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Lattice vibrations in the Frenkel-Kontorova Model. II. Thermal conductivity
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We applied the formulas for the phonon spectral-density function that we presented in the previous paper of this
series to analyze the thermal conductivity of the lattice in the framework of the Frenkel-Kontorova (FK) model.
We found that two extra mechanisms of phonon scattering (different from the point impurities, three-phonon
processes, and boundary scattering typical of all crystals), viz., resonance, and anharmonic scattering, that
mainly influences the thermal conductivity of the lattice. The frequencies of resonance scattering are discrete,
and their number increases from a finite number to infinity with their transition from the commensurate to the
incommensurate state. Changing the amplitude and period of the FK model changes the frequencies and the
frequency number of resonance scattering and the intensity of anharmonic scattering. We analyze these changes
in detail. Our theory can explain all existing numerical results on this problem and suggest strategies to reduce
the thermal conductivity of the lattice of layered materials.
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I. INTRODUCTION

In the first paper of this series [1], termed number I, we
derived general expressions for vibrational properties of the
lattice of the Frenkel-Kontorova (FK) model, number density,
and the energy of the system. These derivations utilized the
technique of thermodynamic Green’s functions, based on
quantum field-theoretic methods.

In layered materials with two interpenetrating sublattices,
we can simply use an on-site potential to describe their
atomic interactions. The FK model that describes the effects
of a typical on-site potential has been studied extensively
[2]. As we mentioned in the Introduction to paper I, one
of our motivations for studying this system was that very
low lattice thermal conductivity was found experimentally
for some materials consisting of two interpenetrating in-
commensurate sublattices, such as NaxCoO2 [3], Ca3Co4O9

[4,5], and Bi2−xPbxSr2Co2Oy [5,6]. Therefore, these materials
probably have good thermoelectric properties [7]. In another
recent paper, we discussed the mechanism underlying the low
lattice thermal conductivity in Ca3Co4O9, based on fitting
it to experimental data, using Callaway’s phenomenological
theory [8]. Furthermore, our experimental results yielded
some clues as to the origin of this low thermal conductivity
and suggested qualitative explanations [8]; nevertheless, a
systematic theoretical description still is lacking.

Some numerical simulations [9–16] of thermal conductivity
with an on-site potential previously were carried out. Although
they yielded some useful results, showing that the thermal
conductivity of a one-dimensional lattice diverges with the
system’s size [10–15] and that the thermal conductivity for an
anharmonic on-site potential [16,17] tends monotonically to
zero with increasing temperature, the mechanisms of thermal
conductivity were only those conjectured from these numer-
ical simulations. Therefore, having an analytical solution to
complement those numerical studies is highly desirable.

*Corresponding author: qmeng@bnl.gov
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In this paper, we use the Green’s functions deduced in
paper I to calculate the correlation function of the energy-flow
operator [18] and then to obtain analytical formulas of thermal
conductivity for the FK model with various periods; these,
in turn, led to various-order commensurate states and to an
incommensurate state that we derived, based on the Kubo
formula for thermal conductivity. Utilizing these analytical
formulas, we analyzed in detail the mechanism of thermal
conductivity for the FK model.

II. GENERAL FORMALISM OF LATTICE THERMAL
CONDUCTIVITY

The lattice thermal conductivity from the Kubo expression
is

κ = lim
δ→0

kBβ

V

∫ ∞

0
dt e−δt

∫ β

0
dλ〈S(0)S(t + i�λ)〉, (2.1)

where V is the volume of the crystal, β = 1
kBT

, T is
temperature, and S(t) is the energy-flow operator of the lattice
at time t . Ignoring the nondiagonal parts of the energy-flow
operator, the energy-flow operator is [18]

S(t) =
∑

k

�ωkvknk, (2.2)

where ωk is the frequency of the normal mode with wave
vector k of the unperturbed crystal, vk is the group velocity,
and nk = a+

k ak is the number-density operator of the phonon.
From Eq. (2.2), thermal conductivity then is written as

κ = lim
δ→0

kBβ�
2

V

∑
kq

vkvqωkωq

∫ ∞

0
dte−δt

×
∫ β

0
dλFkq(t + i�λ). (2.3)

The correlation function Fkq(t) is

Fkq(t) = 〈nk(0)nq(t)〉 = 〈a+
k (0)ak(0)a+

q (t)aq(t)〉
≈ 〈a+

k (0)aq(t)〉〈ak(0)a+
q (t)〉. (2.4)
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We used the decoupled relation [19] 〈abcd〉 = 〈ab〉〈cd〉 +
〈ac〉〈bd〉 + 〈ad〉〈bc〉 and ignored those terms involving two
creation and two annihilation operators because they are neg-
ligibly small; furthermore, we ignored the correlation function
with same time argument since only such correlation functions
with different times contribute to thermal conductivity.

Combining Eqs. (2.13a) and (2.13b) in paper I and
Eqs. (2.1)–(2.4), we obtained the following equation for the
thermal conductivity of the lattice:

κ = πkBβ2
�

2

16V

∑
kq

vkvqωkωq

∫ ∞

−∞
dω

×
(

1 + ω

ωq

+ ω

ωk

+ ω2

ωkωq

)2

Jkq(ω)Jqk(ω)eβ�ω,

(2.5)

where Jkq(ω) is the spectral-density function defined in paper
I. Equation (2.5) is the starting point for our calculation of the
lattice’s thermal conductivity.

III. APPLICATIONS

Next, we examined the properties of phonon transport for
various different degrees of matching between the unit-cell
sizes a and b of the two sublattices of the FK model.

A. a = b

Here, the period of the FK model equals that of the lattice
chain. The spectral-density function (as detailed in paper I) is

Jkq(ω) = δqkωk

ω̃
(1)
k

δ
(
ω − ω̃

(1)
k

) − δ
(
ω + ω̃

(1)
k

)
eβ�ω − 1

, (3.1)

where ω̃
(1)
k = (ω2

k + M1)1/2 and M1 is given in Eq. (3.4) of
paper I. Substituting and integrating Eq. (3.1) into Eq. (2.5),
we obtain the result that herein thermal conductivity is
infinite, viz., consistent with the results of many numerical
simulations [10–17]. Because our system here is an infinite
lattice chain, thermal conductivity diverges as N → ∞ in
numerical simulations.

