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Lattice vibrations in the Frenkel-Kontorova model. I. Phonon dispersion,
number density, and energy
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We studied the lattice vibrations of two interpenetrating atomic sublattices via the Frenkel-Kontorova (FK)
model of a linear chain of harmonically interacting atoms subjected to an on-site potential using the technique
of thermodynamic Green’s functions based on quantum field-theoretical methods. General expressions were
deduced for the phonon frequency-wave-vector dispersion relations, number density, and energy of the FK model
system. As the application of the theory, we investigated in detail cases of linear chains with various periods of
the on-site potential of the FK model. Some unusual but interesting features for different amplitudes of the on-site
potential of the FK model are discussed. In the commensurate structure, the phonon spectrum always starts at a
finite frequency, and the gaps of the spectrum are true ones with a zero density of modes. In the incommensurate
structure, the phonon spectrum starts from zero frequency, but at a nonzero wave vector; there are some modes
inside these gap regions, but their density is very low. In our approximation, the energy of a higher-order
commensurate state of the one-dimensional system at a finite temperature may become indefinitely close to the
energy of an incommensurate state. This finding implies that the higher-order incommensurate-commensurate
transitions are continuous ones and that the phase transition may exhibit a “devil’s staircase” behavior at a finite
temperature.
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I. INTRODUCTION

Recent investigations revealed that materials consisting
of two interpenetrating incommensurate sublattices, such as
NaxCoO2 [1], Ca3Co4O9 [2,3], and Bi2−xPbxSr2Co2Oy [2,4],
have very good thermoelectric properties. One reason for this
is that these materials have very low lattice thermal conduc-
tivity [3]. To understand their lattice thermal conductivity,
we need to know the lattice vibrational properties of two
interpenetrating sublattices. Some insights into this problem
might be obtained from studying the Frenkel-Knotorova (FK)
model.

The FK model describes a chain of classical particles
coupled to their neighbors and subjected to a periodic on-site
potential. This model has received much attention because
of its relevance to a wide variety of physical problems. The
FK model originally was proposed to model dislocations
in epitaxial monolayers [5,6], but its surprising ability to
describe many physically important phenomena, such as the
dynamics of absorbed layers of atoms on crystal surfaces [7,8],
charge-density waves [9,10], ferro- or antiferromagnetics [11],
and superionic conductors [12], has attracted much attention
from physicists working in solid-state physics.

Some simple classical models have been analyzed that
describe an atomic chain with nearest-neighbor interactions
and subjected to a periodic on-site potential [13–19]. For
them, phonon dispersion, the dynamic structural factors of
crystals with incommensurate lattices were studied at the
long-wavelength limit. If the effects of lattice discreteness
are neglected, the long-wavelength limit transitions to the
continuum-limit approximation, and the nonlinear differential
equations of motion are obtained for these classical models.

*Author to whom correspondence should be addressed:
qmeng@bnl.gov; zhu@bnl.gov

For the FK model, this approximation leads to the exactly
integrable sine-Gordon equation that possesses many interest-
ing properties and allows exact solutions describing different
types of nonlinear excitations [20]. However, the FK model
inherently is discrete and not exactly integrable [20]. There-
fore, this simple approximation will engender some deviations.
For example, Sutherland [21] and Gupta and Sutherland [22]
found that the phonon spectrum separates simply into two
branches in the continuum-limit approximation. The lower
branch represents the collective modes of lattice dislocations,
whereas the upper one corresponds to renormalized phonons
[13,23]. Following standard procedures in the theory of lattice
dynamics, the phonon spectrum may include multiple branches
[7,23]. Thus, the FK model at the simplest continuum limit
intrinsically may be too simple and misleading in some
cases.

Typically, the FK model utilizes an on-site potential to de-
scribe the interaction between two interpenetrating sublattices.
Classical theories have revealed some of the static and dynamic
characteristics of lattice vibrations in such systems [13–23].
However, classical theories mainly give the results using a
long-wavelength approximation, and temperature effects are
not considered in any of the classical theories; indeed, and the
discussion of lattice vibrations at low temperatures is beyond
the scope of the classical theory.

The present paper was motivated by our desire to understand
the thermodynamic properties of materials with two interpene-
trating sublattices. The formulation of thermodynamic Green’s
functions leads naturally to the evaluation of the energy of
a system via correlation functions. In Sec. II, we deduce
an expression for the correlation function resulting from the
FK model using thermodynamic Green’s functions. From this
correlation function, we obtained the phonon dispersion, the
phonon number density, and the energy of the system. In
Sec. III, we first use the general formulas deduced in Sec. II
to calculate the properties of some low-order commensurate
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states, and then, from these results, we extend the calculation to
commensurate states of any order, and to the incommensurate

state. A detailed discussion of these findings is given; Sec. IV
contains our summary and conclusions.

II. GENERAL FORMALISM

A. The Hamiltonian

We consider a system consisting of a lattice of atoms with harmonic vibrations that interact with an external perturbing
potential, i.e., the FK model. The total crystal Hamiltonian can be written as

H = H0 + H1, (2.1)

where H0 is the harmonic Hamiltonian of the unperturbed lattice given by

H0 =
∑
kj

�ωkj

(
a+

kj akj + 1

2

)
= 1

4

∑
kj

�ωkj (A+
kjAkj + B+

kjBkj ). (2.2)

H1 is the perturbation Hamiltonian arising from the external on-site potentials of the FK model, and ωkj is the frequency of a
phonon with wave vector k and polarization index j . Hereafter, we use k to represent the pair of variables k and j . Ak and Bk are
phonon operators that we define in terms of the usual phonon creation and destruction operators a+

k and ak: Ak = ak + a+
−k = A+

−k

and Bk = ak − a+
−k = −B+

−k .
We can write the external on-site potential of the FK model as

H1 =
∑

l

V0[1 − cos (g · xl)], (2.3)

where g is the wave vector of the periodic external potential and xl is the position of an atom l of the linear chain. For one
dimension, g = 2π

b
, where b is the period of the on-site potential; xl = al + ul , a is the lattice constant of the linear chain; l is an

integer; and ul describes a deviation from the lattice’s original equilibrium position. V0 is the amplitude of the on-site potential
of the FK model. Assuming that ul is small and only considering the one-dimensional case, H1 can be written to the fourth order
in the deviations from the original equilibrium positions as follows:

H1 =
∑

l

V0

{
1 − cos (gla)

[
1 − 1

2!
(gul)

2 + 1

4!
(gul)

4

]
+ sin (gla)

[
gul − 1

3!
(gul)

3

]}
. (2.4)

Using

ul =
(

�

2Nm

)1/2∑
k

1

ω
1/2
k

exp (ikla)Ak, (2.5)

and ignoring the constant term in H1, H1 is

H1 =
∑
k1

C1(k1)Ak1 +
∑
k1,k2

C2(k1,k2)Ak1Ak2 +
∑

k1,k2,k3

C3(k1,k2,k3)Ak1Ak2Ak3 +
∑

k1,k2,k3,k4

C4(k1,k2,k3,k4,)Ak1Ak2Ak3Ak4 , (2.6)

where, for a one-dimensional Bravais crystal of N atoms, each of mass m,

C1(k1) = − iπV0

b

(
�N

2m

)1/2

ωk1
−(1/2)[�(k1 + g) − �(k1 − g)], (2.7a)

C2(k1,k2) = π2
�V0

2mb2

(
ωk1ωk2

)−(1/2)
[�(k1 + k2 + g) + �(k1 + k2 − g)], (2.7b)

C3(k1,k2,k3) = i2π3V0

3b3N
1
2

(
�

2m

)3/2(
ωk1ωk2ωk3

)−(1/2)
[�(k1 + k2 + k3 + g) − �(k1 + k2 + k3 − g)], (2.7c)

C4(k1,k2,k3,k4) = − π4
�

2V0

12m2b4N

(
ωk1ωk2ωk3ωk4

)−(1/2)
[�(k1 + k2 + k3 + k4 + g) + �(k1 + k2 + k3 + k4 − g)], (2.7d)

with �(k) = 1 for k = 0; otherwise �(k) = 0.

B. Thermodynamic Green’s function and time-correlation functions

To evaluate some necessary correlation functions, we need to know the thermodynamic Green’s function for this model,

Gqk(t − t ′) = 〈〈Aq(t),A+
k (t ′)〉〉 = −iθ (t − t ′)〈[Aq(t),A+

k (t ′)]〉. (2.8)
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θ (t) is the step function. The time-correlation function is

Qkq(t − t ′) = 〈A+
k (t ′)Aq(t)〉. (2.9)

The brackets 〈· · · 〉 represent the thermodynamic average over a canonical ensemble. Namely, for any operator O,

〈O〉 = T re−βHO

T re−βH
,

where β = 1
kBT

, kB is the Boltzmann constant, and T is the absolute temperature.

