is limited to the second power in Eqs. (7)
and (41)], we will work up to second order with respect to
�Ĥ (1) (R), and only to first order in �Ĥ (2) (R). Higher orders
of nuclear displacements might appear as a consequence of
self-consistency or screening (in the Dyson equation), but
we will consider them to be negligible or to have no impact,
consistently with our choice of the harmonic approximation.
By contrast, for the electron-electron interaction, there will be
no such approximation: higher-order powers of the electron-
electron interaction will be significant.

= + Σ

(a)

Σ = + +

ΣH
k ΣDW

k Σn−n
k Σ

TPe−p
k

+

(b)

FIG. 2. Dyson equation written in terms of diagrams (a). In
(b), instead, the lowest-order electronic self-energy in the electron-
electron and electron-phonon interaction is shown. We see the usual
electronic Hartree contribution (first diagram) �H

k , the well-known
Debye-Waller term (second diagram) �DW

k , and the electron-phonon
induced tad-pole (fourth diagram) �

TPe-n
k . In addition, we see the

appearance of a new diagram due to the derivative of the nucleus-
nucleus potential (third diagram), �n-n

k . This diagram plays a crucial
role in balancing the contribution from �

TPe-n
k that, indeed, is not zero

in general.
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A. The Hartree, Debye-Waller, and tad-poles self-energies

First we analyze the electronic self-energy that is obtained
by considering only one interaction node attached to the
electronic Green’s function, and select the lowest nonvanishing
diagrams. This self-energy can be obtained mathematically
from the Feynmann diagrams in Fig. 2(b), following the
diagrammatic rules of Ref. [49], for example. It is composed
of four terms: the Hartree �H , Debye-Waller �DW, nucleus-
nucleus �n-n, and electron-nucleus �e-n self-energy:

�H (1) =
∫

d2v (1,2) G(2,2+), (49)

�DW (1) = −
∑
q,λ

θqλ,−qλ (1) D
(0)
qλ (0−), (50)

�n-n (1) = lim
q→0

[∑
λ

ξqλ (1) D
(0)
qλ (0−)�∗

qλ

]
, (51)

where v (1,2) ≡ θ (t1 − t2) v (r1 − r2). The electron-phonon
induced tad-pole contribution is

�TPe-n (1) = lim
q→0

{ ∑
λ

ξqλ (1) D
(0)
qλ (0−)

×
[∫

d2ξ ∗
qλ (2) G(2,2+)

]}
. (52)

The other diagram (Fan diagram) appearing at second order in
�Ĥ (1) (R) will be analyzed in the next subsection, Sec. VI B,
together with the Fock diagram from Ŵe-e. They both have two
interactions nodes attached to the electronic Green’s function.

The self-energy �H is the usual Hartree contribution which
is a tad-pole diagram made of a Coulomb interaction that
connects the incoming electronic propagator with another,
closed, electronic loop. Also the �TPe-n is a tad-pole diagram,
but, in contrast to the Hartree term, the interaction is not
electronic but phonon mediated.

The nucleus-nucleus self-energy �n-n is a new term that
has never been discussed before in the literature. It comes
from the merging of a nucleus-nucleus and electron-nucleus
interaction. It acquires an electronic character thanks to the
contraction with the electronic propagator embodied in the
electron-nucleus interaction (•).

Finally, �DW is the well-known Debye-Waller (DW) self-
energy. It represents the lowest (first) order electronic self-
energy in the second-order derivative of the Hamiltonian.

The total self-energy is local in time and space and therefore
the Dyson equation of Eq. (48) reduces to

Gk (1,2) = G(0)
k (1,2) +

∫
d3G(0)

k (1,3) �k (3) Gk (3,2) ,

(53)

with
�k (1) = �H

k (1) + �DW
k (1) + �n-n

k (1) + �
TPe-n
k (1) . (54)

The different contributions shown in Eq. (54) have the
following properties:

(a) All self-energy contributions are bare. No screening
is present. This is not what should be applied for practical
calculations because, as it will be clear in the following, bare
potentials lead also to unphysical properties. Moreover, from
DFPT, we know that �DW is screened. In the original work

of AHC, this screening was introduced in a semiempirical
manner, while in the more advanced approach based on DFPT
[16,57], the electron-nucleus interaction is screened in the self-
consistent solution of the Kohn-Sham equation. It is clear,
however, that from a rigorous MB approach this screening is
not present in the original Hamiltonian and must be build-up
by the electronic correlations. How does this screening emerge
from a MB perspective?

(b) The nucleus-nucleus self-energy �n-n
k is a new contribu-

tion that is not present in any treatment of the electron-phonon
interaction where the nuclear density is approximated with
an homogeneous charge density. In this work, the nuclear
coordinates are instead coherently taken into account. This
is an essential step to bridge the MBPT and DFT approaches.

(c) In the standard approach to the electron-phonon inter-
action the electron-nucleus self-energy �TPe-n is commonly
neglected. However, the arguments that motivate this approx-
imation [49] are based on two specific approximations: (i) the
nuclear interaction is dressed and (ii) there are only acoustic
modes. In general, however, any system has both acoustic and
optical modes and the �TPe-n self-energy is not vanishing. What
is its role and is it justified to neglect it?

In order to answer those questions, we proceed with a
detailed analysis of the two series of diagrams connected with
the dressing of the tad-pole and of the Debye-Waller terms.

1. The electron-phonon induced tad-pole diagram and the
nucleus-nucleus interaction contribution

The sum of the �n-n and �TPe-n is

�n-n (1) + �TPe-n (1) = lim
q→0

{ ∑
λ

ξqλ (1) D
(0)
qλ (0−)

×
[
�∗

qλ +
∫

d2ξ ∗
qλ (2) G(2,2+)

]}
.

(55)

This sum would be zero if the ξqλ (1) prefactor or if the
expression between brackets vanishes. However the derivative
of the bare ionic potential, when q → 0, diverges like |q|−1.
Thus Eq. (55) is, actually, divergent. In the jellium model, the
screening [49] of the electron-nucleus potential regularizes
this divergence and the dressed e-n interaction vanishes when
q → 0. This is the standard motivation used to neglect the
contribution coming from the integral appearing in the right-
hand side (r.h.s) of Eq. (55). The term due to �, instead, has
been never considered before.

We focus our attention, instead, on the sum of the terms
between brackets appearing in Eq. (55) for small but not
vanishing values of q. If we work it out, we can rewrite it
in a more clear way. We notice that G(2,2+) = ρ (2) and,
from Eqs. (A14) and (A18), we have that

�∗
qλ +

∫
dr2ξ

∗
qλ (r2,R) G(2,2+)

=
∑
lsα

ηα (qλ|s) e−iq·Rls√
2NMsωqλ

×∂Rlsα

[∫
dr2We-n (r2,R) ρ (r2) + Wn-n (R)

]
. (56)
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Before proceeding in the evaluation of Eq. (56), we notice that
from the Dyson equation [Eq. (48)] it follows that

Gk ≈ G(0)
k + �G(e−e)

k + O(�R2), (57)

with �G(e−e) the change in the Green’s function due to el-el
correlation effects. Eq. (57) implies that ρ ≈ ρ(e−e) + O(�R2)
with ρ(e−e) the exact charge of the system with atoms
frozen at the equilibrium positions. Therefore, as in Eq. (56),
∂Rs

We-n (r,R) ∝ �R, it follows that, within the harmonic
approximation, we can safely assume ρ ∼ ρ(e−e).

It follows that, within the harmonic approximation, the
overlined quantity in Eq. (56) is minus the force Fs acting
on the nucleus located at R:

Fls ≡ −∂Rls

[∫
dr2We-n (r2,R) ρ(e−e) (r2) + Wn-n (R)

]
R=R

.

(58)

By using the Hellmann-Feynman theorem, it follows that

Fls ≡ −∂Rls
〈�0|ĤBO (R) |�0〉R=R, (59)

with |�0〉 the exact electronic ground state of the total frozen
Hamiltonian, Ĥ (R).

Thus we can draw the following conclusion: if the self-
energy is chosen in such a way that the nuclear positions and
density correspond to the exact electronic ground state, then it
follows

�TPe-n (1) + �n-n (1) = 0. (60)

This is true for the exact self-energy but it is not true
for any approximation of the self-energy unless the Born-
Oppenheimer energy of the system is calculated accordingly
by means of MBPT (for example, by using the Luttinger-Ward
expressions [49]).