B. a = b
2

In paper I, we show that we can write the spectral-density function in this case as follows:

Jkq = 2M2�q+(π/a)

π (eβ�ω − 1)

δqkωqM2 + δq+(π/a)k(ωqωq+(π/a))1/2
(
ω2 − ω2

q

)
[
ω2 − (

ω̃
(2)
k

)2]2 + �q+(π/a)2M4
2

, (3.2)

where ω̃
(2)
k = (ω2

k + M2
2 	k+(π/a))1/2 and 	k+(π/a), �q+(π/a), and M2 are defined in paper I. From the spectral-density function, we

can consider contributions to thermal conductivity in two cases.
Case 1. k = q.
In this case, the spectral-density function becomes

Jkk = 2ωkM
2
2 �k+(π/a)

π (eβ�ω − 1)

1[
ω2 − (

ω̃
(2)
k

)2]2 + �q+(π/a)2M4
2

, (3.3)

and the contributions of these phonons to the thermal conductivity is

κk=q = kBβ2
�

2

4πV

∑
q

v2
qω

4
q

∫ ∞

−∞
dω

(
1 + ω

ωq

)4
eβ�ω

(eβ�ω − 1)2

�q+(π/a)2M4
2{[

ω2 − (
ω̃

(2)
q

)2]2 + �q+(π/a)2M4
2

}2
. (3.4)

Case 2. k = q + π
a

,

Jq+(π/a)q = 2M2�q+(π/a)

π (eβ�ω − 1)

(ωqωq+(π/a))1/2
(
ω2 − ω2

q

)
[
ω2 − (

ω̃
(2)
q

)2]2 + �q+(π/a)2M4
2

, (3.5a)

and

Jqq+(π/a) = 2M2�q

π (eβ�ω − 1)

(ωqωq+(π/a))1/2
(
ω2 − ω2

q+(π/a)

)
[
ω2 − (

ω̃
(2)
q+(π/a)

)2]2 + �2
qM

4
2

. (3.5b)

The thermal conductivity is

κk=q+(π/a) = kBβ2
�

2

4πV

∑
q

vqvq+(π/a)(ωqωq+(π/a))
2
∫ ∞

−∞
dω

(
1 + ω

ωq

+ ω

ωq+(π/a)
+ ω2

ωqωq+(π/a)

)2
eβ�ω

(eβ�ω − 1)2

× M2
2 �q�q+(π/a)

(
ω2 − ω2

q

)(
ω2 − ω2

q+(π/a)

)
{[

ω2 − (
ω̃

(2)
q

)2]2 + �q+(π/a)2M4
2

}{[
ω2 − (

ω̃
(2)
q+(π/a)

)2]2 + �2
qM

4
2

} . (3.6)
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For small values of �k+(π/a) and �k that are related to the width at half maximum of the peak in the energy
distribution, the integrands in Eqs. (3.4) and (3.6) peak around ω = ω̃(2)

q and ω = ω̃(2)
q = ω̃

(2)
q+(π/a). We can evaluate these

integrals analytically by replacing the peak distribution by a Dirac function. We then obtain the total thermal conductivity
as

κ = kBβ2
�

2

8V M2
2

∑
q

eβ�ω̃
(2)
q(

eβ�ω̃
(2)
q − 1

)2

[
1 + 6

(
ω̃(2)

q

ωq

)2

+
(

ω̃(2)
q

ωq

)4]
v2

qω
4
q

ω̃
(2)
q �q+(π/a)

+ kBβ2
�

2

4V M4
2

∑
q

′ eβ�ω̃
(2)
q(

eβ�ω̃
(2)
q − 1

)2

[(
1 +

(
ω̃(2)

q

)2

ωqωq+(π/a)

)2

+
(

ω̃(2)
q

ωq

+ ω̃(2)
q

ωq+(π/a)

)2]

× vqvq+(π/a)(ωqωq+(π/a))2
[(

ω̃(2)
q

)2 − ω2
q

][(
ω̃(2)

q

)2 − ωq+(π/a)2

]
ω̃

(2)
q (�q + �q+(π/a))

. (3.7)

Equation (3.7) is the familiar relaxation-time expression.
The first term therein is the contribution from k = q. In this
case, the reciprocal of the phonon lifetime in the FK potential

is τ−1 ∝ �q+(π/a)M
2
2 ω̃

(2)
q

ω2
q

. Using Eq. (3.27b) from paper I, we can

write the reciprocal of the phonon lifetime as

τ−1 ∝ πM2
2 ω̃(2)

q

2|ωq+(π/a)|ω2
q

[
δ
(
ω̃(2)

q − ωq+(π/a)
)

+ δ
(
ω̃(2)

q + ωq+(π/a)
)]

. (3.8)

Equation (3.8) reveals that there is resonance scattering at
a frequency that is the solution for ω̃(2)

q = |ωq+(π/a)|. Figure
1 is a schematic illustrating how to assess the resonance
frequency. In the calculation of Fig. 1, we let the largest
frequency of the unperturbed normal mode be ωL = 1 [1].
In this figure, the points corresponding to the addition
sign meet ω̃(2)

q = |ωq+(π/a)|. There are two solutions for

FIG. 1. (Color online) Schematic illustrating how to calculate
resonance frequency for a = b

2 . The green dashed line is ωq , and the
black and red solid lines show the two branches of ω̃(2)

q . The red points
shown by addition signs satisfy ω̃(2)

q = |ωq | or ω̃(2)
q = |ωq+(π/a)|. The

corresponding frequencies of these points are resonant ones. ωL = 1

and π2V0
ma2 = 0.1 are used in the calculation.

this equation in Fig. 1. When the frequency of an incident
phonon is a resonance frequency, the phonon lifetime is
zero, meaning that the phonon is local only, and cannot
propagate.