We define the Fourier transforms G̃qk(ω) and Jkq(ω) of the Green’s function and the time-correlation function as follows:

Gqk(t − t ′) =
∫ ∞

−∞
G̃qk(ω)e−iω(t−t ′)dω, (2.10)

and

Qkq(t − t ′) =
∫ ∞

−∞
Jkq(ω)e−iω(t−t ′)dω. (2.11)

Jkq(ω) is the spectral-density function and is related to the Green’s function by

Jkq(ω) = − 2

exp (β�ω) − 1
Im G̃qk(ω + iε), (2.12)

where ε → 0 is implied.
Following Pathak’s method [24] and the detailed presentation in the Supplemental Material [25], the correlation functions can

be obtained

Q
(1)
kq (t) = 〈a+

k (0)aq(t)〉 = 1

4

∫ ∞

−∞

(
1 + ω

ωk

+ ω

ωq

+ ω2

ωkωq

)
Jkq(ω)e−iωtdω, (2.13a)

Q
(2)
kq (t) = 〈ak(0)a+

q (t)〉 = 1

4

∫ ∞

−∞

(
1 + ω

ωk

+ ω

ωq

+ ω2

ωkωq

)
Jqk(ω)eβ�ωeiωtdω. (2.13b)

C. Calculation of the thermodynamic Green’s function

As discussed above, the Green’s functions must be known to calculate the correlation functions. We used Zubarev’s method
[26] for obtaining them in this paper. From the equation of motion for an operator O(t),

i�
∂O(t)

∂t
= [O(t),H ],

the equation of motion for the Green’s function Gq,k(t − t ′) is

i
∂Gqk

∂t
= ωqG

(1)
qk , (2.14a)

and

i�
∂G

(1)
qk

∂t
= 2�δ(t − t ′)δqk + �ωqGqk + 4

∑
k1

C2(k1, − q)Gk1k + 6
∑
k1k2

C3(k1,k2, − q)
〈〈
Ak1Ak2 ,A

+
k

〉〉

+ 8
∑
k1k2k3

C4(k1,k2,k3, − q)
〈〈
Ak1Ak2Ak3 ,A

+
k

〉〉
, (2.14b)

where G
(1)
qk (t − t ′) = 〈〈Bq(t),A+

k (t ′)〉〉 = −iθ (t − t ′)〈[Bq(t),A+
k (t ′)]〉.

To obtain Gqk , we employed some approximations. For example, the last term of the right-hand side in Eq. (2.14b) was
decoupled according to the relation [24,26],

〈abcd〉 = 〈ab〉〈cd〉 + 〈ac〉〈bd〉 + 〈ad〉〈bc〉. (2.15)

To discover the Green’s function 

(1)
k1k2k

= 〈〈Ak1Ak2 ,A
+
k (t ′)〉〉, contained in the third term of the right-hand side in Eq. (2.14b),

we need other new Green’s functions 

(2)
k1k2k

= 〈〈Bk1Ak2 ,A
+
k (t ′)〉〉, 


(3)
k1k2k

= 〈〈Ak1Bk2 ,A
+
k (t ′)〉〉, and 


(4)
k1k2k

= 〈〈Bk1Bk2 ,A
+
k (t ′)〉〉 as

is apparent from the following equations of motion:

i
∂


(1)
k1k2k

∂t
= ωk1


(2)
k1k2k

+ ωk2

(3)
k1k2k

, (2.16a)
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i�
∂


(2)
k1k2k

∂t
= �ωk2


(4)
k1k2k

+ �ωk1

(1)
k1k2k

+ 2C1(−k1)Gk2k + 4
∑
k′

1

C2(k′
1, − k1)
(1)

k′
1k2k

+ 6
∑
k′

1k
′
2

C3(k′
1,k

′
2, − k1)

〈〈
Ak′

1
Ak′

2
Ak2 ,A

+
k

〉〉

+ 8
∑
k′

1k
′
2k

′
3

C4(k′
1,k

′
2,k

′
3, − k1)

〈〈
Ak′

1
Ak′

2
Ak′

3
Ak2 ,A

+
k

〉〉
, (2.16b)

i�
∂


(3)
k1k2k

∂t
= �ωk1


(4)
k1k2k

+ �ωk2

(1)
k1k2k

+ 2C1(−k2)Gk1k + 4
∑
k′

1

C2
(
k′

1, − k2
)



(1)
k1k

′
1k

+ 6
∑
k′

1k
′
2

C3(k′
1,k

′
2, − k2)

〈〈
Ak1Ak′

1
Ak′

2
,A+

k

〉〉

+ 8
∑
k′

1k
′
2k

′
3

C4(k′
1,k

′
2,k

′
3, − k2)

〈〈
Ak1Ak′

1
Ak′

2
Ak′

3
,A+

k

〉〉
, (2.16c)

i�
∂


(4)
k1k2k

∂t
= �ωk1


(3)
k1k2k

+ �ωk2

(2)
k1k2k

+ 2C1(−k1)G(1)
k2k

+ 2C1(−k2)G(1)
k1k

+ 4
∑
k′

1

C2(k′
1, − k1)
(3)

k′
1k2k

+ 4
∑
k′

1

C2(k′
1, − k2)
(2)

k1k
′
1k

+ 6
∑
k′

1k
′
2

C3(k′
1,k

′
2, − k2)

〈〈
Bk1Ak′

1
Ak′

2
,A+

k

〉〉+ 6
∑
k′

1k
′
2

C3(k′
1,k

′
2, − k1)

〈〈
Ak′

1
Ak′

2
Bk2 ,A

+
k

〉〉

+ 8
∑
k′

1k
′
2k

′
3

C4(k′
1,k

′
2,k

′
3, − k2)

〈〈
Bk1Ak′

1
Ak′

2
Ak′

3
,A+

k

〉〉+ 8
∑
k′

1k
′
2k

′
3

C4(k′
1,k

′
2,k

′
3, − k1)

〈〈
Ak′

1
Ak′

2
Ak′

3
Bk2 ,A

+
k

〉〉
. (2.16d)

To solve Eq. (2.16) to obtain these Green’s functions, we neglected the five-operator Green’s functions, and the four-operator
Green functions can be decoupled as sums of the products of the two-operator correlation functions and the two-operator Green’s
functions. Using Fourier transforms and Nk = 〈A+

k Ak〉, Eqs. (2.15) and (2.16) become

ωG̃q,k = ωqG̃
(1)
q,k, (2.17a)

�ωG̃
(1)
q,k = �δqk

π
+ �ωqG̃q,k + 4

∑
k1

C2(k1, − q)G̃k1,k + 6
∑
k1k2

C3(k1,k2, − q)
̃(1)
k1k2k

+ 24
∑
k1k2

C4(k1,k2, − k2, − q)Nk2G̃k1,k, (2.17b)

and

ω
̃
(1)
k1k2k

= ωk1 
̃
(2)
k1k2k

+ ωk2 
̃
(3)
k1k2k

, (2.18a)

�ω
̃
(2)
k1k2k

= �ωk2 
̃
(4)
k1k2k

+ �ωk1 
̃
(1)
k1k2k

+ 2C1(−k1)G̃k2k + 4
∑
k′

1

C2(k′
1, − k1)
̃(1)

k′
1k2k

+ 6
∑
k′

1

C3(k′
1, − k′

1, − k1)Nk′
1
G̃k2k + 12

∑
k′

1

C3(k′
1, − k2, − k1)Nk2G̃k′

1k
, (2.18b)

�ω
̃
(3)
k1k2k

= �ωk1 
̃
(4)
k1k2k

+ �ωk2 
̃
(1)
k1k2k

+ 2C1(−k2)G̃k1k + 4
∑
k′

1

C2
(
k′

1, − k2
)

̃

(1)
k1k

′
1k

+ 6
∑
k′

1

C3(k′
1, − k′

1, − k2)Nk′
1
G̃k1k + 12

∑
k′

1

C3(k′
1, − k1, − k2)Nk′

1
G̃k′

1k
, (2.18c)

�ω
̃
(4)
k1k2k

= �ωk1 
̃
(3)
k1k2k

+ �ωk2 
̃
(2)
k1k2k

+ 2C1(−k1)G̃(1)
k2k

+ 2C1(−k2)G̃(1)
k1k

+ 4
∑
k′

1

C2(k′
1, − k1)
̃(3)

k′
1k2k

+ 4
∑
k′

1

C2(k′
1, − k2)
̃(2)

k1k
′
1k

+ 6
∑
k′

1

C3(k′
1, − k′

1, − k2)Nk′
1
G̃

(1)
k1k

+ 12
∑
k′

1

C3(k′
1, − k1, − k2)

