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Order-disorder type critical behavior at the magnetoelectric phase transition
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We present the results of detailed dielectric investigations of the relaxation dynamics in DyMnO3 multiferroic
manganite. A strong low-frequency relaxation process near the paraelectric-ferroelectric phase transition is
observed. We provide experimental evidence to show that this relaxation mode corresponds to a chirality switching
of the spin cycloid in DyMnO3. We demonstrate that the relaxation dynamics in DyMnO3 is typical for an
order-disorder phase transition and may be understood within a simple model with a double-well potential. These
results suggest the interpretation of the paraelectric sinusoidal phase in manganites as a dynamical equilibrium
of magnetic cycloids with opposite chiralities.
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I. INTRODUCTION

Multiferroic materials with a coupling of electric and mag-
netic degrees of freedom have attracted considerable interest
since the discovery of a large magnetoelectric effect (ME) in
several compounds [1–4]. They are currently the subject of
intensive study due to their fascinating physical properties and
the potential for applications as multifunctional devices [5,6].
The rare-earth RMnO3 manganites (R = Gd, Tb, Dy, or Eu/Y)
with orthorhombically distorted perovskite structure have
emerged as a new class of multiferroics with strongly coupled
antiferromagnetic and ferroelectric properties [7,8]. Several
rare-earth manganites order antiferromagnetically below TN ∼
40 K into a collinear paraelectric phase [9] with sinusoidal
modulations of spins. This phase is followed by a cycloidal
spin order with nonzero electric polarization below TC ∼ 20 K.

It should be noted that the Mn3+ atom is supposed [10] to
have a Heisenberg spin with a fixed length of S = 2. The purely
sinusoidally modulated spin phase contradicts this property.
Model calculations [10] have obtained the sinusoidal order
only as a time-space average of the simulated cluster. Thus,
there is a possibility that a short-range dynamic order exists
in the intermediate temperature range TC < T < TN , which
is responsible for the “hidden” spin. As the magnetic order
at low temperatures is a spin cycloid, it is natural to assume
that the dynamic short-range order is also a spin cycloid. This
would imply that there are fluctuating ferroelectric regions
in the sinusoidal phase and that the ferroelectric transition is
actually of the order-disorder type. Such a transition has also
been suggested in Ref. [11], where c-axis relaxation typical for
the order-disorder type transitions has been investigated. The
fact that the wave vector qMn of the spin wave does not change
at the transition temperature TC [12] is also indirect evidence
that the ferroelectric transition is not of the displacive type.

The data by terahertz spectroscopy [13,14] evidence the
nonzero dielectric contribution of an electromagnon in the
sinusoidal phase. According to the commonly accepted mecha-
nism of the electromagnon [15,16], the majority of the spectral
weight of this mode originates from an exchange striction
mechanism and can only exist in magnetic phases with a non-
collinear spin arrangement. These facts again favor the hypoth-
esis of dynamical cycloidal spin order in the sinusoidal phase.

Recent theoretical analysis of the terahertz dynamics in the
sinusoidal phase suggested an explanation based on anomalous
magnetoelectric coupling. Investigations of the collinear sinu-
soidal phase in the diluted compounds TbMn1−xAlxO3 [17]
and the observation of the memory effect in the low-
temperature sinusoidal phase in the multiferroic MnWO4 [18]
have suggested the presence of nanosized ferroelectric do-
mains and support a relaxor order-disorder type transition.

In this work, we present an analysis of the critical behavior
of the low-frequency relaxation in DyMnO3. The observed
critical behavior confirms that the sinusoidal to cycloidal phase
transition is of order-disorder type. Our model suggests the
presence of short-range cycloidal order in the collinear spin
phase.

A. DyMnO3

In zero magnetic field, DyMnO3 undergoes an antifer-
romagnetic (AFM) transition with a temperature-dependent
modulation vector (0 qMn 1) around TN = 39 K. With
further cooling, the qMn value is locked at the transition
temperature, TC ≈ 19 K, and ferroelectric (FE) polarization
appears simultaneously along the c axis. It is well established
that the ferroelectric polarization in DyMnO3 is induced
by a cycloidal magnetic order [9,10,12] through the inverse
Dzyaloshinskii-Moriya (DM) interaction [4,19–21], and it can
be written as

P =
∑
i,j

Kei,j × (Si × Sj ), (1)

where ei,j denotes the unit vector connecting the spins Si

and Sj , and K is a constant representing the exchange
interaction and the spin-orbit interaction. Accordingly, the
electric polarization, P , is intimately linked to the chirality
of the magnetic cycloid (clockwise and counterclockwise
cycloidal magnetic ordering, respectively), that is, changing
the direction of +P → −P implies changing the rotation
(chirality) of the magnetic cycloid. This was demonstrated [22]
by the asymmetry in the scattering of left-hand and right-hand
circularly polarized x rays by nonresonant magnetic x-ray
diffraction for the similar compound TbMnO3.
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The unique cycloidal magnetic ordering below TC in
RMnO3 perovskites is assigned to the Mn 3d spins [7,9,23–
27], but ordering of the Dy 4f moments in DyMnO3 is also of
interest [9,28,29]. Although it is the magnetic structure of the
Mn subsystem that determines the emergence of ferroelectric-
ity in rare-earth manganites [29], the mutual coupling of the
Mn 3d and Dy 4f moments and, consequently, the ordering of
the 4f moments in Dy causes a particularly large polarization
observed in this material [7,30,31]. In addition, the basal plane
of the spin cycloid flops from the bc plane to the ab plane and
rotates the polarization by applying a magnetic field along the
b axis.