The second term in Eq. (3.7) is the contribution from k =
q + π

a
. The prime symbol represents a sum for the value of q

for ω̃(2)
q = ω̃

(2)
q+(π/a); it is not a strict condition here because the

period of ω̃(2)
q is π

a
. The phonon’s lifetime is

τ−1 ∝ M4
2 ω̃(2)

q

ωqωq+(π/a)
[(

ω̃
(2)
q

)2 − ω2
q

][(
ω̃

(2)
q

)2 − ωq+(π/a)2

]
×

[
δ
[(

ω̃(2)
q

)2 − ω2
q

]
|ωq | + δ

[(
ω̃(2)

q

)2 − ωq+(π/a)2

]
|ωq+(π/a)|

]
.

(3.9)

Equation (3.9) also details the phonon’s resonance scatter-
ing. The resonance frequency is obtained from

ω̃(2)
q = |ωq+(π/a)| and ω̃(2)

q = |ωq |. (3.10)

From Eqs. (3.8) and (3.9), we find that the phonons
described by a special frequency are scattered completely,
implying that these special frequency phonons do not con-
tribute to thermal conductivity. However, the transport of
other phonons occurs without resistance; therefore, the total
thermal conductivity still is infinite even if other mech-
anisms, such as point impurities, three-phonon processes,
and the boundary scattering of thermal conductivity, are not
considered.

C. a = b
3

For this case, we first consider the contribution of
C2(k1,k2) (see paper I). The spectral-density function
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is

Jkq = 2

eβ�ω − 1

×
( δqk

π
ωq + ϕq+(2π/3a)	q+(2π/3a) + ϕq−(2π/3a)	q−(2π/3a)

)
(φq+(2π/3a)�q+(2π/3a) + φq−(2π/3a)�q−(2π/3a)) − [

ω2 − (
ω̃

(3)
q

)2]
(ϕq+(2π/3a)�q+(2π/3a) + ϕq−(2π/3a)�q−(2π/3a))[

ω2 − (
ω̃

(3)
q

)2]2 + (φq+(2π/3a)�q+(2π/3a) + φq−(2π/3a)�q−(2π/3a))2
,

(3.11)

where ϕq , φq , and ω̃(3)
q are defined in paper I. Using the same method as used in the section above, we obtain the contribution to

thermal conductivity for several cases:
Case 1. k = q,

κk=q = kBβ2
�

2

8V

∑
q

eβ�ω̃
(3)
q(

eβ�ω̃
(3)
q − 1

)2

[
1 + 6

(
ω̃(3)

q

ωq

)2

+
(

ω̃(3)
q

ωq

)4]
v2

qω
4
q

ω̃
(3)
q

(
1 − α2

2 (	q+(2π/3a)−	q−(2π/3a))
ωq+(2π/3a)2 −ωq−(2π/3a)2

)2

|φq+(2π/3a)�q+(2π/3a) + φq−(2π/3a)�q−(2π/3a)| . (3.12)

Case 2. k = q + 2π
3a

,

κk=q+(2π/3a) = kBβ2
�

2

8V

∑
q

′ eβ�ω̃
(3)
q(

eβ�ω̃
(3)
q − 1

)2

[(
1 +

(
ω̃

(3)
k

)2

ωkωk+(2π/3a)

)2

+
(

ω̃
(3)
k

ωk

+ ω̃
(3)
k

ωk+(2π/3a)

)2]

× v2
qω

4
qα

2
2

ω̃
(3)
q

(
	q + α2(	q−	q−(2π/3a))

ω2
q−ωq−(2π/3a)2

)2

|φq�q + φq−(2π/3a)�q−(2π/3a)| . (3.13)

Case 3. k = q − 2π
3a

,

κk=q−(2π/3a) = kBβ2
�

2

8V

∑
q

′ eβ�ω̃
(3)
q(

eβ�ω̃
(3)
q − 1

)2

[(
1 +

(
ω̃

(3)
k

)2

ωkωk−(2π/3a)

)2

+
(

ω̃
(3)
k

ωk

+ ω̃
(3)
k

ωk−(2π/3a)

)2]

× v2
qω

4
qα

2
2

ω̃
(3)
q

(
	q + α2(	q−	q+(2π/3a))

ω2
q−ω

q+(2π/3a)2

)2

|φq�q + φq+(2π/3a)�q+(2π/3a)| . (3.14)

The prime symbol in Eqs. (3.13) and (3.14) represents only the sum for q of ω̃(3)
q = ω̃

(3)
q+(2π/3a) [Eq. (3.13)] and ω̃(3)

q = ω̃
(3)
q−(2π/3a)

[Eq. (3.14)]. The thermal conductivities from Eqs. (3.12)–(3.14) are similar to the result of a = b
2 , i.e., resonance scattering in

some frequencies will result in zero thermal conductivity, whereas phonons with other frequencies have resistance-free transport
provided that point impurities, three-phonon processes, and boundary scattering are not considered in calculating the lattice
thermal conductivity. The resonance frequency is obtained from one of the following three equations:

ω̃(3)
q = |ωq+(2π/3a)|, (3.15a)

ω̃(3)
q = |ωq−(2π/.3a)|, (3.15b)

and

ω̃(3)
q = |ωq |. (3.15c)

For a structure higher than a second-order commensurate one, the effect of C3(k1,k2,k3) does not disappear (see paper I).
When the effects of C3(k1,k2,k3) and C4(k1,k2,k3,k4) are considered, we obtain the spectral-density function,

Jkq = 2

exp(β�ω) − 1

( δqk

π
ωq + Re ξ

)
Im ζ − [

ω2 − (
ω̃(3)

q

)2]
Im ξ[

ω2 − (
ω̃

(3)
q

)2]2 + (Im ζ )2
, (3.16)

where (ω̃(3)
q )2 = ω2

q − Re ζ . ξ and ζ are two functions dependent on the vectors k and q. “Re” and “Im,” respectively, represent
their real and imaginary parts. Details are given in the Supplemental Material of paper I. The thermal conductivities for three
cases are the following:

Case 1. q = k,

κq=k = kBβ2
�

2

4V

∑
k

exp
(
β�ω̃

(3)
k

)
[
exp

(
β�ω̃

(3)
k

) − 1
]2

[
1 + 6

(
ω̃

(3)
k

ωk

)2

+
(

ω̃
(3)
k

ωk

)4]
v2

kω
2
k[ωk + π (Re ξ )q=k]2

ω̃
(3)
k |(Im ζ )q=k|

. (3.17)
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Case 2. q = k + 2π
3a

,

κq=k+(2π/3a) = kBβ2
�

2

2V

∑
k

′ (α2 + α4)2 exp
(
β�ω̃

(3)
k

)
[
exp

(
β�ω̃

(3)
k

) − 1
]2

[(
1 +

(
ω̃

(3)
k

)2

ωkωk+(2π/3a)

)2

+
(

ω̃
(3)
k

ωk

+ ω̃
(3)
k

ωk+(2π/3a)

)2]

× vkvk+(2π/3a)(ωkωk+(2π/3a))2	k	k+(2π/3a)

ω̃
(3)
k |(Im ζ )1 + (Im ζ )2|

. (3.18)

Case 3. q = k − 2π
3a

,

κq=k−(2π/3a) = kBβ2
�

2

2V

∑
k

′ (α2 + α4)2 exp
(
β�ω̃

(3)
k

)
[
exp

(
β�ω̃

(3)
k

) − 1
]2

[(
1 +

(
ω̃

(3)
k

)2

ωkωk−(2π/3a)

)2

+
(

ω̃
(3)
k

ωk

+ ω̃
(3)
k

ωk−(2π/3a)

)2]

× vkvk−(2π/3a)(ωkωk−(2π/3a))2	k	k−(2π/3a)

ω̃
(3)
k |(Im ζ )3 + (Im ζ )4|

, (3.19)

where (Im ζ )1, (Im ζ )2, (Im ζ )3, and (Im ζ )4 are Im ζ after using the k + 2π
3a

→ q, k → k; k + 2π
3a

→ k, k → q; k − 2π
3a

→ q,
k → k; and k − 2π

3a
→ k, k → q transitions, respectively. Carefully analyzing Im ζ in the Supplemental Material of paper I,

we find that not only can the quadratic and quartic terms [the first term of Eq. (S.60) in the Supplemental Material of paper I]
can bring about resonance scattering, but also the cubic term can [i.e., the second and third terms of Eq. (S.60)] from the FK
on-site potential. We can assess the resonance frequencies by solving one of the equations of Eq. (3.15). Moreover, we note
that the cubic term also results in other anharmonic scatterings [the last six terms of Eq. (S.60) in the Supplemental Material
of paper I], i.e., the cubic term of the FK on-site potential implies result that resonance scattering is not the only source of
phonon scattering. Anharmonic scattering, unlike resonance scattering, will scatter phonons of all frequencies. Therefore, when
such scattering is considered, the total thermal conductivity will be finite, i.e., the divergence of thermal conductivity with the
system’s size will be lacking. This result is consistent with some numerical experiments [16,17]. As indicated in paper I, when the
cubic term from the FK on-site potential is considered, a theoretical solution becomes impossible for higher-order commensurate
states. However, from assessing the third-order commensurate state, we find that the cubic term mainly leads to anharmonic
scattering of all frequency phonons, although the phonon lifetime for scattering has a finite value. The anharmonic contribution
is similar to that obtained before [20–22]. Therefore, in subsequent sections, we only consider the effect of the quadratic
term.

D. a = sr b

The wave vector of the periodic FK model is g = 2πsr

a
for any order of commensurate state. The spectral-density function

is

Jkq = − 2

π [exp(β�ω) − 1]

× α2Im
(
θ

(r)
1 + θ

(r)
2

){
δqkωq + Re

[
αη

(r)
1 + α2

(
η

(r)
2 − η

(r)
3

)]} + [
ω2 − (

ω̃(r)
q

)2]
Im

[
αη

(r)
1 + α2

(
η

(r)
2 − η

(r)
3

)]
[
ω2 − (

ω̃
(r)
q

)2]2 + α4
[
Im

(
θ

(r)
1 + θ

(r)
2

)]2
, (3.20)

where (ω̃(r)
q )2 = ω2

q + α2Re(θ (r)
1 + θ

(r)
2 ). α, θ

(r)
1 , θ

(r)
2 , η

(r)
1 , η

(r)
2 , and η

(r)
3 are defined in paper I. The lattice-thermal conductivities

in various cases are the following:
Case 1. k = q.
When k = q, η

(r)
1 and η

(r)
2 disappear. From Eq. (2.5), we have

κk=q = kBβ2
�

2

8V α2

∑
k

eβ�ω̃
(r)
k(

eβ�ω̃
(r)
k − 1

)2

[
1 + 6

(
ω̃

(r)
k

ωk

)2

+
(

ω̃
(r)
k

ωk

)4]
v2

kω
4
k

ω̃
(r)
k

(
1 − α2

ωk
Re η

(r)
3

)2∣∣Im(
θ

(r)
1 + θ

(r)
2

)∣∣ . (3.21)

Case 2. k = q − g.
We first need to know the values of Jq−gq and Jqq−g , respectively, that are obtained from Jkq by substituting the subscripts

k → q − g, q → q, and k → q, q → q − g. Then, η
(r)
2 and η

(r)
3 disappear, and η

(r)
1 becomes

η
(r)
1 = (ωqωq−g)1/2(	q−g − i�q−g) (3.22a)
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for the substitution of subscripts k → q − g, q → q, and

η
(r)
1 = (ωq−gωq)1/2(	q − i�q) (3.22b)

for the substitution of subscripts k → q, q → q − g. Other terms, such as θ
(r)
1 , θ

(r)
2 , and ω̃(r)

q , are similar to η
(r)
1 , and then, we

have

Jq−gq = − 2

π [exp(β�ω) − 1]

⎧⎨
⎩α3Im

(
θ

(r)
1 + θ

(r)
2

)
Re

(
η

(r)
1

) + α
[
ω2 − (

ω̃(r)
q

)2]
Im

(
η

(r)
1

)
[
ω2 − (

ω̃
(r)
q

)2]2 + α4
[
Im

(
θ

(r)
1 + θ

(r)
2

)]2

⎫⎬
⎭

k→q−g,q→q

, (3.23a)