〈
Bk1A

+
k1

〉
G̃

(1)
k′

1k

+ 6
∑
k′

1

C3(k′
1, − k′

1, − k1)Nk′
1
G̃

(1)
k2k

+ 12
∑
k′

1

C3(k′
1, − k2, − k2)

〈
A+

k2
Bk2

〉
G̃

(1)
k′

1k
. (2.18d)
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D. The number density of phonons

From these correlation functions, we calculated the number density of phonons from Eqs. (2.13a) with k = q and t = t ′,

nk = 〈a+
k ak〉 = 1

4

∫ ∞

−∞

(
1 + ω

ωk

)2

Jkk(ω)dω. (2.19)

E. The energy of the system

The energy of the system is given by the thermal average of the Hamiltonian,

E = 〈H 〉 =
∑

k

�ωk〈a+
k ak〉 + 〈V1〉 + 〈V2〉 + 〈V3〉 + 〈V4〉. (2.20)

The usual zero-point energy of the harmonic crystal was ignored, and

〈V1〉 =
∑

k

C1(k)〈Ak〉, (2.21a)

〈V2〉 =
∑
k1,k2

C2(k1,k2)
〈
Ak1Ak2

〉
, (2.21b)

〈V3〉 =
∑

k1,k2,k3

C3(k1,k2,k3)
〈
Ak1Ak2Ak3

〉
, (2.21c)

〈V4〉 =
∑

k1,k2,k3,k4

C4(k1,k2,k3,k4)
〈
Ak1Ak2Ak3Ak4

〉
. (2.21d)

Following Pathak’s method [24], the energy of system can be simplified as follows:

E = 1

4

∑
k

�ωk

∫ ∞

−∞

(
3
ω2

ω2
k

+ 2
ω

ωk

− 1

)
Jkk(ω)dω − 〈V2〉 − 2〈V3〉 − 3〈V4〉, (2.22)

where 〈V2〉, 〈V3〉 can be obtained from Green’s functions G̃qk(ω) and 
̃
(1)
k2k3k1

(ω); 〈V4〉 are evaluated using the decoupling
approximation in Eq. (2.15) and G̃qk(ω). The detailed processes are presented in the Supplemental Material [25].

III. APPLICATIONS

In this section, we apply our results detailed in Sec. II
to obtain the properties of various cases of the periodic FK
models.

A. a = b

In this case, the period of the FK potential equals that of the
lattice chain, i.e., g is the reciprocal lattice vector. The C1 and
C3 terms in the FK model vanish, and we get the following:

C2(k1,k2) = π2
�V0

ma2

(
ωk1ωk2

)−(1/2)
�(k1 + k2), (3.1)

C4(k1,k2,k3,k4) = − π4
�

2V0

6m2a4N

(
ωk1ωk2ωk3ωk4

)−(1/2)

×�(k1 + k2 + k3 + k4). (3.2)

For this case, solving Eqs. (2.17) for G̃q,k yields

G̃q,k = δqk

π

ωq

ω2 − ω2
q − M1

, (3.3)

where

M1 = 4π2V0

ma2
− 4π4

�V0

m2a4N

∑
k1

1

ωk1

〈
A+

k1
Ak1

〉
. (3.4)

(M1)1/2 is the shift in frequency due to the FK potential. Letting
ω̃

(1)
k = (ω2

k + M1)1/2, we obtain the spectral-density function
from Eq. (2.12),

Jkk(ω) = ωk

ω̃
(1)
k

δ
(
ω − ω̃

(1)
k

)− δ
(
ω + ω̃

(1)
k

)
eβ�ω − 1

. (3.5)

Using Eq. (3.5), we then get

Nk = 〈A+
k Ak〉 =

∫ ∞

−∞
Jkk(ω)dω = ωk

ω̃
(1)
k

coth
β�ω̃

(1)
k

2
. (3.6)

The number density of the phonons is

nk = 1

4

∫ ∞

−∞

(
1 + ω

ωk

)2

Jkk(ω)dω

= 1

4

[(
ωk

ω̃
(1)
k

+ ω̃
(1)
k

ωk

)
coth

β�ω̃
(1)
k

2
− 2

]
. (3.7)

The energy of the system then becomes

E =
∑

k

�ωknk + 〈V2〉 + 〈V4〉. (3.8)

Using a similar method as that detailed in Sec. II E, 〈V4〉 is

〈V4〉 = 1

8

∑
k

∫ ∞

−∞
�ωk

(
ω2

ω2
k

− 1

)
Jkk(ω)dω − 1

2
〈V2〉. (3.9)
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FIG. 1. (Color online) Phonon dispersion for a = b without the
FK on-site potential (black solid line) and including the FK on-site

potential (red dashed line). ωL = 1 and π2V0
ma2 = 0.1 are used in the

calculation.

〈V2〉 is obtained from Eqs. (2.9), (2.11), and (2.21b),

〈V2〉 =
∑

k

π2
�V0

ma2

1

ωk

∫ ∞

−∞
Jkk(ω)dω. (3.10)

Then

E = −1

2

∑
k

�ωk + 1

8

∑
k

�ωk

(
3ω̃

(1)
k

ωk

+ ωk

ω̃
(1)
k

+ 8π2V0

ma2ωkω̃
(1)
k

)

× coth

(
β�ω̃

(1)
k

2

)
. (3.11)

If M1 = 0, i.e., if we ignore the action of the FK on-site
potential, we readily find that Nk = 2nk + 1, whereas nk and
E become the results of the harmonic approximation from
Eqs. (3.7) and (3.11). If M1 �= 0, a shift in frequency will result.
In Eq. (3.4), the first term depends only on the amplitude of
the FK on-site potential; the second term also will depend on
the temperature.

The phonon dispersion for a = b is

ω̃
(1)
k = (

ω2
k + M1

)1/2
. (3.12)

When we continue only up to the quadratic term of the
on-site potential, Eq. (3.12) becomes simple because M1

is a constant. Then, the frequency spectrum has a finite
value (M1)1/2 at k = 0, consistent with some previous results
[7,13,23]. The unperturbed normal mode frequencies for the
linear chain are given by

ωk =
∣∣∣∣ωL sin

(
k

2

)∣∣∣∣, (3.13)

where ωL is the largest frequency. As an example, Fig. 1 shows
the results of the dispersion of a monatomic linear chain with
a = b calculated using Eqs. (3.12) and (3.13). In this figure,
we used the normalized frequency, i.e., let ωL = 1. We also
took the amplitude of the on-site potential to be π2V0

ma2 = 0.1 in
the calculating of Fig. 1.

If the quartic term is retained and the sum in Eq. (3.4)
is replaced by an integral, Eq. (3.12) becomes an integral
equation [see Eqs. (3.4), (3.6), and (3.12)] that can be written as

(
ω̃

(1)
k

)2 = ω2
k + 4π2V0

ma2
− 2π3

�V0

m2a4

∫ π

−π

dk

ω̃
(1)
k

coth
β�ω̃

(1)
k

2
.

(3.14)

For high temperatures, Eq. (3.14) can be written approxi-
mately as [25]

(
ω̃

(1)
k

)2 = ω2
k + 4π2V0

ma2
[1 − χ (β)], (3.15)

where χ (β) = π2
�

ma2 [ β�

6 + 2
β�

( 4π2V0
ma2 )

−(1/2)
(ω2

L + 4π2V0
ma2 )

−(1/2)
].

We replaced the ω̃
(1)
k within the integral sign on the right-

hand side of Eq. (3.14) by (ω̃(1)
k )2 = ω2

k + 4π2V0
ma2 , and ωk =

|ωL sin( k
2 )|.

Using Eq. (3.15), the effect of temperature can be estimated.
For this example, we take ωL ∼ 2 × 1013 s−1, atomic mass
m ∼ 5 × 10−25 kg, lattice constant a ∼ 0.2 nm, V0 ∼ 0.5 eV,
and then π2V0

ma2 ≈ 0.1ω2
L. At T = 300 K, we obtain χ (β) ∼

0.01. In this case, the effect of temperature is very small. But
if V0 ∼ 0.05 eV, χ (β) ∼ 0.15, then the effect of temperature
cannot be ignored. If the temperature is high enough, or V0 is
small enough, then the frequency from Eq. (3.15) may become
imaginary, and the crystal will become unstable.