The condition represented by Eq. (60) reveals the crucial
role played by the nucleus-nucleus interaction. It is only
thanks to the coherent inclusion of electron-nucleus and
nucleus-nucleus contributions that the theoretical framework
can lead to the justification of the AHC approach or to the
textbooks results. A formal condition for the tad-pole diagram
to be zero can therefore be defined.

As an additional approximation, we notice that one of
the most widely approximation used in the literature is to
treat correlation effects non-self-consistently. In practice, this
means to use the Dyson equation to renormalize the single
particle energies but not the wave functions. As a consequence,
within this approximation, the charge density is assumed to
be well described by the one calculated within DFT. This
approximation has an important and useful consequence.
Equation (57) would impose to use as ionic positions (R) the
ones calculated with a level of correlation coherent with the one
introduced in ρ(e−e). As this is a hardly (if not impossible) to do
in practice, the use of the DFT charge allows to approximate

both ρ ∼ ρ(0) and R ≈ R
(0)

in Eq. (58). In this case, R(0) are the
DFT equilibrium atomic positions that are a simple byproduct
of any DFT calculation.

2. Self-consistent diagrams: dressing of the internal Green’s
functions and of the bare interactions

Before starting the analysis of the diagrammatic structure of
the self-energy, we notice that at any order of the diagrammatic
expansion we can clearly distinguish between diagrams that
dress the internal electronic propagators and the interaction. A
clear definition of these two families of diagrams can be done
by using the simple Hartree approximation for the self-energy.
Its diagrammatic expansion is shown in Fig. 3 and we notice
that at third order, two different diagrams appear [Figs. 3(b)
and 3(c)]. In the case of diagram (b), the interaction builds up a
series of bubbles that describes electron-hole pair excitations.
These bubbles, when summed to all orders, reduce to the well-
known random phase approximation for the response function
as it will be shown explicitly in Sec. VI A 3.

The diagram (c), instead, represents a bare self-energy
insertion in an internal Green’s function. Any other diagram
where an internal propagator is dressed belongs to this family.
The effect of these diagrams is to renormalize the single
particle states. This can be easily visualized in the quasiparticle
approximation where all internal propagator self-interaction
contributions can be summed in the definition of a new set of
independent particle energies, {εnk}.

In this work, we are interested in building up a scheme to
concretely compare the many-body and DFT schemes as far
as the e-n interaction is concerned. In order to greatly simplify
the analysis, we will focus on the first series of diagrams
disregarding all diagrams that correspond to a dressing of
internal electronic propagators. In the self-consistent Hartree
case, this amounts to neglect the diagram (c) and, in practice,
this means that the screening of the interaction is described by
oscillations (described by bubble diagrams) of the bare charge.
This approximation is commonly used in the ai-MBPT scheme
and can be written analytically as

Ginternal
k ≈ G(0)

k . (61)

(a)

≈ + + + . . .+

(b)

(c)

FIG. 3. Diagrammatic expansion of the self-consistent Hartree
self-energy. Diagram (a) is the non-self-consistent contribution
corresponding to the bare electronic charge. Diagram (b) is composed
of bare bubble diagrams. These diagrams belongs to the family of
diagrams that dress the interaction. Diagram (c), instead, represents
a dressing of the internal electronic propagator. All diagrams of this
kind can be, within the quasiparticle approximations, summed in a
definition of a new independent particle Hamiltonian, as explained in
the text.
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When applied in the diagramatic context we will refer to
Eq. (61) as the linearization procedure. The reason of the
name will be clear in the next section.

3. Screening of the second-order electron-phonon interaction
and of the Debye-Waller diagram

As mentioned earlier, one important aspect that must be
included in the perturbative analysis in order to bridge it with
the DFPT formalism is the screening of the electron-phonon
interaction terms. How does screening build up ? This question
could appear easy to answer as the series of diagrams that
screen the lowest order (ξ ) interaction is, indeed, well known in
the litterature. But, what about the second-order interaction � ?

In the original AHC work, the DW self-energy is written,
from the beginning, in terms of a statically screened We-n

interaction. However, this screening cannot be introduced
directly in the Hamiltonian. It must appear as a result of the
diagrammatic expansion.

In addition, from the discussion of the previous section, it
follows that �TPe-n (1) + �n-n (1) is not zero for any self-energy
that does not reproduce the exact reference density and the
exact corresponding nuclear positions. As a matter of fact, this
is a condition hard to fulfill in any practical implementation as
it is computationally very difficult to find the nuclear positions
corresponding to a specific level of approximation for �.

Even if the condition given by Eq. (60) can be used as
a simple approximation, it is instructive, for the moment, to
keep the two self-energies in our derivation in order to see
their effect on the definition of the screening.

= +

FIG. 4. The total bare interaction Wλ
q (1,2).

At the lowest order of the perturbative expansion, the self-
energy shown in diagram 2(b) can be explicitly written as

� (1) =
∑

λ

lim
q→0

{ ∫
d2Wqλ (1,2) G(2,2+)

+ ξqλ (1) D
(0)
qλ (0−)�∗

qλ −
∑

q

θqλ,−qλ (1) D
(0)
qλ (0−)

}
,

(62)

where we have introduced a total bare electron-electron
interaction Wqλ (1,2) (see Fig. 4) defined as

Wqλ (1,2) ≡ vq (1,2) δ (t1 − t2)

+
∑

λ

ξqλ (1) D
(0)
qλ (t1 − t2) ξ ∗

qλ (2) , (63)

with vq (1,2) the periodic q component of the Fourier trans-
formation of the bare Coulomb interaction

v (1,2) =
∫

BZ

dq

(2π )3 eiq·(r1−r2)vq (1,2) , (64)

with the integral restricted to the Brillouin zone (BZ) only.
The total bare electron-electron interaction Wqλ gets

dressed (i.e., screened) by self-consistency when the Green’s
function [Eq. (53)] is inserted into the self-energy [Eq. (62)]:

� (1) =
∑

λ

{ ∫
d2 lim

q→0
[Wqλ (1,2)] ×

[
G(0)(2,2+) +

∫
d3G(0) (2,3) � (3) G (3,2)

]

+ lim
q→0

[
ξqλ (1) D

(0)
qλ (0−)�∗

qλ

] −
∑

q

θqλ,−qλ (1) D
(0)
qλ (0−)

}
. (65)

The Wqλ (1,2) G(2,2+) term appearing in Eq.(62) is written in terms of Feynman diagrams in Fig. 5(a).
Now we group all � operators to the left hand side of the equation. We have that∫

d3� (3)

[
δ (1,3) −

∑
λ

lim
q→0

[Wqλ (1,2)]G(0) (2,3) G (3,2)

]

=
∑

λ

{∫
d2 lim

q→0
[Wqλ (1,2)]G(0)(2,2+) + lim

q→0

[
ξqλ (1) D

(0)
qλ (0−)�∗

qλ

] −
∑

q

θqλ,−qλ (1) D
(0)
qλ (0−)

}
, (66)

and the corresponding diagrams are shown on Fig. 5(b).
Now, Eq. (66) is not linear in the sense that the right-hand

side depends on the dressed G because of the perturbative
expansion of the inverse of the square bracket quantity
appearing in the left-hand side. By using the discussion of Sec.
VI A 2, we observe that all dressed G’s are internal Green’s
functions. This can be deduced also by the expansion of the
diagrammatic fraction appearing in Fig. 5(c). Then we can
apply the linearization procedure, Eq. (61) to approximate
G (3,2) with G(0) (3,2) in the Eq. (66). This allows to define

the single-particle response function χ (0):

lim
q→0

χ (0)
q (1,2) ≡ 1

N

∑
k

G
(0)
k (1,2) G

(0)
k (2,1) . (67)

Then, we define the dielectric matrix in the time-dependent
Hartree approximation (see later) as

εtdh
q (1,2) ≡ δ (1,2) −

∑
λ

∫
d3Wqλ (1,3) χ (0)

q (3,2) . (68)
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Σ

(a)

=Σ 1− + +

(b)

=Σ

+ +

1−

(c)

FIG. 5. Diagrammatic proof that self-consistency at the Hartree
level is equivalent to screening, at the time-dependent Hartree level.
The proof is obtained by using the Dyson equation inside the
definition of the Hartree self-energy. This can be solved in terms of
the self-energy itself by a simple Fourier transformation because the
Hartree self-energy is local in time. The mathematical transposition
of this proof is discussed in the text.