Jqq−g = − 2

π [exp(β�ω) − 1]

⎧⎨
⎩α3Im

(
θ

(r)
1 + θ

(r)
2

)
Re

(
η

(r)
1

) + α
[
ω2 − (

ω̃(r)
q

)2]
Im

(
η

(r)
1

)
[
ω2 − (

ω̃
(r)
q

)2]2 + α4
[
Im

(
θ

(r)
1 + θ

(r)
2

)]2

⎫⎬
⎭

k→q,q→q−g

. (3.23b)

The thermal conductivity is

κk=q−g = kBβ2
�

2

4V

∑
q

′ eβ�ω̃
(r)
q(

eβ�ω̃
(r)
q − 1

)2

vqvq−gω
2
qω

2
q−g	q	q−g

[( ω̃
(r)
q

ωq
+ ω̃

(r)
q

ωq−g

)2 + ( (ω̃(r)
q )2

ωqωq−g
+ 1

)2]
ω̃

(r)
q

[∣∣Im(
θ

(r)
1 + θ

(r)
2

)∣∣
q→q

+ ∣∣Im(
θ

(r)
1 + θ

(r)
2

)∣∣
q→q−g

] . (3.24)

Case 3. k = q + g.

Similar to the case of k = q − g, the thermal conductivity is

κk=q+g = kBβ2
�

2

4V

∑
q

′ eβ�ω̃
(r)
q(

eβ�ω̃
(r)
q − 1

)2

vqvq−gω
2
qω

2
q+g	q	q+g

[( ω̃
(r)
q

ωq
+ ω̃

(r)
q

ωq+g

)2 + ( (ω̃(r)
q )2

ωqωq+g
+ 1

)2]
ω̃

(r)
q

[∣∣Im(
θ

(r)
1 + θ

(r)
2

)∣∣
q→q

+ ∣∣Im(
θ

(r)
1 + θ

(r)
2

)∣∣
q→q+g

] . (3.25)

Case 4. k = q − 2g.
For this case, η

(r)
1 and η

(r)
3 disappear, similar to k = q − g, and η

(r)
2 is

η2 = (ωqωq−2g)1/2

ω2
q−g − ω2

q−2g

(	q−g − 	q−2g − i�q−g + i�q−2g) (3.26a)

for the substitution of subscripts k → q − 2g, q → q, and

η2 = (ωqωq−2g)1/2

ω2
q−g − ω2

q

(	q−g − 	q − i�q−g + i�q) (3.26b)

for substitution of subscripts k → q, q → q − 2g, then we have

Jq−2gq = − 2

π [exp(β�ω) − 1]

⎧⎨
⎩α4Im

(
θ

(r)
1 + θ

(r)
2

)
Re

(
η

(r)
2

) + α2
[
ω2 − (

ω̃(r)
q

)2]
Im

(
η

(r)
2

)
[
ω2 − (

ω̃
(r)
q

)2]2 + α4
[
Im

(
θ

(r)
1 + θ

(r)
2

)]2

⎫⎬
⎭

k→q−2g,q→q

, (3.27a)

Jqq−2g = − 2

π [exp(β�ω) − 1]

⎧⎨
⎩α4Im

(
θ

(r)
1 + θ

(r)
2

)
Re

(
η

(r)
2

) + α2
[
ω2 − (

ω̃(r)
q

)2]
Im

(
η

(r)
2

)
[
ω2 − (

ω̃
(r)
q

)2]2 + α4
[
Im

(
θ

(r)
1 + θ

(r)
2

)]2

⎫⎬
⎭

k→q,q→q−2g

. (3.27b)

The thermal conductivity is

κk=q−2g = kBβ2
�

2α2

4V

∑
q

′
vqvq−2gω

2
qω

2
q−2g

eβ�ω̃
(r)
q(

eβ�ω̃
(r)
q − 1

)2

×
(	q−g − 	q)(	q−g − 	q−2g)

[( ω̃
(r)
q

ωq
+ ω̃

(r)
q

ωq−2g

)2 + ( (ω̃(r)
q )2

ωqωq−2g
+ 1

)2]
ω̃

(r)
q

(
ω2

q−g − ω2
q−2g

)(
ω2

q−g − ω2
q

)[∣∣Im(
θ

(r)
1 + θ

(r)
2

)∣∣
q→q

+ ∣∣Im(
θ

(r)
1 + θ

(r)
2

)∣∣
q→q−2g

] . (3.28)
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Case 5. k = q + 2g,

κk=q+2g = kBβ2
�

2α2

4V

∑
q

′
vqvq+2gω

2
qω

2
q+2g

eβ�ω̃
(r)
q(

eβ�ω̃
(r)
q − 1

)2

×
(	q+g − 	q)(	q+g − 	q+2g)

[( ω̃
(r)
q

ωq
+ ω̃

(r)
q

ωq+2g

)2 + ( (ω̃(r)
q )2

ωqωq+2g
+ 1

)2]
ω̃

(r)
q

(
ω2

q+g − ω2
q+2g

)(
ω2

q+g − ω2
q

)[∣∣Im(
θ

(r)
1 + θ

(r)
2

)∣∣
q→q

+ ∣∣Im(
θ

(r)
1 + θ

(r)
2

)∣∣
q→q+2g

] . (3.29)

The prime symbol in Eqs. (3.24), (3.25), (3.28), and (3.29) represents a similar meaning as in Eqs. (3.13) and (3.14). In the
current approximation, we can obtain a series representation of the resonance frequency of scattering phonons. It is evident from
the reciprocal of the phonon’s lifetime. As an example, we inspect Eq. (3.21). The phonon lifetime has

τ−1 ∝ α2ω̃(r)
q

ω2
q

∣∣Im(
θ

(r)
1 + θ

(r)
2

)∣∣ = α2ω̃(r)
q

ω2
q

∣∣∣∣∣−�q−g − �q+g + [(
ω̃(r)

q

)2 − ω2
q

] n−2∑
s=1

�q+(s+1)g − �q+sg

ω2
q+sg − ω2

q+(s+1)g

∣∣∣∣∣, (3.30)

where �q+sg = πδ[(ω̃(r)
q )2 − ω2

q+sg]. The formula reveals that a phonon will be scattered resonantly when the frequency of the
phonon satisfies the condition,

ω̃(r)
q = |ωq+sg|, (3.31)

where s is any integer. The resonance frequency number n satisfies the condition that nsr is the smallest integer.