For T → 0, substituting coth β�ω̃
(1)
k

2 = 1 +
2
∑∞

n=1 exp(−nβ�ω̃
(1)
k ) into Eq. (3.14) and using Laplace’s

method [27] to calculate the integral in Eq. (3.14) (the detailed
processing is shown in the Supplemental Material [25]), we
have

(
ω̃

(1)
k

)2 = ω2
k + 4π2V0

ma2
− 4π2

�

ma3

(
V0

m

)1/2

×K

[(
−4π2V0

ma2

)−(1/2)

ωL

]
= ω2

k + (
�ω

(1)
k

)2
,

(3.16)

where K(x) is the complete elliptic integral of the first kind.
We will use similar methods to detail the number density and
energy. Since ω̃

(1)
k �= ωk from Eq. (3.16), the number density

of phonons does not vanish at absolute zero. It is

nk =
(
�ω

(1)
k

)4

16ω4
k

. (3.17)

Using ωL ∼ 2 × 1013 s−1, atomic mass m ∼ 5 × 10−25 kg,
lattice constant a ∼ 0.2 nm, V0 ∼ 0.2 eV, and then π2V0

ma2 ≈
0.04ω2

L, we find that nk ∼ 0.01%. This percentage corresponds
to about 1020 vibrations per mole.

The zero-point energy is

E0 = 1

2

∑
k

�ωk + 1

8

∑
k

[
8π2

�V0

ma2ωk

+
(

1 − 4π2V0

ma2ω2
k

)
�
(
�ω

(1)
k

)2

ωk

]
. (3.18)
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B. a = b
2

For this case, the wave vector of the on-site potential g = π
a

is half that of the reciprocal lattice vector. The difference between
k + π

a
and k − π

a
is a reciprocal lattice vector, meaning that f (k + π

a
) = f (k − π

a
) for any function of the lattice. Therefore, the

contribution of C1 and C3 terms in the perturbation Hamiltonian vanish, and

C2(k1,k2) = π2
�V0

4ma2

(
ωk1ωk2

)−(1/2)
�
(
k1 + k2 − π

a

)
, (3.19a)

C4(k1,k2,k3,k4) = − π4
�

2V0

96m2a4N

(
ωk1ωk2ωk3ωk4

)−(1/2)
�
(
k1 + k2 + k3 + k4 − π

a

)
. (3.19b)

Equation (2.17b) becomes

ωG̃
(1)
q,k = δqk

π
+ ωqG̃q,k +

[
π2V0

2ma2
− π4

�V0

4m2a4N

∑
k2

1

ωk2

〈
A+

k2
Ak2

〉](
ωq+(π /a)ωq

)−(1/2)
G̃q+(π /a),k. (3.20)

Substituting q → q + π
a

in the subscripts of Eqs. (3.20a) and (2.17a), we obtain another two equations that are represented in
Appendix A.

Combining Eqs. (2.17a), (3.20), (A1), and (A2), we obtain

G̃q,k = 1

π

δqkωq + δq+(π /a)kM2(ωqωq+(π/a))1/2
(
ω2 − ω2

q+(π/a)

)−1

ω2 − ω2
q − M2

2

(
ω2 − ω2

q+(π /a)

)−1 , (3.21)

where

M2 = π2V0

ma2
− π4

�V0

4m2a4N

∑
k2

1

ωk2

〈
A+

k2
Ak2

〉
. (3.22)

We define
1

ω2 − ω2
q+(π /a)

= �q+(π /a)(ω) − i
q+(π /a)(ω). (3.23)

Here,

�q+(π /a)(ω) = P
1

ω2 − ω2
q+(π /a)

, (3.24a)


q+(π /a)(ω) = πδ
(
ω2 − ω2

q+(π /a)

)
, (3.24b)

where P denotes the principal value. From Eqs. (3.21) and (2.12), the spectral-density function is

Jkq = 2M2
q+(π /a)

π
(
eβ�ω − 1

) δqkωqM2 + δq+(π /a)k
(
ωqωq+(π/a)

)1/2(
ω2 − ω2

q

)
(
ω2 − ω2

q − M2
2 �q+(π /a)

)2 + 
2
q+(π /a)M

4
2

. (3.25)

From the spectral-density function, we obtain

Nk = 2ωk

π

∫ ∞

−∞

1

eβ�ω − 1

M2
2 
k+(π /a)dω(

ω2 − ω2
k − M2

2 �k+(π /a)
)2 + 
2

k+(π /a)M
4
2

, (3.26)

and the number of the density of phonons is

nk = ωk

2π

∫ ∞

−∞

(
1 + ω

ωk

)2 1

eβ�ω − 1

M2
2 
k+(π /a)dω(

ω2 − ω2
k − M2

2 �k+(π /a)
)2 + 
2

k+(π /a)M
4
2

. (3.27)

Nk and nk can be simplified when the damping M2
k+(π/a) is small. At this limit, Jkq has a steep maximum at ω2 =
ω2

k + M2
2 �k+(π/a). The integrals are evaluated approximately by replacing the peak distribution by a Dirac δ function. We then

obtain

Nk = ωk

ω̃
(2)
k

coth

(
β�ω̃

(2)
k

2

)
, (3.28)

and

nk = 1

4

[(
ωk

ω̃
(2)
k

+ ω̃
(2)
k

ωk

)
coth

(
β�ω̃

(2)
k

2

)
− 2

]
, (3.29)
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where ω̃
(2)
k = (ω2

k + M2
2 �k+(π/a))1/2. When ωk is close to ω̃

(2)
k we can replace Nk by 2nk + 1. We use this limit to check the

correctness of our derivation.
The energy of the system from Eqs. (3.8) and (3.9) is

E = −1

2

∑
k

�ωk + 1

8

∑
k

�ωk

(
3ω̃

(2)
k

ωk

+ ωk

ω̃
(2)
k

+ π2V0

ma2

M2�k+(π /a)

ωkω̃
(2)
k

)
coth

β�ω̃
(2)
k

2
. (3.30)

The phonon dispersion for a = b
2 can be determined from

(
ω̃

(2)
k

)2 = ω2
k + M2

2

[(
ω̃

(2)
k

)2 − ω2
k+(π /a)

]−1
. (3.31)

Solving Eq. (3.31), we then obtain

(
ω̃

(2)
k

)2 = 1

2

(
ω2

k + ω2
k+(π /a)

)± 1

2

(
ω2

k − ω2
k+(π /a)

)[
1 + 4M2

2

(
ω2

k − ω2
k+(π /a)

)−2
]1/2

. (3.32)

The dispersion relation of the normal modes has two branches. Figure 2 shows the phonon dispersion with normalized
frequency ωL = 1 and π2V0

ma2 = 0.1 when we ignore the quartic term from the perturbation.
The discussed method of the dispersion dependence on temperature is similar to that for a = b if the quartic term from

perturbation is not ignored.

C. a = b
3

In this case, the wave vector of the external potential is g = 2π
3a

, and the difference between k + 2π
3a

and k − 2π
3a

is not a
reciprocal lattice vector. Then, the contribution of the C1 and C3 terms in the perturbation Hamiltonian cannot be neglected. To
simplify our calculation, we first keep the C1 and C2 terms and ignore the C3 and C4 terms. The C1 term naturally vanishes in
this case, and so Eq. (2.17) can be written as

ωG̃qk = ωqG̃
(1)
qk (3.33a)

ωG̃
(1)
qk = δqk

π
+ ωqG̃qk + α2(ωq−(2π/3a)ωq)−(1/2)G̃q−(2π/3a)k + α2

(
ωq+(2π/3a)ωq

)−(1/2)
G̃q+(2π/3a)k. (3.33b)

Replacing q by q − 2π
3a

and q + 2π
3a

in Eq. (3.33), we obtain four other equations [Eq. (B1)–(B4)] that are shown in Appendix B.
Solving the six equations, the Green’s function is

G̃qk =
δqk

π
ωq + φq+(2π/3a)�q+(2π/3a) + φq−(2π/3a)�q−(2π/3a) + i(φq+(2π/3a)
q+(2π/3a) + φq−(2π/3a)
q−(2π/3a))

ω2 − (
ω̃

(3)
q

)2 + i(φq+(2π/3a)
q+(2π/3a) + φq−(2π/3a)
q−(2π/3a))
, (3.34)

where

φq+(2π/3a) = α2 ω
1/2
q

π

[
δq+(2π/3a)kω

1/2
q+(2π/3a) − α2

ω2
q+(2π/3a) − ω2

q−(2π/3a)

(
δqkω

1/2
q − δq+(2π/3a)kω

1/2
q+(2π/3a) − δq−(2π/3a)kω

1/2
q−(2π/3a)

)]
,

(3.35a)

φq−(2π/3a) = α2ω
1/2
q

π

[
δq−(2π/3a)kω

1/2
q−(2π/3a) −

α2

ω2
q−(2π/3a) − ω2

q+(2π/3a)

(
δqkω

1/2
q −δq+(2π/3a)kω

1/2
q+(2π/3a) − δq−(2π/3a)kω

1/2
q−(2π/3a)

)]
,

(3.35b)

ϕq+(2π/3a) = −{α2
2

[
1 + (

ω2 − ω2
q

)(
ω2

q+(2π/3a) − ω2
q−(2π/3a)