By using Eq. (66) into Eq. (67) the screening of the bare
potential W and electron-phonon terms appears so that

� (1) =
∑

λ

{ ∫
d2 lim

q→0
[W̃qλ (1,2)]G(0)(2,2+)

+ lim
q→0

[̃
ξqλ (1) D

(0)
qλ (0−)�∗

qλ

]
−

∑
q

θ̃qλ,−qλ (1) D
(0)
qλ (0−)

}
, (69)

with W̃ , ξ̃ , and θ̃ the dressed counterparts of the bare W , ξ ,
and θ functions:

ξ̃qλ (1) =
∫

d2
[
εtdh

q (1,2)
]−1

ξqλ (r2) , (70)

θ̃qλ,−qλ (1) =
∫

d2
[

lim
q→0

εtdh
q (1,2)

]−1
θqλ,−qλ (r2) , (71)

W̃q (1,2) =
∫

d3
[
εtdh

q (1,3)
]−1

Wq (3,2) . (72)

+

(a)

+

(b)

FIG. 6. First two diagrams contributing to the screening of the
Hartree (top) and DW (bottom) term. The screening can be written
as the action of a time-dependent Hartree screening function (see
text). The dielectric function contains only the Hartree exchange
diagrams as we considered only the Hartree term in the electronic
self-energy. However, it also includes phonon-mediated scatterings
as a consequence of the fact that �TPe-n has been included in the
diagrammatic expansion. As it will be clear in the Sec. VI B, the
addition of more diagrams to the electronic self-energy corresponds
to modify the equation of motion satisfied by the dielectric function.

Equations (69)–(72) represent an important result of the
present work. Indeed, they show that self-consistency screens
the interaction lines of all diagrams, including the Debye-
Waller one. This result will be crucial in discussing how
to include higher-order diagrams avoiding double-counting
problems.

Indeed, there are two well known ways of increasing the
order of the perturbative expansion. One is to add skeleton
diagrams and the other is to use self-consistency. This
second path is extremely important as it provides the way
for a given self-energy to fulfill conserving conditions [58].
Skeleton (as well as reducible) diagrams are known to build-up
the screening of the electron-electron and electron-nucleus
interactions. In this section, we have shown that screening
arises also from self-consistency.

The first two diagrams resulting from the expansion of
the diagrammatic fraction appearing in Fig. 5(c) are shown in
Fig. 6. The repeated closed loops represent the time-dependent
Hartree (TDH) approximation for the response function. The
corresponding screening of the interaction is known as the
random-phase approximation (RPA). The RPA is the most
elemental way to introduce screening in a system of correlated
electrons.

Self-consistency dresses the electron-phonon interaction in
the Hartree, in the tad-pole, and in the DW diagrams. As
it will be clear in the following, the equation of motion for
the corresponding screening function changes with the level
of approximation used in the self-energy. Moreover, when
�TPe-n (1) + �n-n (1) �= 0, the screening is due to the total time-
dependent Hartree dielectric function that includes the lattice
polarization contribution. This follows from the definition of
the zig-zag interaction, Fig. 4 and Eq. (63), which induces (see
Fig. 6, for example) scattering processes where an electron-
hole pair is annihilated and a phonon propagator is created.

Even today, most of the calculations at the GW level are
performed by using the G0W0 non-self-consistent version.
However, this section shows that the DW diagram gets
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= +ΣΣ +

FIG. 7. The Dyson equation at the Fock level in the electron-
electron and electron-phonon interaction. In addition to the Hartree
and DW contributions we include the Fock diagram. Note that the
zigzag interaction lines include the bare electron-phonon interaction
defined in Fig. 4. Thus � includes the DW and the Fan diagrams with
bare and undressed interactions.

correctly screened only by solving the Dyson equation self-
consistently.

B. The Fock and Fan self-energies

The analysis of the previous paragraph has been restricted
at the Hartree level to keep the notation as simple as
possible. In this section, we extend the derivation to the
Fock approximation by showing how the screening of the
second-order electron-phonon interaction θ is modified by
the inclusion of electronic exchange scatterings via the Fock
diagram. We will assume for simplicity that �e-n + �n-n = 0
and show the changes that this approximation induces in the
definition of the dielectric function.

The procedure to disentangle the self-consistency from the
electron propagator appearing in the Fock operator can be
done entirely using Feynman diagrams. We start by using the
Dyson equation to rewrite the dressed (thick line) electronic
propagators in Fig. 7 in terms of the bare electronic propagators
(thin line) and of the self-energy. The resulting diagrammatic
expression for � is showed in Fig. 8(a).

We can then work out diagram 8(a) by isolating a nonlocal
operator that is evidenced by the square brackets in the diagram
8(b). The self-energy can be isolated to the left-hand side of the
equation. Then, in the same spirit as for the Hartree case, we
can invert the equation. By following the same procedure used
to go from diagram 5(b) to 5(c), we introduce a diagrammatic
fraction represented by the square bracket in the diagram 8(c).
Formally speaking, this fraction must be interpreted as follows.
Let us consider the generic expression 1

1̂−D̂1−D̂2
, with D̂1 and

D̂2 two generic diagrams with M open interaction lines (in the
present case M = 4). Then we have that

1

1̂ − D̂1 − D̂2
≡ 1̂ +

∑
n

(D̂1 + D̂2)nc , (73)

where the c sub-script means that, at each order, we consider
the totally contracted products of D̂1 and D̂2 in such a way that
the resulting diagram has, again, M open interaction lines. We
can illustrate this procedure by applying it to the DW term [last
term in the numerator of diagram 8(c)]. In this case, Eq. (73)
applied to the square bracket produces an infinite series of
diagrams that are closed in the upper part by a fermion line
contracted in the second-order bare interaction (�). The first
three diagrams of this series are shown in Fig. 9(a).

The final result is that, like in Sec. VI A 3, the Debye-Waller
diagram is screened by a dielectric function. However, there are
two important differences with respect to the Hartree case. First
of all, after linearization of the Green’s functions appearing in

= +ΣΣ + + +Σ Σ

(a)

= +ΣΣ + + + Σ

(b)

=

+

Σ

+

−1−

(c)

FIG. 8. Diagrammatic proof of the equivalence between self-
consistency and screening when a Fock and a Fan diagrams are
present (second and third in the r.h.s. of Fig. 7). In (b), a portion of
the equation is isolated and enclosed in square brackets. By defining
formally the diagrammatic fraction (see text) the equation is inverted
and the diagram in the square bracket goes in the denominator of (c).
The perturbative expansion of this fraction leads to the screening
of Hartree term and of the second-order bare electron-phonon
interaction θ . Some of the diagrams that follows from the expansion
are shown in Fig. 9.

the right-hand side of the diagram 8(c) by using Eq. (61), we
can define a different dielectric function than Eq. (68):

εtdhf
q (1,2) ≡ δ (1,2) −

∫
d3vq (1,3) χ irr

q (3,2) , (74)

with χ irr
q (3,2) the time-dependent Hartree-Fock irreducible

response function. The equation that defines χ irr is represented
in diagrammatic form in Figs. 9(b) and 9(c).

The corresponding definition of the screened second-order
electron-phonon interaction is

θ̃qλ,−qλ (1) =
∫

d2
[

lim
q→0

εtdhf
q (1,2)

]−1
θqλ,−qλ (r2) . (75)

The first two orders of χ are represented by the two bubbles
appearing in Fig. 9(a), while in Fig. 6, only the independent-
particle bubbles appear (this is, indeed, the definition of the
RPA). In this case, the Fock and Fan diagrams induce a
first-order bubble with the interaction W connecting the two
fermion propagators. This diagram represents the contribution
of the electron-hole attraction and, when summed to all orders,
it can explain and predict the formation of excitonic states [13].
Such bound electron-hole states are commonly observed in the
absorption spectrum of several materials [13]. In this case, the
electron-hole attraction is both electron and phonon mediated
[47].
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++

(a)

= χirrL

(b)

=L + L

(c)

FIG. 9. The series (a) corresponds to the first three diagrams
contributing to the screening of the DW term. Similar series of
diagrams contributing to the self-energy can be obtained by replacing
the DW bare self-energy with the Hartree and Fock self-energies. As
we see besides the usual time-dependent Hartree contribution to the
polarization function (second diagram), there is a irreducible diagram
where the electron and hole interact via the total screened interaction
defined in Eq. (63). The definition of the irreducible time-dependent
Fock response function is given in the diagram (b) in terms of the
four point function L. The final equation for χ irr follows, then, from
the corresponding equation of motion for L [diagram (c)].