E. a = si b

Here, si is an irrational number, and our system is an incommensurate state. g = 2πsi

a
. Any integer multiple of g is not a

reciprocal lattice vector. The spectral-density function is

Jkq =− 2

π [exp(β�ω) − 1]

α2Im
(
θ

(i)
1 + θ

(i)
2

){
δqkωq + Re

[
αη

(i)
1 + α2

(
η

(i)
2 − η

(i)
3

)]} + [
ω2 − (

ω̃(i)
q

)2]
Im

[
αη

(i)
1 + α2

(
η

(i)
2 − η

(i)
3

)]
[
ω2 − (

ω̃
(i)
q

)2]2 + α4
[
Im

(
θ

(i)
1 + θ

(i)
2

)]2
,

(3.32)

where ω̃(i)
q , α, θ (i)

1 , θ (i)
2 , η(i)

1 , η(i)
2 , and η

(i)
3 are defined in paper I. From the spectral-density function and similar to the commensurate

state in Sec. III D, the thermal conductivity of the lattice is
Case 1. k = q,

κk=q = kBβ2
�

2

8V α2

∑
q

eβ�ω̃
(i)
q(

eβ�ω̃
(i)
q − 1

)2

[
1 + 6

(
ω̃(i)

q

ωq

)2

+
(

ω̃(i)
q

ωq

)4]v2
qω

4
q

ω̃
(i)
q

(
1 − α2

ωq
Re η

(i)
3

)2

∣∣Im(
θ

(i)
1 + θ

(i)
2

)∣∣ . (3.33)

Case 2. k = q − g,

κk=q−g = kBβ2
�

2

4V

∑
q

′ eβ�ω̃
(i)
q(

eβ�ω̃
(i)
q − 1

)2

vqvq−gω
2
qω

2
q−g	q	q−g

[( ω̃
(i)
q

ωq
+ ω̃

(i)
q

ωq−g

)2 + ( (ω̃(i)
q )2

ωqωq−g
+ 1

)2]
ω̃

(i)
q

[∣∣Im(
θ

(i)
1 + θ

(i)
2

)∣∣
q→q

+ ∣∣Im(
θ

(i)
1 + θ

(i)
2

)∣∣
q→q−g

] . (3.34)

Case 3. k = q + g,

κk=q+g = kBβ2
�

2

4V

∑
q

′ eβ�ω̃
(i)
q(

eβ�ω̃
(i)
q − 1

)2

vqvq−gω
2
qω

2
q+g	q	q+g

[( ω̃
(i)
q

ωq
+ ω̃

(i)
q

ωq+g

)2 + ( (ω̃(i)
q )2

ωqωq+g
+ 1

)2]
ω̃

(i)
q

[∣∣Im(
θ

(i)
1 + θ

(i)
2

)∣∣
q→q

+ ∣∣Im(
θ

(i)
1 + θ

(i)
2

)∣∣
q→q+g

] . (3.35)

Case 4. k = q − 2g,

κk=q−2g = kBβ2
�

2α2

4V

∑
q

′
vqvq−2gω

2
qω

2
q−2g

eβ�ω̃
(i)
q(

eβ�ω̃
(i)
q − 1

)2

×
(	q−g − 	q)(	q−g − 	q−2g)

[( ω̃
(i)
q

ωq
+ ω̃

(i)
q

ωq−2g

)2 + ( (ω̃(i)
q )2

ωqωq−2g
+ 1

)2]
ω̃

(i)
q

(
ω2

q−g − ω2
q−2g

)(
ω2

q−g − ω2
q

)[∣∣Im(
θ

(i)
1 + θ

(i)
2

)∣∣
q→q

+ ∣∣Im(
θ

(i)
1 + θ

(i)
2

)∣∣
q→q−2g

] . (3.36)
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Case 5. k = q + 2g,

κk=q+2g = kBβ2
�

2α2

4V

∑
q

′
vqvq+2gω

2
qω

2
q+2g

eβ�ω̃
(i)
q(

eβ�ω̃
(i)
q − 1

)2

×
(	q+g − 	q)(	q+g − 	q+2g)

[( ω̃
(i)
q

ωq
+ ω̃

(i)
q

ωq+2g

)2 + ( (ω̃(i)
q )2

ωqωq+2g
+ 1

)2]
ω̃

(i)
q

(
ω2

q+g − ω2
q+2g

)(
ω2

q+g − ω2
q

)[∣∣Im(
θ

(i)
1 + θ

(i)
2

)∣∣
q→q

+ ∣∣Im(
θ

(i)
1 + θ

(i)
2

)∣∣
q→q+2g

] . (3.37)

Similar to the behavior of an incommensurate state of any
order, an irrational si in principle will lead to infinite resonance
frequencies. These frequencies satisfy

ω̃(i)
q = |ωq+sg|, (3.38)

where s is any integer.

IV. DISCUSSIONS

Fundamental to the usefulness of complex thermoelectric
materials is the need to optimize a variety of conflicting
properties. Maximizing a material’s thermoelectric figure of
merit requires high electrical conductivity and low thermal
conductivity [7]. One method for circumventing the inherent
conflict of these two requirements is to imagine a complex
material with distinct regions, each providing different func-
tions. The layered structure may have regions composed of
a high-mobility semiconductor that assures high electrical
conductivity, interwoven with a region of low thermal con-
ductivity. Layered cobaltite oxides, such as NaxCoO2 [3],
(Ca2CoO3)0.62CoO2 [4,8], and Bi2−xPbxSr2Co2Oy [6], may
have a CoO2 layer with high electrical conductivity and neigh-
boring layers with low lattice thermal conductivity. The lattice
periods of the two interpenetrating layers generally are incom-
mensurate along a lattice direction. The FK model can describe
well the phonon properties of a layered structure with different
lattice periods. Therefore, our theoretical results can explain
the low thermal conductivity of the lattice in layered materials.