)−1]+ 2α3
2

(
ω2

q+(2π/3a) − ω2
q−(2π/3a)

)−1}
, (3.35c)

ϕq−(2π/3a) = −{α2
2

[
1 + (

ω2 − ω2
q

)(
ω2

q−(2π/3a) − ω2
q+(2π/3a)

)−1]+ 2α3
2

(
ω2

q−(2π/3a) − ω2
q+(2π/3a)

)−1}
, (3.35d)

α2 = 2π2V0

9ma2
, (3.35e)

(
ω̃(3)

q

)2 = ω2
q − ϕq+(2π/3a)�q+(2π/3a) − ϕq−(2π/3a)�q−(2π/3a). (3.35f)
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From the Green’s function, the spectral-density function is

Jkq = 2

eβ�ω − 1

× (
δqk

π
ωq + φq+(2π/3a)�q+(2π/3a) + φq−(2π/3a)�q−(2π/3a))(ϕq+(2π/3a)
q+(2π/3a) + ϕq−(2π/3a)
q−(2π/3a)) − [ω2 − (ω̃(3)

q )
2
](φq+(2π/3a)
q+(2π/3a) + φq−(2π/3a)
q−(2π/3a))

[ω2 − (ω̃(3)
q )

2
]
2
+ (ϕq+(2π/3a)
q+(2π/3a) + ϕq−(2π/3a)
q−(2π/3a))2

.

(3.36)

If (ϕq+(2π/3a)
q+(2π/3a) + ϕq−(2π/3a)
q−(2π/3a)) is small, we can replace the Breit-Wigner form of the spectral-density function
by a Dirac δ function and have

Nk = ωk

ω̃
(3)
k

[
1 − α2

2

ω2
q+(2π/3a) − ω2

q−(2π/3a)

(�k+(2π/3a) − �k−(2π/3a))

]
coth

(
β�ω̃

(3)
k

2

)
, (3.37)

and the number density is

nk = ωk

4ω̃
(3)
k

[
1 − α2

2(�k+(2π/3a) − �k−(2π/3a))

ω2
q+(2π/3a) − ω2

q−(2π/3a)

]⎧⎨
⎩
⎡
⎣1 +

(
ω̃

(3)
k

ωk

)2
⎤
⎦ coth

(
β�ω̃

(3)
k

2

)
− 2ω̃

(3)
k

ωk

⎫⎬
⎭. (3.38)

The energy is

E = 1

4

∑
k

�ωk

ωk

ω̃
(3)
k

[
1 − α2

2(�k+(2π/3a) − �k−(2π/3a))

ω2
q+(2π/3a) − ω2

q−(2π/3a)

]⎧⎨
⎩
⎡
⎣3

(
ω̃

(3)
k

ωk

)2

− 1

⎤
⎦ coth

(
β�ω̃

(3)
k

2

)
− 2ω̃

(3)
k

ωk

⎫⎬
⎭

− 1

2

∑
k

�
α2

2

ω̃
(3)
k

coth

(
β�ω̃

(3)
k

2

)[
�k+(2π/3a) + �k−(2π/3a) + 2α2(�k+(2π/3a) − �k−(2π/3a))

ω2
q+(2π/3a) − ω2

q−(2π/3a)

]
. (3.39)

If we retain only the C1 and C2 terms, the phonon dispersion becomes independent of the temperature. From Eq. (3.35f), the
dispersion can be calculated: Fig. 3 shows an example. Three branches are found in this calculation.

Next, we will consider the effect of the terms C3(k1,k2,k3) and C4(k1,k2,k3,k4). Accordingly, we must calculate another kind of
Green’s function 
̃

(1)
k1k2k

. The additions are too complicated for the calculation if we do not use approximations. First, we assume
that the dispersion of phonons remains centrosymmetric, i.e., ωk = ω−k . Then, C1(−k1)G̃k2k and

∑
k′

1
C3(k′

1, − k′
1,−k1)Nk′

1
G̃k2k

in Eq. (2.18) can be ignored. From Figs. 1–3, we find that the approximation is reasonable. Second, we retain only the linear
term of the FK potential in the calculated 
̃

(1)
k1k2k

. In this case, some equations can be rewritten. Equation (3.33b) becomes

ωG̃
(1)
qk = δqk

π
+ ωqG̃qk + (α2 + α4)(ωq−(2π/3a)ωq)−(1/2)G̃q−(2π/3a)k + (α2 + α4)(ωq+(2π/3a)ωq)−(1/2)G̃q+(2π/3a)k

+
∑
k1k2

α3
(
ωk1ωk2ωq

)−(1/2)

̃

(1)
k1k2k

[
�

(
k1 + k2 − q + 2π

3a

)
− �

(
k1 + k2 − q − 2π

3a

)]
. (3.40)

Using the same method as above, other equations are obtained as shown in Appendix B [Eqs. (B5) and (B6)]. We first need
to know 
̃

(1)
k1k2k

if we want to obtain G̃qk from Eq. (3.40), From Eq. (2.18), we have

ω
̃
(1)
k1k2k

= ωk1 
̃
(2)
k1k2k

+ ωk2 
̃
(3)
k1k2k

, (3.41a)

ω
̃
(2)
k1k2k

= ωk1 
̃
(1)
k1k2k

+ ωk2 
̃
(4)
k1k2k

+ α2
(
ωk1ωk1+(2π/3a)

)−(1/2)

̃

(1)
k1+(2π/3a)k2k

+α2
(
ωk1ωk1−(2π/3a)

)−(1/2)

̃

(1)
k1−(2π/3a)k2k

+ �1(k1,k2,k), (3.41b)

ω
̃
(3)
k1k2k

= ωk2 
̃
(1)
k1k2k

+ ωk1 
̃
(4)
k1k2k

+ α2
(
ωk2ωk2+(2π/3a)

)−(1/2)

̃

(1)
k1k2+(2π/3a)k

+α2
(
ωk2ωk2−(2π/3a)

)−(1/2)

̃

(1)
k1k2−(2π/3a)k + �2(k1,k2,k), (3.41c)

and

ω
̃
(4)
k1k2k

= ωk2 
̃
(2)
k1k2k

+ ωk1 
̃
(3)
k1k2k

+ α2
(
ωk2ωk2+(2π/3a)

)−(1/2)

̃

(2)
k1k2+(2π/3a)k + α2

(
ωk2ωk2−(2π/3a)

)−(1/2)

̃

(2)
k1k2−(2π/3a)k

+α2
(
ωk1ωk1+(2π/3a)

)−(1/2)

̃

(3)
k1+(2π/3a)k2k

+ α2
(
ωk1ωk1−(2π/3a)

)−(1/2)

̃

(3)
k1−(2π/3a)k2k

+ �3(k1,k2,k). (3.41d)

Using replacements q − 2π
3a

→ q and q + 2π
3a

→ q, other equations about 
̃
(i)
k1k2k

are obtained; they are listed in the
Supplemental Material [25]. Solving the system of equations and only keeping the linear terms of the FK on-site potential,
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̃
(1)
k1k2k

becomes


̃
(1)
k1k2k

= α3

2
(
ωk1ωk2

)(1/2)

[
1

ω2 − (
ωk1 + ωk2

)2 − 1

ω2 − (
ωk1 − ωk2

)2

]

×
[

ω2 − ω2
k1

+ ω2
k2

ωk2

Nk2 + ω2 + ω2
k1

− ω2
k2

ωk1

Nk1 + 2ω
(
N

(1)
k1

+ N
(2)
k2

)]

× [(ωk1+k2−(2π/3a))
−(1/2)G̃k1+k2−(2π/3a)k − (ωk1+k2+(2π/3a))

−(1/2)G̃k1+k2+(2π/3a)k]. (3.42)

Substituting Eq. (3.42) into Eq. (3.40) and using replacements q − 2π
3a

→q and q + 2π
3a

→q, we have three equations about

G̃qk and G̃
(1)
qk , viz., Eqs. (B7), (B12), and (B13) in Appendix B. Combining Eqs. (3.33a), (B1), (B3), (B7), (B12), and (B13), and

only keeping the squared terms in α2, α3, and α4, then the Green’s function G̃qk can be obtained as follows:

G̃qk =
δqk

π
ωq + Re ξ + i Im ξ

ω2 − ω2
q + Re ζ + i Im ζ

, (3.43)

where ξ and ζ , respectively, are two functions dependent on vectors k and q. “Re” and “Im” represent their real and imaginary
parts. The details of ξ and ζ are given in Appendix C, and their real and imaginary parts are given in the Supplemental Material
[25]. From the Green’s functions Eqs. (3.43) and (2.12), we obtain the spectral-density function,

Jkq = 2

exp (β�ω) − 1
·
(

δqk

π
ωq + Re ξ

)
Im ζ −

[
ω2 − (

ω̃(3)
q

)2
]
Im ξ

[
ω2 − (

ω̃
(3)
q

)2]2 + (Im ζ )2
, (3.44)

where (ω̃(3)
q )2 = ω2

q − Re ζ . Then, the Nk and the number density are

Nk = ωk

ω̃
(3)
k

(
1 + π

ωk

Re ξ

)
coth

β�ω̃
(3)
k

2
, (3.45)

nk = ωk

2ω̃
(3)
k

(
1 + π

ωk

Re ξ

)⎧⎨
⎩
⎡
⎣1 +

(
ω̃(3)

q

ωk

)2
⎤
⎦ coth

β�ω̃(3)
q

2
− 2

ω̃(3)
q

ωk

⎫⎬
⎭. (3.46)

The effects of C3(k1,k2,k3) and C4(k1,k2,k3,k4) are included in Re ζ .
The energy of the system calculated from Eq. (2.22) is very complicated for a = b

3 . It is represented in the Supplemental
Material [25]. Undoubtedly, when the cubic term is considered into our calculation, it becomes very complicated. However, we
emphasize that the cubic term is important to thermal conductivity, even though the influence of the cubic term can exist only for
a third-order state or a higher commensurate one [28].