The second difference is the fact that in this derivation of
the Hartree-Fock screening, we have assumed that the two
tad-poles �e-n (1) and �n-n (1) cancel each other. Formally
speaking this cancellation is never exact. If the contribution of
these two terms is included then the dashed interaction in the
denominator of the diagrammatic equation 8(c) would contain
a electron-phonon contribution and the whole definition of the
screening function would be affected. This corresponds, for
example, to the appearance of exchange diagrams mediated
by phonons.

C. Skeleton diagrams, GW approximation, and
self-consistency issues

In Secs. VI A and VI B, we have noticed that, even if
we assume that tad-poles diagrams cancel each other, i.e.,
Eq. (60) is satisfied, the screening of the first (ξ ) and second
(θ ) electron-phonon interaction potentials induced by self-
consistency depends on the kind of approximation used for
the electronic self-energy.

The situation for the other family of diagrams that must
be considered at each order of the perturbative expansion
is different. Indeed, if we consider skeleton (bare) diagrams
we have that the ξ function is renormalized by the purely
electronic dielectric function, as explained for example in Ref.
[48] (via the diagrammatic method) and in Ref. [52] (via the
equation of motion approach):

ξ̃qλ (1) =
∫

d2[εq (1,2) |el]−1ξqλ (r2) . (76)

Σ = + +

FIG. 10. The Dyson equation at the GW level in the electron-
electron and electron-phonon interaction. The electron-phonon di-
agram is known as Fan self-energy and its vertex (represented by
the circled dot) represents a dressed electron-phonon interaction [see
Eq. (76)]. The wiggled line is a dressed electron-electron interaction
[see Eq. (77)]. The most important aspect of this diagram is that,
as long as only skeleton diagrams are included, the second-order
electron-phonon interaction, and consequently the DW diagram, is
not screened.

In this case, [εq|el]−1 is the electronic dielectric function
whose irreducible response function part follows directly
by contracting the vertex function associated with the self-
energy. In the case of the well-known GW approximation, the
dielectric function is calculated within the RPA. The purely
electronic expression can be obtained from Eq. (68) when
the phonon mediated exchange contribution is neglected and
corresponds to approximating Wqλ(1,2) by vq(r1,r2).

The non-self-consistent self-energy is showed in Fig. 10.
The circled dot symbol ( ) represents the dressed interaction
defined in Eq. (76) and, diagrammatically, in Fig. 11. Similarly,
the wiggled line is the screened electron-electron interaction:

W̃ (1,2) =
∫

d3[ε(1,3)|el]−1v(3,2). (77)

All the equations and definitions connected to the inclusion
of skeleton diagrams are well-known in the literature. The
original aspect outlined by the derivations presented in the
previous sections is that, while the first-order electron-phonon
interaction ξ appearing in the Fan diagram is screened by
skeleton diagrams, the second-order θ is screened by self-
consistency.

This deep difference in the procedure that defines the kind
of screening of the electron-phonon interaction is reflected in
the different equation that is satisfied by ε in, for example,
Eqs. (77), (75), and (70). Depending on the choice of the
self-energy, we have phonon mediated exchange and/or direct
scatterings and electron-hole attraction diagrams. We will see
in the following that yet another family of dielectric functions
is used within the DFPT approach. The physical interpretation
of these different definitions is discussed in Sec. VIII B.

= + + + . . .

FIG. 11. Diagramatic representation of the dressed electron-
phonon vertex within the GW approximation for the self-energy.
In this case, the diagrams are bare (skeleton) and sum into an RPA
dielectric screening of the ionic potential. In this case, even in the case
where the tad-pole diagrams are nonzero, the dielectric screening
is purely electronic. The standard additional approximation is to
consider a static screening.
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VII. THE DENSITY-FUNCTIONAL-THEORY APPROACH
TO THE ELECTRON-PHONON PROBLEM

In the previous section, we have analyzed the kind of
diagrams induced by the electron-electron interaction in
the dressing of the electron-nucleus interaction terms. We
have disclosed the key role played by self-consistency and
the different level of approximation that arises from the
perturbative expansion.

In order to link the DFPT and MBPT approaches, we start
with a short review of the purely DFT-based approach to the
electron-phonon coupling. DFT is a self-consistent theory, and
DFPT is its extension to take into account, self-consistently,
the effect of static perturbations (like nuclear displacements).
In this case, DPFT provides an exact description of phonons
within the limits of a static and adiabatic approach. The phonon
frequencies in DFPT are always real and no phonon dissipation
process is included. If we introduce a total (electron-electron
plus electron-nucleus) potential

V̂scf (r,R) = V̂Hxc [ρ] (r) −
∑
ls

Zs

|r̂ − R̂ls |
, (78)

where the functional dependence of the electronic density
on the nuclear positions introduce a direct (via We-n) and
indirect (via VHxc) dependence on (R) in Vscf . In DFPT, this
complicated dependence links the calculation of ∂Rls

V̂scf (r,R)
to the solution of a self-consistent set of equations.

By applying the same procedure used to derive Eq. (7), a
formal Taylor expansion of HKS can be obtained. However, if
the dependence of the density on the nuclear positions is not
taken into account, all terms in the Taylor expansion are bare.
In DFT (or DFPT), screening builds-up because of the V̂scf

indirect dependence on (R). We introduce

ξDFPT
qλ (r) = ∂(qλ)Vscf (r,R) , (79)

and
θDFPT

qλ,−qλ (r) = ∂(qλ),(−qλ)Vscf (r,R) . (80)

The expression for ξDFPT
qλ (r) can be written in terms of

∂Rs
Vscf (r,R) by following the same procedure outlined in

Appendix A. The screening of ξ within a pure DFPT scheme
follows from the fact that

∂Rls
Vscf (r,R) = ∂Rls

We-n (r,R)

+
∫

dr′ δVHxc [ρ] (r)

δρ(r′)
∂Rls

δρ(r′).

(81)

In order to evaluate Eq. (81) and create a link with the MB
approach, we notice that DFPT is based on the linear response
regime [16,57] where

∂Rls
ρ (r) =

∫
dr′χDFT(r,r′)∂Rls

We-n(r′,R), (82)

where the DFT polarizability χDFT = ∂ρ

∂Vext
is a solution of the

following Dyson equation:

χDFT(r,r′) = χ
(0)
KS(r,r′) +

∫
dr′′drχ (0)

KS (r,r) fHxc(r,r′′)

×χDFT(r′′,r′), (83)

with χ
(0)
KS the independent particle KS response function.

From the definition of the Hartree and xc potential, it
follows that

fHxc(r,r′) ≡ δVHxc [ρ] (r)

δρ(r′)

= v(r − r′) + fxc(r,r′), (84)

which, finally, yields the well-known expression for the
derivative of the total DFT self-consistent potential:

∂Rls
Vscf (r,R)

=
∫

dr′
[
δ(r − r′) +

∫
dr′′fHxc(r,r′′)χDFT(r′′,r′)

]
× ∂Rls

We-n(r′,R). (85)

If we now introduce the DFT dielectric function

[εDFT(r,r′)]−1 ≡ δ(r − r′) +
∫

dr′′fHxc(r,r′′)χDFT(r′′,r′),

(86)

finally, we have

∂Rls
Vscf (r,R) =

∫
dr′[εDFT(r,r′)]−1∂Rls

We-n(r′,R). (87)

Similarly, the second-order derivative of Vscf can be introduced
[16,57] as

∂2
RlsRl′s′ Vscf (r,R) = ∂Rls

{∫
dr′[εDFT(r,r′)]−1∂Rl′s′ We-n(r′,R)

}
.

(88)

Equations (87) and (88) must be compared with Eqs. (70)–
(72) in order to highlight the differences between the two
formulations and potential similitudes.