According to our theoretical calculations, the FK on-site
potential causes two extra mechanisms of phonon scatter-
ing: resonance and anharmonic scattering (other scattering
mechanisms, such as point impurities, three-phonon processes,
and boundary scattering, are present in almost all crystals).
We note that the anharmonic scattering of the FK model
differs from that of the anharmonic potential in general
crystals. To distinguish the difference, hereafter, we consider
the anharmonic scattering of the FK model as anharmonic
scattering and the anharmonic scattering of general crystals
as three-phonon processes. Resonance scattering is a discrete
process. The number of resonance frequencies depends on the
ratio between the period of the unperturbed lattice and the
perturbation caused by the FK on-site potential. The number
becomes infinite when the ratio is irrational. The phonons’
lifetime for resonance scattering is zero, i.e., these phonons
are localized completely. The anharmonic scattering from the
cubic term of the FK on-site potential expansion exists only for
those states higher than second-order commensurate ones. The
anharmonic scattering will scatter phonons of all frequencies,
and then the phonon’s lifetime has a nonzero value. These
two mechanisms mainly will determine the lattice thermal

conductivity for this kind of material. In the following, we
discuss them separately.

A. Anharmonic scattering

Anharmonic phonon scattering comes mainly from the
cubic term C3(k1,k2,k3) (see paper I) of the expansion of the FK
on-site potential. As mentioned in paper I, the calculation due
to adding C3(k1,k2,k3) will become very complex so that it is
very difficult to analytically estimate the effect of C3(k1,k2,k3)
for a structure higher than a three-order commensurate one.
However, some useful conclusions can be obtained when
we carefully inspect the calculated results [including the
coefficient α3 terms of Eq. (S.60) in the Supplemental Material
of paper I] in the third-order commensurate lattices. From
Eq. (S.60), a direct method to reduce the thermal conductivity
is attained by raising the coefficient α3 of the cubic term, i.e.,
the amplitude V0 of the FK on-site potential. This resolution is
consistent with the results of the simulation of Tsironis et al.
[16]. In addition, the second and third terms of Eq. (S.60) in-
clude �q+(2π/3a) and �q−(2π/3a), implying that the C3(k1,k2,k3)
term also can lead to resonance scattering. Resonance scatter-
ing is discussed later because it also is caused by C2(k1,k2) and
C4(k1,k2,k3,k4). Comparing the last six terms in Eq. (S.60)
from the FK on-site potential with the expression of three
phonon processes in general crystals [20,22], some special
three-phonon scattering processes are known. These scattering
processes represent the interaction among an incoming phonon
with a wave vector k, an outgoing phonon with a wave vector
q, and a phonon with a wave vector 2π

3a
or − 2π

3a
that is from the

FK on-site potential. It means that the anharmonic scattering
processes are similar to general three-phonon scattering, but
one of these three phonons in the former has integral multiples
of the wave vector of the FK on-site potential. For this
potential with a = b

3 , only the phonons with the wave vectors
2π
3a

and − 2π
3a

are supplied to the anharmonic scattering pro-
cesses. For a higher-order commensurate state, more phonons
will join the anharmonic scattering processes. Theoretically,
infinite phonons will join these scattering processes in an
incommensurate lattice. From the analysis to the anharmonic
scattering, we know that changing the lattice constants of
the two interpenetrating sublattices and making the layered
structure into a high-order commensurate or incommensurate
state is an effective way to obtain a low thermal conductivity.

B. Resonance scattering

Phonon resonance scattering efficiently reduces the lattice
thermal conductivity [23]. By fitting the experimental data
for thermal conductivity in the layered cobaltite oxides,
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FIG. 2. (Color online) The (a) phonon dispersions and (b) density

of states of a commensurate chain with b = 7
6 a, ωL = 1, and π2V0

ma2 =
0.05. The dashed line is the dispersion without perturbation. The
points showed by dark red addition signs meet ω̃(r)

q = |ωq+sg|. The
corresponding frequencies of these points are the resonant ones.

we showed previously that the low thermal conductivity in
the system mainly results from resonance scattering [8].
Now, our theory further confirms that resonance scattering
from the FK on-site potential is an important factor for the
lattice thermal conductivity. According to our theory, we can
employ two ways to reduce the lattice thermal conductivity
in layered materials: (1) increasing the number of resonance
frequencies and (2) adjusting the resonance frequencies and
letting phonons with that resonance frequency have a density
of states as large as possible.

Changing two parameters can achieve both these two goals:
(1) Alter the lattice constants of the two interpenetrating
sublattices, and (2) change the interaction strength between
them, i.e., the amplitude V0 of the FK on-site potential.
Undoubtedly, the change in lattice constant is directly linked
to the number of resonance frequencies. When we transfer
our system from a commensurate one to an incommensurate
one, the number of resonance frequencies increases from a
finite number to infinity. However, we emphasize that such
a commensurate-incommensurate transition depends on both
the interaction strength between the two sublattices and their
lattice constants [24]. Changing the strength of the interaction
can significantly alter phonon dispersion and the density of
states. Figure 2 illustrates phonon dispersion and the density
of states of the commensurate state b = 7

6a with π2V0
ma2 = 0.05.

Comparing Figs. 4(a) and 4(d) in paper I with Figs. 2(a) and
2(b) clearly illustrates that the changing V0 not only alters
the shape of the dispersion curves of different branches, but
also moves their position. These changes, such as that in the
density of states with resonance frequency, may be used to
adjust lattice thermal conductivity. Figure 2 also depicts the
resonance frequencies with various wave vectors (the points of
the addition signs). Undoubtedly, the number of the resonance
frequencies greatly increases with an increase in the order of
commensurate lattice, and the number will be infinity in an
incommensurate lattice.