D. a = sr b

sr is a rational number less than one. In this case, there is an integer n for which ng = 2πnsr

a
is a reciprocal lattice vector.

This means G̃qk = G̃q+ngk , ωq = ωq+ng . Ignoring the effect of the cubic and quadratic terms of the FK model, we have from
Eqs. (2.17a) and (2.17b),

(
ω2 − ω2

q

)
G̃qk + α

(
ωq

ωq+(n−1)g

)1/2

G̃q+(n−1)gk + α

(
ωq

ωq+g

)1/2

G̃q+gk = δqk

π
ωq. (3.47)

Using the substitution q → q + g . . . q → q + (n − 1)g, we obtain a matrix equation,⎛
⎜⎜⎜⎜⎜⎜⎝

ω2 − ω2
q α

(
ωq

ωq+g

)1/2
0 0 · · · α

(
ωq

ωq+(n−1)g

)1/2

α
(

ωq+g

ωq

)1/2
ω2 − ω2

q+g α
(

ωq+g

ωq+2g

)1/2
0 · · · 0

· · · · · · · · · · · · · · · · · ·
α
(

ωq+(n−1)g

ωq

)1/2
0 0 · · · α

(
ωq+(n−1)g

ωq+(n−2)g

)1/2
ω2 − ω2

q+(n−1)g

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎝

G̃qk

G̃q+gk

· · ·
G̃q+(n−1)gk

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

δqkωq

π
δq+gkωq+g

π· · ·
δq+(n−1)kωq+(n−1)k

π

⎞
⎟⎟⎠, (3.48)
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where α = − 2π2V0
mb2 . If we require solutions accurate only to the squared terms of α, the solution of the equation is

G̃qk = 1

π

δqkωq − αη
(r)
1 + α2

(
η

(r)
2 − η

(r)
3

)
ω2 − ω2

q − α2
(
θ

(r)
1 + θ

(r)
2

) , (3.49)

where

η
(r)
1 = δq+gk

(
ωqωq+g

)1/2(
�q+g − i
q+g

)+ δq−gk

(
ωqωq−g

)1/2(
�q−g − i
q−g

)
, (3.50a)

η
(r)
2 = δq+2gk

(
ωqωq+2g

)1/2

ω2
q+g − ω2

q+2g

(
�q+g − �q+2g − i
q+g + i
q+2g

)+ δq−2gk

(ωqωq−2g)1/2

ω2
q−g − ω2

q−2g

(�q−g − �q−2g − i
q−g + i
q−2g),

(3.50b)

η
(r)
3 = δqkωq

n−2∑
s=1

�q+sg − �q+(s+1)g − i
q+sg + i
q+(s+1)g

ω2
q+sg − ω2

q+(s+1)g

, (3.50c)

θ
(r)
1 = �q−g − i
q−g + �q+g − i
q+g, (3.50d)

θ
(r)
2 = (

ω2 − ω2
q

) n−2∑
s=1

�q+sg − �q+(s+1)g − i
q+sg + i
q+(s+1)g

ω2
q+sg − ω2

q+(s+1)g

. (3.50e)

The � and 
, respectively, are similar to the definition in Eqs. (3.24a) and (3.24b). The spectral-density function can be
obtained from the Green’s function,

Jkq = − 2

π [exp(β�ω) − 1]

×α2Im
(
θ

(r)
1 + θ

(r)
2

){
δqkωq + Re

[
αη

(r)
1 + α2

(
η

(r)
2 − η

(r)
3

)]}+ [
ω2 − (

ω̃(r)
q

)2]
Im
[
αη

(r)
1 + α2

(
η

(r)
2 − η

(r)
3

)]
[
ω2 − (

ω̃
(r)
q

)2]2 + α4
[
Im
(
θ

(r)
1 + θ

(r)
2

)]2 , (3.51)

where (ω̃(r)
q )2 = ω2

q + α2Re(θ (r)
1 + θ

(r)
2 ).

Next, we use Jkq to evaluate some physical properties. First, the correlation function Nk is

Nk = ωq

ω̃
(r)
q

coth
β�ω̃(r)

q

2

(
1 − α2

n−2∑
s=1

�q+sg − �q+(s+1)g

ω2
q+sg − ω2

q+(s+1)g

)
. (3.52)

The number density of phonons is

nk = 1

4

[(
ωk

ω̃
(r)
k

+ ω̃
(r)
k

ωk

)
coth

β�ω̃
(r)
k

2
− 2

](
1 − α2

n−2∑
s=1

�k+sg − �k+(s+1)g

ω2
k+sg − ω2

k+(s+1)g

)
. (3.53)

To calculate the energy of the system, we first must evaluate 〈V2〉,

〈V2〉 = �α2

2

∑
k

coth β�ω̃
(r)
k

2

ω̃
(r)
k

(�k−g + �k+g). (3.54)

Using Eqs. (3.54) and (2.22) and ignoring 〈V3〉 and 〈V4〉, the energy of the system is

E = 1

4

∑
k

�ωk

[(
3ωk

ω̃
(r)
k

− ω̃
(r)
k

ωk

)
coth

β�ω̃
(r)
k

2
− 2

](
1 − α2

n−2∑
s=1

�k+sg − �k+(s+1)g

ω2
k+sg − ω2

k+(s+1)g

)
− �α2

2

∑
k

coth β�ω̃
(r)
k

2

ω̃
(r)
k

(�k−g + �k+g).

(3.55)

E. a = si b

For this case, si is an irrational number less than one, meaning that that our system is incommensurate, and g = 2πsi

a
. Any

integer multiple of g is not a reciprocal lattice vector. To simplify our calculation, we also ignored the effect of the cubic and
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quartic terms of the FK on-site potential. Combining Eqs. (2.17a) and (2.17b), we obtain

(
ω2 − ω2

q

)
G̃qk + α

(
ωq

ωq−g

)1/2

G̃q−gk + α

(
ωq

ωq+g

)1/2

G̃q+gk = δqk

π
ωq. (3.56)

Equation (3.56) can be written in a matrix form⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

· · · · · · 0 0 0 0 0

· · · ω2 − ω2
q−2g α

(
ωq−2g

ωq−g

)1/2
0 0 0 0

0 α
( ωq−g

ωq−2g

)1/2
ω2 − ω2

q−g α
(ωq−g

ωq

)1/2
0 0 0

0 0 α
( ωq

ωq−g

)1/2
ω2 − ω2

q α
( ωq

ωq+g

)1/2
0 0

0 0 0 α
(ωq+g

ωq

)1/2
ω2 − ω2

q+g α
( ωq+g

ωq+2g

)1/2
0

0 0 0 0 α
(ωq+2g

ωq+g

)1/2
ω2 − ω2

q+2g · · ·
0 0 0 0 0 · · · · · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

· · ·
G̃q−2gk

G̃q−gk

G̃qk

G̃q+gk

G̃q+2gk

· · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

· · ·
δq−2gkωq−2g

π

δq−gkωq−g

π

δqkωq

π

δq+gkωq+g

π

δq+2gkωq+2g

π

· · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.57)

where α = − 2π2V0
mb2 . In principle, the extent of this set of equations is infinite. We cannot solve them accurately, but since we only

require accuracy to quadratic terms in α, G̃qk can be written as

G̃qk = 1

π

δqkωq + αη
(i)
1 + α2

(
η

(i)
2 − η

(i)
3

)
ω2 − ω2

q − α2
(
θ

(i)
1 + θ

(i)
2

) , (3.58)

where η
(i)
1 , η

(i)
2 , and θ

(i)
1 have same form as η

(r)
1 , η

(r)
2 , and θ

(r)
1 in Eqs. (3.50a), (3.50b), and (3.50d), respectively. η

(i)
3 and θ

(i)
2 are

η
(i)
3 = δqkωq

∞∑
s=1

[
�q−sg − �q−(s+1)g − i
q−sg + i
q−(s+1)g

ω2
q−sg − ω2

q−(s+1)g

+ �q+sg − �q+(s+1)g − i
q+sg + i
q+(s+1)g

ω2
q+sg − ω2

q+(s+1)g

]
, (3.59a)