Equation (87) can be written in the basis of phonon
displacements (q,λ) as

ξ̃DFPT
qλ (r) =

∫
dr′[εDFT

q (r,r′)
]−1

ξDFPT
qλ (r′). (89)

This last equation can directly be compared with Eq. (70) and
the following observations can be made:

(a) In DFPT the ξ function (and more generally the
electron-phonon interaction) is statically screened and it does
not include the contribution from the lattice polarization. In the
MBPT, instead, the electron-phonon interaction is dynamically
screened [i.e., the dielectric functions defined in Eqs. (68)
and (74) are time dependent] and it includes phonon mediated
scatterings [see Eq. (70)]. The static screening of DFPT reflects
the fact that there are no retardation effects in the theory. Those
effects are peculiar of the MBPT and, in some cases, can lead
to important deviations from the static limit [10,11,59] when
included in the self-energy.

(b) The DFT dielectric function εDFT defined in Eq. (86)
is a test-electron dielectric function whereas in the MBPT
the dielectric function that screens the bare electron-phonon
interaction is a test-charge function. The difference between
those two functions is well described in Refs. [60] and [61].
In the test-charge case, the dielectric function represents a
response to an external particle, while in the test-electron case,
the charge is itself an electron. We will discuss in more detail
this difference from a physical perspective in Sec. VIII B.
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(c) A peculiar consequence of the DFPT approach is the
appearance of nonrigid nuclei contributions to the second-
order derivative of the electron-nucleus interaction potential,
∂2

RlsRl′s′
Vscf (r,R). This contribution does not appear in the

many-body derivation carried on in the previous sections.
Such nonrigid nuclei (recently called in the literature

nonrigid ion contribution [45]) can be studied by applying
the derivative with respect to a nucleus displacement on the
right-hand side of Eq. (88) and by distinguishing a rigid-nuclei
(RN) and a nonrigid-nuclei (NRN) terms:

∂2
RlsRl′s′ Vscf (r,R) = [

∂2
RlsRl′s′ Vscf (r,R)

]∣∣
RN

+ [
∂2

RlsRl′s′ Vscf (r,R)
]∣∣

NRN, (90)

with [
∂2

RlsRl′s′ Vscf (r,R)
]∣∣

RN

=
∫

dr′[εDFT(r,r′)]−1∂2
RlsRl′s′ We-n(r′,R), (91)

and [
∂2

RlsRl′s′ Vscf (r,R)
]∣∣

NRN

=
∫

dr′∂Rls
[εDFT(r,r′)]−1∂Rl′s′ We-n(r′,R). (92)

If we now rewrite both terms in the DFPT phonon (q,λ) basis
and multiply by a 1/2 pre factor, we get

θ̃
DFPT,RN
qλ,q′λ′ (r) ≡ 1

2

∫
dr′[εDFT(r,r′)]−1∂2

qλ,q′λ′We-n(r′,R), (93)

and

θ̃
DFPT,NRN
qλ,q′λ′ (r) ≡ 1

2

∫
dr′∂qλ[εDFT(r,r′)]−1̃ξDFPT

q′λ′ (r′). (94)

From the local dependence on R of the Vscf it follows that,
in the RN contribution, a δRls ,Rl′s′ appears. In the rigid-nuclei
approximation (also called the rigid-ion approximation) the
θ̃

DFPT,NRN
qλ,q′λ′ is neglected.

The physical interpretation of the NRN contribution to
the second-order derivative of the self-consistent potential
is obscure in the DFPT derivation and seems to be more a
mathematical separation based on computational load of the
calculations rather than a physically motivated choice (see
Ref. [45] for a detailed explanation). We will discuss this term
from a many-body perspective in Sec. VIII C.

VIII. MBPT STARTING FROM DENSITY-FUNCTIONAL
AND DENSITY-FUNCTIONAL PERTURBATION THEORY

The main difficulty in performing a diagrammatic expan-
sion on top of DFT is that it is not possible to write the initial
Hamiltonian in terms of dressed interactions. This means that,
even within DFT, the Taylor expansion of Ĥ (R) is still given
by Eq. (32) with the only difference that the electron-electron
interaction is replaced by the mean-field xc-potential. At this
point, DFPT and MBPT follow two different routes in order
to describe the dressing of the interaction and the definition of
the electronic self-energies.

To obtain the same screening as DFT+DFPT from a purely
many-body point of view, we start by writing again the total

Hamiltonian as a function of the KS one

Ĥ (R) = ĤKS(R) + Ĥn(R) + �Ŵ ref
n-n (R) + �Ĥremaining (R) .

(95)

We can determine the value of �Ĥremaining (R) from Eqs. (17),
(23), and (25):

�Ĥremaining (R) = �Ŵn-n (R) − �Ŵ ref
n-n (R)

+�Ŵe-n (R) + Ŵe-e − V̂Hxc [ρ] , (96)

with ρ the equilibrium DFT density.
Now the full MBPT machinery described in the previous

sections can be applied to Eq. (96), leading to the screening
of the electron-phonon interactions. However, our aim is to
create a link with the DFPT definitions of Eqs. (87) and (88).
The main differences between the MBPT and DFPT approach
are listed in Table I and explained below.

A. Tad poles

By definition, the DFT density is the exact one and it
satisfies Eq. (58). Thus, bearing in mind the linearization
procedure outlined at the end of Sec. VI A 1, we can affirm that
within DFPT, �e-n (1) + �n-n (1) = 0. As a consequence, the
dielectric function that screens the electron-phonon interaction
does not include phonon-mediated exchange scattering.

B. Screening of the second-order electron-nucleus interaction

In order to discuss how screening builds up, we start from
the lowest-order self-energy in the electron-phonon scattering
[see Fig. 2(b)]. Again, we start from the bare Hamiltonian
but this time we use the KS system as reference. The Dyson
equation that follows from the Hamiltonian of Eq. (95) is

G (1,2) = GKS (1,2) +
∫

d3GKS (1,3)

×{�H (3) − VHxc [ρ] (3)}G (3,2) . (97)

Moreover, since the Hartree part (VH ) also appears in VHxc, we
have

�H [ρ] (1) − VH [ρ] (1) =
∫

d2v (1,2) [ρ (2) − ρ (2)].

(98)

In the case of a local self-energy, the difference of densities
can be rewritten in terms of the self-energy by using Eq. (53):

ρ (1) − ρ (1) =
∫

d2GKS (1,2) � (2) G (2,1) . (99)

Following Eq. (68), we obtain within RPA and after lineariza-
tion of the Green’s function (G ≈ GKS) that

εKS,RPA (1,2) ≡ δ (1,2) −
∫

d3v (1,3) χKS (3,2) , (100)

with

χKS (1,2) ≡ GKS (1,2) GKS (2,1) . (101)

224310-15
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TABLE I. Schematic representation of the different treatment within MBPT and DFPT of the most important aspects of the electron-nucleus
interaction.

MBPT DFPT

Tad-pole diagrams sum,
�e-n + �n-n, Fig. 2(b).

Vanishing only when the atomic positions are evaluated
consistently with the level of correlation included in the
self-energy.

Vanishing

Screening of the first-order
interaction, ξ (r).

Time-dependent and described by a test-charge dielectric function
consistent with the self-energy. Induced by skeleton diagrams.

Screened by the static
test-electron DFT dielectric
function. Introduced via
self-consistency.

Screening of the second-order
interaction, θ (r).

Time-dependent and described by a test-charge dielectric function
consistent with the self-energy. Induced by self-consistency
diagrams.

Screened by the static
test-electron DFT dielectric
function. Introduced via
self-consistency.

Nonrigid nuclei contribution to
the second-order interaction,
θ (r).

Appears in the static limit from the diagrams that describe the
dressing of the electronic density caused by the e-n interaction. It
is, again, caused by self-consistent diagrams.

Present and static. Induced by
the implicit dependence of the
screening on the atomic
positions.

The final expression of the second-order electron-phonon
interaction thus becomes

θ̃qλ,−qλ (1) =
∫

d2
[

lim
q→0

εKS,RPA
q (1,2)

]−1
θqλ,−qλ (r2) δ (t2) ,

(102)

with the dielectric function defined by

[εKS,RPA (1,2)]−1 ≡ δ (1,2) +
∫

d3v (1,3) χKS,RPA (3,2) ,

(103)

and χKS,RPA solution of Eq. (83) with fHxc(r,r′) = v(r,r′). We
notice that Eq. (103) defines a test-charge dielectric function,
while in DFPT, Eq. (86), a test-electron dielectric function
appears.