As discussed above, the anharmonic scattering from the
FK model is similar to general three-phonon scattering,
and it is difficult to obtain an analytical expression of the
scattering in any order commensurate structure. Therefore,
we do not incorporate the anharmonic scattering from the

FK model into our subsequent calculations. In any case,
such scattering always will further reduce the lattice thermal
conductivity. Resonance scattering can dramatically decrease
the lattice thermal conductivity [23,25]. However, thermal
conductivity diverges when only the resonance scattering
is used to the calculation because phonons with a large
deviation from resonance frequency will not be scattered,
and then the nonscattering phonons will lead to an infi-
nite thermal conductivity. Similar divergences also occur in
calculating the thermal conductivity of high-concentration
harmonic isotopically disordered mixed crystals [26] and of
the interfacial strain field between dissimilar lattices [27]
because phonons with a long wavelength are not scattered
by isotopic defects and by the interfacial strain field. The
existence of the divergence of resonance scattering in this
paper is clearly physical, and it can be removed in real systems
by other phonon-scattering mechanisms, such as point defects,
boundaries, and three-phonon scattering. As mentioned, the
three scattering mechanisms inevitably exist in most real
crystals. Therefore, it is necessary to add the three scattering
mechanisms in calculating thermal conductivity not only to
remove the divergence of resonance scattering, but also to
compare it with and without the resonance scattering. All
phonon-scattering processes can be combined by frequency-
dependent relaxation times [28]. The frequency-dependent
relaxation times for scattering by point defects, boundaries,
and three-phonon process have been studied widely. Based on
Callaway’s phenomenological model [28], the combination of
these relaxation times is

τ−1 = τ−1
D + τ−1

B + τ−1
P + · · · . (4.1)

wherein the first three terms, τ−1
D = Aω4, τ−1

B = v
L

, and
τ−1
P = Bω2T exp(− θD

3T
), respectively, come from scattering

by point defects, boundaries, and three-phonon processes.
The ellipsis in Eq. (4.1) shows any other existing scattering
mechanisms. v is the group speed of the phonons, θD is the
Debye temperature, and L, A, and B, respectively, are the three
constants of materials dependent on grain size, the density of
point impurities, and the intensity of the anharmonic force
constant. In applying Callaway’s theory, L, A, and B usually
are determined from fitting experimental data.

The lattice thermal conductivity derived from the Kubo
formula based on a physical model can reveal details of
their basic physical nature. However, to include the three
scattering mechanisms in Eq. (4.1) into our calculation, we can
rewrite our theoretical derivation using some approximation
[26,29]. Comparing our results with Callaway’s formula, as an
example, the relaxation time per normal mode in the second
term of Eq. (3.7) is

τ (q) = ωqωq+(π/a)
[(

ω̃(2)
q

)2 − ω2
q

][(
ω̃(2)

q

)2 − ωq+(π/a)2

]
4M4

2 ω̃
(2)
q (�q + �q+(π/a))

×
[(

1 +
(
ω̃(2)

q

)2

ωqωq+(π/a)

)2

+
(

ω̃(2)
q

ωq

+ ω̃(2)
q

ωq+(π/a)

)2]
.

(4.2)
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FIG. 3. (Color online) Thermal conductivity (in atomic units) as
a function of temperature in three cases: (a) general crystal, (b)
commensurate with b = 7

6 a, and (c) incommensurate with b = 1.17a.
The following parameters were used in the calculation:ωL = 1013 Hz;
L = 1 μm; A = 10−41 s3; B = 5 × 10−18 s/K; v = 3000 m/s; θD =
270 K.

The second term of Eq. (3.7) becomes

κ =
∑

q

τ (q)C(q)v2
q, (4.3)

where C(q) = kBβ2
�

2ωqωq+(π/a)e
β�ω̃

(2)
q

(eβ�ω̃
(2)
q −1)2

has the unit of the phonon

specific heat, and it can be termed the effective phonon specific
heat. Equation (4.3) is same as the form of Callaway’s theory
[28]. Thereafter, we can group all the scattering mechanisms
into Callaway’s phenomenological model. In our calculations,
the relaxation times of the resonance scattering from the
FK model will be obtained from the results of Sec. III,
whereas the total relaxation time is calculated from Eq. (4.1).
The lattice thermal conductivities of the three structures,
general crystal, commensurate and incommensurate ones,
were calculated, and the results are shown in Fig. 3. The
black line (curve a) represents the findings for the point
impurities, boundary scattering, and three-phonon processes

[28]. The red line (curve b) and the green line (curve c) show
the thermal conductivities added by resonance scattering of
the commensurate structure with b = 7

6a and the incommensu-
rate structure with b = 1.17a, respectively. In calculating these

curves, we let resonance scattering occur with | ω̃
(r)
q −ωq+sg

ω̃
(r)
q

| <

0.01. Figure 3 shows that the thermal conductivity of an
incommensurate structure with b = 1.17a is almost one order
of magnitude lower than that of the general crystal. It can
explain the low lattice thermal conductivity that occurs in
materials consisting of two interpenetrating incommensurate
sublattices.

V. SUMMARY AND CONCLUSIONS

We studied the lattice thermal conductivity resulting
from the FK model, beginning first with several low-order
commensurate states. The first-order commensurate state,
i.e., the period of the unperturbed lattice is same as that
of the FK on-site potential and has infinite lattice thermal
conductivity in our approximation. The higher-than-first-order
commensurate states will have resonance scattering for some
special frequencies. In addition to resonance scattering, we
identified anharmonic scattering resulting from the cubic term
of the expansion of the FK on-site potential in those states
higher than second-order commensurate ones. The number
of the resonance frequencies depends on the ratio between
the period of the unperturbed lattice and that of the FK
on-site potential. Their number becomes infinite when the
ratio is irrational. The change in amplitude of the FK on-site
potential can alter the intensity of anharmonic scattering
and the resonance frequency. If the phonon with resonance
frequency has a density of states as large as possible, it is
very useful in reducing the lattice thermal conductivity in
the layered materials. Our theoretical results can be used to
develop strategies to lower the lattice’s thermal conductivity
in actual layered thermoelectric materials.
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