θ
(i)
2 = (

ω2 − ω2
q

) ∞∑
s=1

[
�q−sg − �q−(s+1)g − i
q−sg + i
q−(s+1)g

ω2
q−sg − ω2

q−(s+1)g

+ �q+sg − �q+(s+1)g − i
q+sg + i
q+(s+1)g

ω2
q+sg − ω2

q+(s+1)g

]
. (3.59b)

The spectral-density function is obtained from the Green’s function,

Jkq = − 2

π [exp(β�ω) − 1]

×α2Im
(
θ

(i)
1 + θ

(i)
2

){
δqkωq + Re

[
αη

(i)
1 + α2

(
η

(i)
2 − η

(i)
3

)]}+ [
ω2 − (

ω̃(i)
q

)2]
Im
[
αη

(i)
1 + α2

(
η

(i)
2 − η

(i)
3

)]
[
ω2 − (

ω̃
(i)
q

)2]2 + α4
[
Im
(
θ

(i)
1 + θ

(i)
2

)]2 , (3.60)

where (ω̃(i)
q )2 = ω2

q + α2Re(θ (i)
1 + θ

(i)
2 ). From Jkq , the correlation function Nk is obtained

Nk = ωq

ω̃
(i)
q

coth
β�ω̃(i)

q

2

{
1 − α2

∞∑
s=1

[
�q−sg − �q−(s+1)g

ω2
q−sg − ω2

q−(s+1)g

+ �q+sg − �q+(s+1)g

ω2
q+sg − ω2

q+(s+1)g

]}
. (3.61)

The number density of the phonons then is

nk = 1

4

[(
ωk

ω̃
(i)
k

+ ω̃
(i)
k

ωk

)
coth

β�ω̃
(i)
k

2
− 2

]{
1 − α2

∞∑
s=1

[
�k−sg − �k−(s+1)g

ω2
k−sg − ω2

k−(s+1)g

+ �k+sg − �k+(s+1)g

ω2
k+sg − ω2

k+(s+1)g

]}
. (3.62)
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Similar to our description in Sec. III D, the energy of the system is

E = 1

4

∑
k

�ωk

[(
3ωk

ω̃
(i)
k

− ω̃
(i)
k

ωk

)
coth

β�ω̃
(i)
k

2
− 2

]{
1 − α2

∞∑
s=1

[
�k−sg − �k−(s+1)g

ω2
k−sg − ω2

k−(s+1)g

+ �k+sg − �k+(s+1)g

ω2
k+sg − ω2

k+(s+1)g

]}

− �α2

2

∑
k

coth β�ω̃
(i)
k

2

ω̃
(i)
k

(�k−g + �k+g). (3.63)

We can obtain the respective phonon dispersions of the
commensurate and incommensurate structures from the coef-
ficient matrix of Eqs. (3.48) and (3.57). If we ignore the effect
of the cubic and quartic terms of the FK on-site potential, the
phonon dispersion is independent of temperature. Comparing
the two coefficient matrices, the only difference between the
commensurate and the incommensurate states is the finite
number of coupled wave vectors in the former case and
the infinite number in the latter. The normal modes of the
commensurate structure will be divided into finite branches,
and those of the incommensurate structure will be infinite
branches.

To intuitively understand the difference between the phonon
dispersions of the commensurate and incommensurate lattices,
we give, in Fig. 4, some calculated examples with close values
of a

b
. For the infinite number of coupled wave vectors in the

incommensurate state, we must perform some approximations
to calculate the dispersion of the incommensurate structure. We
only keep q ± 30g or less from the center of the wave vectors
such that the coefficient matrix of Eq. (3.57) becomes a 61 × 61
dynamical matrix centered about wave vector q. Figures 4(a)–
4(c), respectively, show the dispersion for the commensurate
case of b = 7

6a and the incommensurate cases of b = 1.17a

and b = 1.167a with normalized frequency ωL = 1 and the
amplitude of the FK on-site potential π2V0

ma2 = 0.1. We note
[see Figs. 4(a) and 4(c)] that the plots become similar when
the values of b

a
for the commensurate and incommensurate

states are very close as in the present calculation. However, we

0.0

0.2

0.4

0.6

0.8

1.0

a a

Fr
eq

ue
nc

y

Wave Vector

FIG. 2. (Color online) Phonon dispersion for a = b

2 with the FK
potential. Two branches are shown using a black line and a red line.
The parameters used in the calculation are the same as those in Fig. 1.

believe that the plots will be quite different when we increase
the size of the coefficient matrix of Eq. (3.57).

Novaco [23] did not realize this problem, i.e., that the
dispersion curves of commensurate and incommensurate states
will display large differences if the order of the coefficient
matrix of Eq. (3.57) is large enough. His results probably were
constrained by computing conditions at that time. We point
out that the approximation of using a simplified truncation to
calculate the dispersion for the incommensurate state is not
sufficient because we cannot judge which of the summation
limits of s → ∞ in Eq. (3.59) is convergent, i.e., convergence
of the infinite matrix. Thus, we reached a different conclusion
from Novaco [23], and it is not reasonable to expect to find
the dynamical structure of an incommensurate state closely
resembling that of “nearby” commensurate states, provided
that both are described in a way that does not explicitly
distinguish between them. The result obtained will affect the
nature of incommensurate-commensurate phase transition.

In addition, our calculation indicates that the commensurate
case has a definite gap at zero wave vector, whereas the
incommensurate case shows a branch that goes to zero, and the
various gaps in the commensurate case are true gaps wherein
there is zero density of states. In the incommensurate case,
there exist some gaps similar to those of the commensurate
state, but there are some modes inside these gaps, although
their density is very low. These results are consistent with
those of Novaco [23]. The phonon density of states shown in
Figs. 4(d)–4(f) clearly reveal these results.
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Wave Vector

FIG. 3. (Color online) Phonon dispersion for a = b

3 with the FK
on-site potential. Three branches are shown using black, red, and
green lines. The parameters used in the calculation are the same as
those in Fig. 1.
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0

FIG. 4. (Color online) The phonon dispersions of a commensurate chain (a) with b = 7
6 a, that of incommensurate chains (b) with b = 1.17a,

and (c) with b = 1.167a. The curves (d)–(f) on the right correspond to the phonon density of state. The parameters used in the calculations are
same as those in Fig. 1.

Sutherland [21] and Gupta and Sutherland [22] studied
the dispersion of the incommensurate state in the continuum
limit. They found that the spectrum separates into two
branches. The lower branch represents the collective motions
of the lattice dislocations as “acoustical” phonons, and the
upper branch corresponds to renormalized “optic” phonons

[13,23]. We cannot readily distinguish the two phonons in our
calculation; perhaps this is a limitation of the continuum limit
approximation.

As mentioned when we keep up only to squared terms
of the FK on-site potential model, the phonon dispersion is
independent of temperature. In this approximation, the number
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density and energy of the system for the commensurate and
incommensurate states have a simple relationship for the
dependence on temperature [see Eqs. (3.53), (3.55), (3.62),
and (3.63)].

To discuss incommensurate-commensurate phase transi-
tions, we need to compare the energy of incommensurate and
commensurate structures. From a mathematical point of view,
we always can find a rational number that is indefinitely close
to an irrational number. Therefore, the energy obtained from
Eqs. (3.55) and (3.63) can be indefinitely close when rational
values of a/b in a commensurate state are indefinitely close
to an irrational number a/b in an incommensurate state. For
this case, the incommensurate-commensurate phase transition
is continuous. We cannot analytically describe the sum upon s

in Eqs. (3.55) and (3.63), and hence, the incommensurate-
commensurate phase transition is a continuous transition
with an unusual nonanalytic nature, described as a “devil’s
staircase.” This agrees with Aubry’s result [29] but is only
valid at 0 K. Here, we need to emphasize, from Eqs. (3.55)
and (3.63), that our result shows that this devil’s staircase
also can exist at finite temperatures. In real crystals, a/b

always is a truncated number with a limited number of
decimal places. When we compare a commensurate structure
of a rational fraction with an incommensurate structure of a
truncated irrational number, the energy of the commensurate
and incommensurate structures will become discontinuous.
Therefore, it implies that the incommensurate-commensurate
phase transition in real crystals may be a discontinuous or
first-order one.