This difference of definition is a straightforward conse-
quence of the fact that the definition of the dielectric function is
linked to the distinction between the classical and the quantum
parts of the induced potential. The classical part satisfies the
Poisson equation whose solution is the Hartree potential. The
quantum part is treated in different ways in MBPT and DFPT.
In the MBPT, the quantum induced field is represented by the
change of the correlation self-energy due to a test charge. This
is described by the vertex function [58] that can also be used to
rewrite the exact self-energy in a closed form. In DFT, instead,
electronic correlations are included in a mean-field manner
by means of the exchange-correlation Vxc potential. It follows
that, the variation of Vxc mimics the variation of the self-energy
and, thus, represent the quantum part of the induced potential.
Therefore the difference between a test electron and a test
charge is that the test-electron includes the total variation of
the total potential, including Vxc. This contribution leads to
the fxc term appearing in the right-hand side of Eq. (86) and
marks the difference between the MBPT and DFPT screening.

As additional proof, we can notice that if the electronic
self-energy is approximated with a DFT exchange-correlation
potential, then the many-body vertex turns the test particle into
a test-electron dielectric function that is consistent with the

DFPT definition. This means that fxc is taking into account, in
a mean-field manner, the effect of the MBPT vertex function.

At this point, we can conclude by observing that if local
or semi-local approximations for Vxc are used, the difference
between a test-charge and a test-electron dielectric function
can be safely neglected. Indeed, any local or semilocal
expression for Vxc is regular in the short-distance limit whereas
v(r,r′) diverges. This means that, when q → 0, it follows that
fHxc(r,r′) ≈ v(r,r′).

More elaborate expressions for Vxc that also include proper
short-distance spatial corrections exist. In this case, a more
accurate analysis of the effect of the many-body vertex
function on the screening of the electron-phonon interaction
becomes essential to draw a conclusive parallel between
MBPT and DFPT. However, this goes beyond the scope of
the present work. Therefore, as far as local or semi-local
approximations for Vxc are used, we can approximate the DW
screened interaction with the one evaluated at the DFPT level.

C. The nonrigid-nuclei contribution to the Debye-Waller
self-energy from a diagrammatic perspective

One of the most undeniable difference between the DFT and
MBPT scheme is the absence of a diagrammatic explanation
for the nonrigid nuclei contribution [Eq. (94)] to the second-
order derivative of the nuclear potential. This term has been
shown to be quite important in low-dimensional systems [21]
but, at first sight, it does not appear in the many-body theory
of the electron-phonon interaction. Indeed, in Eqs. (71) and
(75), the derivatives with respect to the atomic positions act
only on the local bare ionic potential.

In order to find a diagrammatic perspective of θ̃
DFPT,NRN
qλ,q′λ′ , we

follow again the path of performing a diagrammatic expansion
of the bare, un-dressed Hamiltonian and, at the end, draw links
with DFT. In the present case, we need to to consider a new
series of diagrams describing the change of the electronic
density induced by the electron-phonon interaction. Three
examples of this series of diagrams are showed in Fig. 12. We
can see that those diagrams are of the same order of magnitude
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FIG. 12. First three diagrams that dress the Hartree self-energy
due to the change of the electronic density induced by the electron-
phonon interaction. The sum of all diagrams of this kind [see
Eq. (104) for a more formal definition] reduce, in the static and
adiabatic limit, to the NRN contribution to the Debye-Waller self-
energy as discussed in the text.

as the lowest order self-energies and there is a priori no reason
to neglect them.

The dressing of the Hartree self-energy can occur in two
ways: the first is by dressing the internal electronic propagators
[an example is diagram 12(a)]. The second way is to dress two
tad poles with phonon scatterings like in diagrams 12(b) and
12(c). All the diagrams of this kind can be written as

δ�H (r1) =
∫

dr2v (r1 − r2) δρ (r2) , (104)

with

δρ (r2) = [ρ (r2) − ρ (r2)] =
∑

p

δρp (r2) (105)

= 1

N

∑
np

φnp (r2) φ∗
n′p (r2) δρnn′p (r2) . (106)

In the case of diagram 12(a), we have that

δρp (2) =
∑
q,λ

∫
d34

[
G(0)

p (2,3) ξ̃qλ (3) G(0)
p−q (3,4)

]
×ξ̃ ∗

qλ (4) G(0)
p (4,2) D

(0)
qλ (t3 − t4) , (107)

where ξ̃ is a first-order interaction that we assume to be
screened by the very same skeleton diagrams that we described
in Sec. VI C.

In order to introduce a simple and clear interpretation of the
contribution due to the δ�H diagrams, we take the static and
adiabatic limit of the atomic displacements. This approach will
also simplify the connection with the corresponding quantity
evaluated with the DFPT scheme.

We start by taking the static limit of D
(0)
qλ (t3 − t4) ≈

−δ (t3 − t4) [2n(ωqλ) + 1] and of ξ̃ (3) ≈ ξ̃ (r3) δ (t3). More-
over, in this limit, we can treat the atomic displacements as
classical and static variables in order to approximate �Ĥ (R):

�Ĥ (R) ≈
∑
qλ,i

ξ̃qλ (ri) uqλ, (108)

with uqλ the phonon displacements defined as

uqλ =
∑
lsα

(2NMsωqλ)−1�Rlsαηα (qλ|s) . (109)

As we are interested in a specific series of diagrams, we can
disregard higher-order corrections to �H (R). The Eq. (108)
allows to formally define the derivative of the Green’s function,
∂qλG (1,2) evaluated at the equilibrium nuclear positions.
Indeed, from Eq. (108), it follows that

[G (1,2)]−1 = [G(0) (1,2)]−1 − �H (R) . (110)

and

∂qλ [G (1,2)]−1 = −∂qλ�H (R) = −ξ̃qλ (r1) δ (1,2) , (111)

which, finally, using the identity

δ (1,2) =
∫

d3 [G (1,3)]−1 G (3,2) , (112)

yields the desired definition

∂qλG (1,2) =
∫

d3G(0) (1,3) ξ̃qλ (r3) G(0) (3,2) . (113)

Equation (113) is diagrammatically represented in Fig. 13.
The derivative of the Green’s function splits the projector in
two with the insertion of a dressed electron-phonon first-order
interaction ( ).

By using Eq. (113), we notice that the first-order inter-
actions appearing in the ρ (r2) − ρ (r2) can be interpreted as
derivatives of the Green’s function. By using Eq. (113), we
can indeed rewrite the quantity in square brackets of Eq. (107)
as ∫

d3G
(0)
k (2,3) ξ̃qλ (r3) G

(0)
k−q (3,4) = ∂qλGk (2,4). (114)

We take now the static limit of χ (0), which is consistent with
the static and adiabatic approach taken in this section. In this
way, we obtain the contribution of the first diagram (12.a) to
δ�H :

δ�H,a (r1) = −1

2

∑
qλ

∫
dr2 dr3v (r1,r2)

×∂qλ

[
χ (0) (r2,r3)

]
ξ̃ ∗

qλ (r3) [2n(ωqλ) + 1],

(115)

∂qλ =

FIG. 13. Diagrammatic transposition of the derivative of a
Green’s function with respect to a specific displacement written in
the phonon basis [see text, in particular Eq. (113)]. The derivative
splits the Green’s function with the insertion of an electron-phonon
first-order interaction.
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where the factor 1/2 follows from the definition of χ (0) [see
Eq. (67)] that yields two equivalent contributions to δ�H,a .

If we now perform the same procedure to all bubble
diagrams that contribute to time-dependent Hartree reducible
response function we get diagrams 12(b) and 12(c). The final
expression for δ�H is

δ�H (r1) = 1

2

∑
qλ

∫
dr2∂qλ[εtdh (r1,r2)]−1

× ξ̃qλ (r2) [2n(ωqλ) + 1]. (116)

We have demonstrated that, in the static and adiabatic limit,
the series of diagrams due to the dressing of the electronic
density as a consequence of the electron-nucleus interaction
reduce to a new contribution to the series of second-order
diagrams. However, the derivative with respect to the atomic
displacements is acting on the dielectric function.