IV. SUMMARY AND CONCLUSIONS

In this paper, we analyzed the lattice vibrations in the
FK model using the technique of thermodynamic Green’s
functions based on field-theoretic methods. We treated the
FK model as an external on-site potential and expanded
the external potential into four terms. When the FK model
potential is considered as a perturbation, we analyzed its
solution for the phonon dispersion, number of density of the
phonons, and energy of the system. We first discussed several
low-order commensurate states and found that the cubic terms
of the FK on-site potential could only affect the third-order
state or higher commensurate ones. When the cubic and quartic
terms of the on-site potential are considered, the calculation
becomes very complicated. Based on the results of these
low-order commensurate states, we analyzed the arbitrary
orders of commensurate states, and the incommensurate state
were analyzed. When we ignored the terms above the quadratic
in the displacement in the FK on-site potential, then the
phonon dispersion is independent of temperature. Therefore,
the energy of the system has a simple relation with temperature
from which, we find that the incommensurate-commensurate
phase transition is a nonanalytic devil’s staircase at finite
temperatures.
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APPENDIX A

Using replacement q → q + π
a

in the subscript of Eqs. (2.20a) and (3.20), we obtain another two equations,

ωG̃q+(π /a),k = ωq+(π /a)G̃
(1)
q+(π /a),k, (A1)

ωG̃
(1)
q+(π /a),k = δq+(π /a)k

π
+ ωq+(π /a)G̃q+(π /a),k +

[
π2V0

2ma2
− 3π4

�V0

4m2a4N

∑
k2

1

ωk2

〈
A+

k2
Ak2

〉](
ωq+(π /a)ωq

)−(1/2)
G̃q,k. (A2)

Equations (2.17a), (3.20), (A1), and (A2) constitute a system of equations. G̃q,k can be solved from it.

APPENDIX B

(1) Only the effects of C1(k) and C2(k1,k2) are considered.
Using replacement q − 2π

3a
→q in Eq. (3.33), we have

ωG̃q−(2π/3a)k = ωq−(2π/3a)G̃
(1)
q−(2π/3a)k, (B1)

ωG̃
(1)
q−(2π/3a)k = δq−(2π/3a)k

π
+ ωq−(2π/3a)G̃q−(2π/3a)k

+α2(ωq+(2π/3a)ωq−(2π/3a))
−(1/2)G̃q+(2π/3a)k + α2(ωqωq−(2π/3a))

−(1/2)G̃qk, (B2)

and q + 2π
3a

→q,

ωG̃q+(2π/3a)k = ωq+(2π/3a)G̃
(1)
q+(2π/3a)k, (B3)
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ωG̃
(1)
q+(2π/3a)k = δq+(2π/3a)k

π
+ ωq+(2π/3a)G̃q+(2π/3a)k + α2

(
ωqωq+(2π/3a)

)−(1/2)
G̃qk

+α2(ωq−(2π/3a)ωq+(2π/3a))
−(1/2)G̃q−(2π/3a)k. (B4)

(2) Including the effects of C3(k1,k2,k3) and C4(k1,k2,k3,k4).
Using replacement q − 2π

3a
→q in Eq. (3.40), we have

ωG̃
(1)
q−(2π/3a)k = δq−(2π/3a)k

π
+ ωq−(2π/3a)G̃q−(2π/3a)k + (α2 + α4)(ωq+(2π/3a)ωq−(2π/3a))

−(1/2)G̃q+(2π/3a)k

+ (α2 + α4)(ωqωq−(2π/3a))
−(1/2)G̃qk

+
∑
k1k2

α3(ωk1ωk2ωq−(2π/3a))
−(1/2)
̃

(1)
k1k2k

[
�

(
k1 + k2 − q − 2π

3a

)
− �(k1 + k2 − q)

]
, (B5)

and q + 2π
3a

→q,

ωG̃
(1)
q+(2π/3a)k = δq+(2π/3a)k

π
+ ωq+(2π/3a)G̃q+(2π/3a)k + (α2 + α4)(ωq−(2π/3a)ωq+(2π/3a))

−(1/2)G̃q−(2π/3a)k

+ (α2 + α4)(ωqωq+(2π/3a))
−(1/2)G̃qk

+
∑
k1k2

α3
(
ωk1ωk2ωq+(2π/3a)

)−(1/2)

̃

(1)
k1k2k

[
�(k1 + k2 − q) − �

(
k1 + k2 − q + 2π

3a

)]
. (B6)

Substituting Eq. (3.42) into Eq. (3.40) yields

ωG̃
(1)
qk = δqk

π
+ ω2

q − α2
3F
(
q − 2π

3a

)− α2
3F
(
q + 2π

3a

)
ωq

G̃qk +
[
α2 + α4 + α2

3F

(
q − 2π

3a

)]
(ωq−(2π/3a)ωq)−(1/2)G̃q−(2π/3a)k

+
[
α2 + α4 + α2

3F

(
q + 2π

3a

)]
(ωq+(2π/3a)ωq)−(1/2)G̃q+(2π/3a)k, (B7)

where

F (q) =
∑

k

f (q,k)

[
1

ω2 − (ωk + ωq−k)2 − 1

ω2 − (
ωk1 − ωq−k

)2

]
, (B8)

f (q,k) =
∑

k

1

2ωkωq−k

[
ω2 − ω2

k + ω2
q−k

ωq−k

Nq−k + ω2 + ω2
k − ω2

q−k

ωk

Nk + 2ω
(
N

(1)
k + N

(2)
q−k

)]
, (B9)

α3 = −π3iV0

27a3

(
2�

m3N

)1/2

, (B10)

and

α4 = − 2π4
�V0

81m2a4N

∑
k

Nk

ωk

. (B11)

From Eq. (B7), using q − 2π
3a

or substituting q + 2π
3a

for q, two other equations were

ωG̃
(1)
q−(2π/3a)k = δq−(2π/3a)k

π
+ ω2

q−(2π/3a) − F
(
q + 2π

3a

)− F (q)

ωq−(2π/3a)
G̃q−(2π/3a)k

+
[
α2 + α4 + F

(
q + 2π

3a

)](
ωq+(2π/3a)ωq−(2π/3a)

)−(1/2)
G̃q+(2π/3a)k

+ [α2 + α4 + F (q)]
(
ωqωq−(2π/3a)

)−(1/2)
G̃qk, (B12)

ωG̃
(1)
q+(2π/3a)k = δq+(2π/3a)k

π
+ ω2

q+(2π/3a) − F (q) − F
(
q − 2π

3a

)
ωq+(2π/3a)

G̃q+(2π/3a)k + [α2 + α4 + F (q)](ωqωq+(2π/3a))
−(1/2)G̃qk

+
[
α2 + α4 + F

(
q − 2π

3a

)]
(ωq−(2π/3a)ωq+(2π/3a))

−(1/2)G̃q−(2π/3a)k. (B13)
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APPENDIX C

In this Appendix, we have

ζ = α2
3

[
F

(
q − 2π

3a

)
+ F

(
q + 2π

3a

)]
+ α2

3

ω2 − ω2
q

ω2 − ω2
q+(2π/3a)

[
F (q) + F

(
q − 2π

3a

)]

+α2
3

ω2 − ω2
q

ω2 − ω2
q−(2π/3a)

[
F (q) + F

(
q + 2π

3a

)]

− (α2 + α4)2

[
1

ω2 − ω2
q+(2π/3a)

+ 1

ω2 − ω2
q−(2π/3a)

+ ω2 − ω2
q

ω2
q+(2π/3a) − ω2

q−(2π/3a)

(
1

ω2 − ω2
q+(2π/3a)

− 1

ω2 − ω2
q−(2π/3a)

)]
,

(C1)

ξ = (α2 + α4)

[
δq+(2π/3a)k

π
(ωqωq+(2π/3a))1/2

ω2 − ω2
q+(2π/3a)

+
δq−(2π/3a)k

π
(ωqωq−(2π/3a))1/2

ω2 − ω2
q−(2π/3a)

]
+ α2

3
δqk

π

[
F (q) + F

(
q − 2π

3a

)
ω2 − ω2

q+(2π/3a)

+ F (q) + F
(
q + 2π

3a

)
ω2 − ω2

q−(2π/3a)

]

− (α2 + α4)2
δqk

π
ωq − δq+(2π/3a)k

π
(ωqωq+(2π/3a))1/2 − δq−(2π/3a)k

π
(ωqωq−(2π/3a))1/2

ω2
q+(2π/3a) − ω2

q−(2π/3a)

(
1

ω2 − ω2
q+(2π/3a)

− 1

ω2 − ω2
q−(2π/3a)

)
. (C2)

We use the F (q) expression in Eqs. (B8) and (B9). The whole representation of the ζ and ξ real and imaginary parts are
shown in the Supplemental Material [25].
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