Equation (116) allows us to rewrite the DFPT NRN
potential θ̃

DFPT,NRN
qλ,q′λ′ in a purely MBPT language. A direct

comparison between Eqs. (116) and (94) reveals that the
difference between the MBPT and the DFPT approaches lies
in the dielectric function (εtdh for the first and εDFT for the
second).

D. Screening of the first-order electron-nucleus interaction

If we now consider terms beyond the Hartree approxima-
tion, the definition of the dielectric function that screens the
second-order interaction will change. This means that if we
add to the Hartree potential a Fock operator, a VHxc potential
or a GW self-energy, the dielectric function will solve a
time-dependent Fock, DFT, or GW equations.

We can anyway add new correlation terms to the self-energy
by keeping frozen the self-consistency at the DFT level. This
means that the dielectric function will approximatively solve
a DFT equation that, within the limits of the discussion of
Sec. VIII B, will correspond to a simple RPA approximation
written in the KS basis.

If we now include the Fan contribution to the total self-
energy and follow the same procedure already discussed for
the skeleton diagrams (see Sec. VI C), we will obtain that the ξ

function is renormalized by the standard skeleton polarization
diagrams. These, again, will be summed in a RPA dielectric
function written in terms of KS bare Green’s functions.

E. Self-consistency

As already mention earlier, the self-consistent diagrams
play a crucial role in the definition of the second-order
interaction. The screening of the rigid-nuclei second-order
interaction can be obtained with a simple self-consistent
Hartree approximation (that is already embodied in the
DFT procedure). Instead, the nonrigid nuclei term requires
to include, self-consistently, Fan diagrams and cannot be
obtained with a simple mean-field approximation.

This complicates the merging of MBPT and DFT as it is
now clear that we can approximate the θ and ξ functions
with the DFPT counterparts under the condition that the
Dyson equation is not solved self-consistently. Any kind of

self-consistency would screen again the θ interaction leading
to a severe overscreening.

The self-consistency must be taken from the solution of the
KS equations and not re-introduced at the MB level. This, as
explained above, will correspond to the inclusion of certain
class of diagrams, a practice that is well motivated within a
many-body approach.

Finally, if the Dyson equation is not solved self-consistently,
any additional electronic self-energy beyond the Vxc can be
introduced as an additive potential [see Eq. (19)]. This means
that it is safe to introduce non-self-consistent quasiparticle
corrections (electron and/or phonon mediated).

F. Higher-order derivatives of the Vscf

The importance of creating a coherent merging of DFT and
MBPT stems from the possibility of deriving an accurate and
predictive approach to the electron-phonon interaction. There
is, however, an entire family of physical problems induced by
a strong electron-phonon interaction that requires to introduce
higher-order self-energy diagrams. A crucial difference with
respect to the state-of-the-art models (like Fröhlich or Holstein
Hamiltonians) is that the correct treatment of the nuclear
positions produce a new category of diagrams of generic order
n where the nth order derivative of the self-consistent potential
appears

T
(n)
R1···Rn

(r) ≡ ∂nVscf (r,R)

∂R1 · · · ∂Rn

, (117)

where the Debye-Waller diagram is the lowest order example.
Thanks to the simplicity of DFPT, it is possible to define an
iterative expression for the matrix elements of T

(n)
R1···Rn

(r):

T
(n)
R1···Rn

∣∣
nn′
kk′

≡ 〈nk|T (n)
R1···Rn

(r) |n′k′〉. (118)

Such matrix can be rewritten in terms of T (n−1) and of the nth
derivative of the KS energy levels:

T
(n)
R1···Rn

∣∣
nn′
kk′

=
∑′

mp,nk

⎡⎣T
(1)
R1

∣∣
nm

kp
T

(n−1)
R2···Rn

∣∣
mn′
pk′

εmp − εnk
−

T
(n−1)
R2···Rn

∣∣
nm

kp
T

(1)
R1

∣∣
mn′
pk′

εn′k′ − εmp

⎤⎦
+ P1

(
T

(n−1)
R2···Rn

∣∣
nn′
kk′

)
, (119)

with

T (0)
∣∣

mn′
pk′

= εn′k′δn′mδk′p, (120)

and

P1F (R1 . . . Rn) = −i∂R1F (R1 . . . Rn) , (121)

where F is a generic function of the atomic positions.
More information on Eq. (119) is provided in Appendix B.

Such procedure can be used to calculate numerically, in an
ab initio manner, the high-order self-energies.

IX. CONCLUSIONS

In this work, we have studied the electron-phonon problem
by comparing the standard many-body perturbation theory
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(MBPT) with density functional theory (DFT) and density
functional perturbation theory (DFPT). By analyzing the
different diagrams that contribute to the electronic self-energy,
we have achieved several important goals.

(i) The well-known electron-phonon induced tad-pole
diagram is not zero in general but can be canceled by a nuclear-
nuclear self-energy if the equilibrium nuclear positions are
coherent with the level of correlation introduced at the single-
particle levels. In the case of a non-self-consistent calculation,
the equilibrium positions evaluated with a DFT reference
Hamiltonian removes the sum of the tad-pole diagrams.

(ii) Self-consistency diagrams dress the second-order in-
teraction and the corresponding Debye-Waller self-energy.
This provides the many-body interpretation of the screened
Debye-Waller self-energy already known in the DFPT case.

(iii) We identify the specific series of diagrams that explain
the nonrigid nuclei contribution to the Debye-Waller self-
energy. The existence of this term was known only in a
purely DFPT (static and adiabatic) approach. In the present
work, we provide a clear physical interpretation of this term
by performing a static limit of the MBPT expression to
demonstrate that, indeed, it reduces to the well-known DFPT
result.

(iv) We have drawn a final series of statements regarding
the possibility to perform many-body perturbation theory
calculations on top of density functional and density func-
tional perturbation theories avoiding the double counting of
diagrams.

This work represents a firm and formally accurate inspec-
tion of the two methods while describing the limitations of
the static DFPT approach and providing a practical way to go
beyond by the merging with more advanced MBPT methods.
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APPENDIX A: THE INTERACTION HAMILTONIANS IN
THE PHONON DISPLACEMENTS REPRESENTATION

We proceed here to discuss the details of the derivation and
definition of the functions

ξqλ (r) = ∂(qλ)We-n (r,R) , (A1)

θqλ,q′λ′ (r) = 1
2∂2

(qλ)(q′λ′)We-n (r,R) , (A2)

�qλ = ∂(qλ)Wn-n (R) , (A3)

�qλ,q′λ′ = 1
2∂2

(qλ)(q′λ′)Wn-n (R) − �W ref
n-n (R)

∣∣
(qλ)(q′λ′), (A4)

where we purposely did not place a nucleus dependence R on
the left-hand side of those equations. We will indeed see that
the dependence is lifted by Eq. (A9), as the derivatives have to
be evaluated at R.

Those functions enter in the different interaction terms
of the electron-phonon interaction. We start by remembering

that

We-n (r,R) = −
∑
ls

Zsv (r − Rls) , (A5)

and

Wn-n (R) = 1
2

∑′
ls,l′s ′ ZsZs ′v (Rls − Rl′s ′ ) . (A6)

It follows that

∂Rlsα
We-n (r,R) = Zsv

(1)
α (r − Rls) , (A7)

and

∂2
RlsαRl′s′α′ We-n (r,R) = −Zsv

(2)
αα′ (r − Rls) δll′δss ′ , (A8)

with v(1)
α (r) ≡ ∂rα

v (r) and v
(2)
αα′ (r) ≡ ∂2

rαrα′ v (r). By using
Eqs. (A7) and (A8), the evaluation of the ∂(qλ) and ∂2

(qλ)(q′λ′) is
straightforward. It is enough to remember that

∂(qλ)F (R) =
∑
lsα

(2NMsωqλ)−1/2

× ηα (qλ|s) eiq·Rls ∂Rlsα
F (R)|R=R , (A9)

with F (R) a generic function. The resulting expression is
therefore independent of R. The ∂2

(qλ)(q′λ′) is then obtained by
applying twice Eq. (A9). We finally obtain that

ξqλ (r) =
∑
lsα

Zse
iq·Rls√

2NMsωqλ

ηα (qλ|s) v(1)
α (r − Rls). (A10)

The same machinery can be applied to θqλ,q′λ′ (r) obtaining

θqλ,q′λ′ (r) = −
∑
lsαα′

Zse
i(q+q′)·Rls

2NMs
√

ωqλωq′λ′

×ηα (qλ|s) ηα′ (qλ|s) v
(2)
αα′ (r − Rls). (A11)

Two important quantities follow from the integral of
Eqs. (A10) and (A11) when multiplied by two single-particle
wave function: 〈nk|ξqλ (r) |n′p〉 and 〈nk|θqλ,q′λ′ (r) |n′p〉. In
order to evaluate those we have to consider, in the first-order
derivative case, a term like∑

ls

[∫
dr φ∗

nk (r) v(1)
α (r − Rls)φn′p (r) eiq·Rls

]
, (A12)

with the r integral performed on the whole crystal. Now we
observe that v(1) and v(2) depend on the atomic positions only
via their argument. If Rls = Rl + τ s with τ s the position of
the atom s inside the unit cell located at Rl we can change
variable from r to r′ = r − Rl to center the sum in the unit cell
corner. It follows that Eq. (A12) turns into

eiq·τ s

[∑
l

ei(q+p−k)·Rl

]

×
[∑

sα

∫
0
dr u∗

nk (r) v(1)
α (r − τ s) un′p (r) ei(q+p−k)·r

]
,

(A13)
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where unk is the periodic part of the wave function. By using
the fact that

∑
l e

iP·Rl = NδP, we finally obtain that

〈nk|ξqλ (r) |n′p〉

= δp,k−q〈nk|ξqλ (r) |n′k − q〉=
∑
sα

Zse
iq·τ s

√
N√

2Msωqλ

ηα (qλ|s)

×
[∫

0
dr u∗

nk (r) v(1)
α (r − τ s) un′k−q (r)

]
. (A14)

The same strategy can be used to define the matrix elements
of θ :

〈nk|θqλ,q′λ′ (r) |n′p〉
= δp,k−q−q′ 〈nk|θqλ,q′λ′ (r) |n′k − q − q′〉

= −
∑
sαα′

Zse
iq·τ s√

4Msωqλ

ηα(qλ|s)ηα′(q′λ′|s)

×
[∫

0
dr u∗

nk (r) v
(2)
αα′ (r − τ s) un′k−q−q′ (r)

]
. (A15)

The definition of �qλ is similar and follows directly from
Eq. (A4) and from the extension of Eqs. (A7) and (A8) to the
nucleus-nucleus potential:

∂Rlsα
Wn-n (R) =

∑′
l′s ′ ZsZs ′v(1)

α (Rls − Rl′s ′ ) (A16)

and

∂2
RlsαRl′s′α′ Wn-n (R) = −ZsZs ′v

(2)
αα′ (Rls − Rl′s ′ ) (1 − δll′δss ′ )

+
∑′

l′′s ′′ ZsZs ′′v
(2)
αα′ (Rls − Rl′′s ′′ ) δll′δss ′ .

(A17)

This, leads to

�qλ ≡
∑′

ls,l′s ′
ZsZs ′√

2MsNωqλ

eiq·Rls

× v(1)
α (Rls − Rl′s ′ )ηα (qλ|s) , (A18)

and, finally,

1

2
∂2

(qλ)(q′λ′)Wn-n(R) =
∑
lsα

∑
l′s ′α′

Zse
i(q·Rls+q′ ·Rl′s′ )

2N
√

MsMs ′ωqλωq′λ′
ηα (qλ|s) ηα′(q′λ′|s ′)

×
[
−Zs ′v

(2)
αα′ (Rls − Rl′s ′ )(1 − δll′δss ′ ) +

∑′
l′′s ′′ Zs ′′v

(2)
αα′ (Rls − Rl′′s ′′ )δll′δss ′

]
. (A19)

APPENDIX B: AN ITERATIVE EXPRESSION FOR
ARBITRARY nth-ORDER DERIVATIVES OF Vscf WITH

RESPECT TO THE NUCLEAR DISPLACEMENTS

One of the ingredients that are most difficult to calculate
within an ab initio framework is the higher-order derivatives
of Vscf (r,R). While the first and second orders are needed to
calculate the lowest-order electron-phonon self-energies, an
extension of the theory to the regime of strong interaction
requires the knowledge of an arbitrary order derivative,

T
(n)
R1···Rn

(r) ≡ ∂nVscf (r,R)

∂R1 · · · ∂Rn

. (B1)

In order to derive a close expression for T (n), we use the
following property of the nuclear momentum operator PI :

[P1,Vscf (r,R)] = −i
∂Vscf (r,R)

∂R1
. (B2)

This identity can be iterated to give

[P1,[P2,Vscf (r,R)]] = −∂2Vscf (r,R)

∂R1∂R2
. (B3)

More generally, we have that

T
(n)
R1R2···Rn

= i
[
P1,T

(n−1)
R2···Rn

]
. (B4)

In order to evaluate the T (n) matrix elements, we start by
noticing that, within DFPT,

〈nk|P1|mp〉 = (−i)
〈nk| ∂Vscf (r,R)

∂R1
|mp〉

εmp − εnk
. (B5)

Now we define

T
(n)
R1···Rn

∣∣
nn′
kk′

≡ 〈nk|T (n)
R1···Rn

(r) |n′k′〉, (B6)

and we plug into Eq. (B4) a complete set of eigenstates
obtaining

T
(n)
R1···Rn

∣∣
nn′
kk′

= i
∑

mp �=nk

[〈nk (R) |P1
(|mp (R)〉T (n−1)

R2···Rn

∣∣
mn′
pk′

)
− T

(n−1)
R2···Rn

∣∣
nm

kp
〈mp|P1|n′k′〉]. (B7)

In order to rewrite T (n) in terms of T (n−1), we need to evaluate

P1
(|mp (R)〉T (n−1)

R2···Rn

∣∣
mn′
pk′

) = (P1|mp (R)〉)T (n−1)
R2···Rn

∣∣
mn′
pk′

+ |mp (R)〉(P1T
(n−1)
R2···Rn

∣∣
mn′
pk′

)
. (B8)

Last step is, then, to use Eq. (B5) to get

T
(n)
R1···Rn

∣∣
nn′
kk′

=
∑

mp �=nk

[T
(1)
R1

∣∣
nm

kp
T

(n−1)
R2···Rn

∣∣
mn′
pk′

εmp − εnk
−

T
(n−1)
R2···Rn

∣∣
nm

kp
T

(1)
R1

∣∣
mn′
pk′

εn′k′ − εmp

]
+ P1

(
T

(n−1)
R2···Rn

∣∣
nn′
kk′

)
. (B9)

In order to check the soundness of this approach, we apply it
to the first-order case:

T
(1)
R1

∣∣
nn′
kk′

=
∑

mp �=nk

T
(1)
R1

∣∣
nm

kp
T (0)

∣∣
mn′
pk′

εmp − εnk
−

∑
mp �=nk

T 0
∣∣

nm

kp
T

(1)
R1

∣∣
mn′
pk′

εn′k′ − εmp

+ P1(T (0)| nn′
kk′

). (B10)
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However, it is easy to verify that

∂Vscf (r,R)

∂R1
= ∂ [Te + Vscf (r,R)]

∂R1
, (B11)

which implies that

T (0)
∣∣

mn′
pk′

= εn′k′δn′mδk′p. (B12)

Equation (B12), when used in Eq. (B10), gives an iden-
tity that confirms the correctness of the iterative equation,
Eq. (B9).

When Eq. (B9) is applied to the second-order derivative it
provides a well-known relation that connects the second to the
first derivative [21,45]:

T
(2)
R1R2

∣∣
nn

kk
=

∑
mp

′
T

(1)
R1

∣∣
nm

kp
T

(1)
R2

∣∣
mn

pk
+ T

(1)
R2

∣∣
nm

kp
T

(1)
R1

∣∣
mn

pk

εmp − εnk

−∂2
R1R2

εnk(R). (B13)

More in general, Eq. (B9) can efficiently rewrite the nth-order
derivative in terms of the first-order derivative and of the nth-
order derivative of the electronic energies, ∂nεnk(R)

∂R1···∂Rn
. However,

these derivatives can be efficiently calculated using DFPT or
finite differences methods [24,45].
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