With regard to the temperature range TC < T < TN , there
have been a number of studies of the magnetic structure of
DyMnO3 and the related material TbMnO3 using techniques
such as neutron diffraction [9,32] and magnetic x-ray scat-
tering [24,33]. These studies have all shown that there is a
long-range sinusoidal magnetic ordering of the Mn3+ ions in
this temperature range, with the moments aligned parallel to
the crystallographic b axis, although Mannix et al. [24] and
Wilkins et al. [33] both show a small component of the moment
is aligned with the c axis.

II. EXPERIMENT

DyMnO3 single crystals were grown in Ar flow by a
floating-zone method with radiation heating [34,35]. Terahertz
properties of the samples from the same batch have been
presented previously [36,37]. The complex dielectric constant
was measured for an electric field along the crystallographic a

axis in the frequency range 0.1 Hz–1 MHz using a frequency
response analyzer in magnetic fields 0–14 T and with the
B‖b axis. We investigated the temperatures near the critical
temperature of the paraelectric-ferroelectric phase transition
(red circles in Fig. 2) with an increment of �T = 0.1 K by
using a physical property measurement system (PPMS). Silver
paint contacts were applied to the sample forming a capacitor.

III. PSEUDOSPIN MODEL

The theory of dynamic critical phenomena for a multivari-
able system can be formulated as a generalization of the single-
particle Langevin equation. The equation of motion for the
time-dependent local configuration of the order parameter field
is most conveniently given by the time-dependent Ginzburg-
Landau equation [38–40],

∂P (r,t)
∂t

= −�
δF

δP (r,t)
+ ζ (r,t). (2)

Here, the order parameter is given by the static electric
polarization P , � is a dissipation parameter, and ζ (r,t) is a
random noise simulating the effect of thermal excitation of
the order parameter. To guarantee that the system reaches the
canonical equilibrium probability distribution at long times,
ζ (r,t) is a random Gaussian variable satisfying 〈ζ (r,t)〉 = 0
and 〈ζ (ŕ,t)ζ (r,t́)〉 = 2DkBT δ(r − ŕ)δ(t − t́) [41], where D

is the diffusion coefficient. The crucial point is to find an
expression for the free energy in Eq. (2). In the framework
of the Landau theory for a second-order phase transition,
Smolenskii [42] introduced a biquadratic term (F ∝ γP 2M2,

magnetodielectric effect) into the free energy that accounts for
the coupling between magnetization and electric polarization.
Biquadratic terms are invariant to all symmetry operations,
and thus they are allowed in any material with coupled
spin and charge degrees of freedom. Since the dielectric
susceptibility is determined by taking the second derivative
of the free energy with respect to the polarization, the
dielectric constant will be proportional to the square of the
order parameter, ε ∝ M2 [43]. Describing magnetodielectric
effects in antiferromagnetic materials, the expression F ∝
γP 2M2 is not sufficient since the magnetization, M , remains
zero in the ordered phase. In such a case, M is replaced
by the antiferromagnetic vector, L = M1 − M2. Here M1

and M2 are the magnetizations of two antiferromagnetic
subsystems.

Within a more general model, Lawes [44,45] et al. pro-
posed the coupling of the polarization to the q-dependent
magnetic correlation function 〈MqM−q〉. This coupling
leads to a magnetodielectric term in the free energy, F ∝∑

q g(q)P 2〈MqM−q〉, where g(q) is a q-dependent coupling
constant. The q dependence of the free energy via a spin-spin
correlation function enables us to apply it to very general
forms of magnetic order, including ferromagnetic (FM) and
antiferromagnetic (AFM) transitions. To obtain a microscopic
theory for g(q) in systems with a strong spin-lattice interaction,
the coupling between the polarization and the spin correlations
arises from the coupling of magnetic fluctuations to the optical
phonons. That is, the spin correlations perturb the optical
phonon frequencies, which in turn shift the dielectric constant
through the spectral weight transfer and the Lyddane-Sachs-
Teller relation. The model determines the coupling g(q) by
expanding the exchange integral of neighboring spins in terms
of the normal coordinates for the phonons. Physically, this
procedure corresponds to a coupling between the magnetic
correlation function and atomic displacements.

In multiferroic rare-earth manganites, RMnO3, the electric
polarization is directly linked to the chirality of the magnetic
cycloid [4,20]. Based on this fact, we propose that the polar-
ization in the ferroelectric phase in DyMnO3 is proportional
to the difference of opposite chiralities of Mn3+ magnetic
cycloids. Here we assume an order-disorder type phase
transition between paraelectric and ferroelectric states. Similar
analysis in a triangular lattice antiferromagnet RbFe(MoO4)
demonstrated a proportionality between polarization in the
multiferroic phase and the chirality difference of the magnetic
structure [46].

In the present model, the following assumptions for the
phase transition in DyMnO3 are imposed: (i) A disorder
between clockwise and counterclockwise ab-cycloidal order
of the Mn3+ magnetic moments is assumed, (ii) the electric
dipole moments are associated with the displacement of the
O2− ions due to inverse DM interaction [4,20], (iii) the
direction of the electric dipoles depends on the chirality of
the magnetic order, (iv) two possible directions of the electric
dipoles are energetically separated by an energy barrier, and
(v) similar to Lawes et al. [44,45], we propose a coupling of
the magnetic correlation function and the correlation of O2−
atomic displacements. Thus we assume that we can describe
the ordering of the magnetic sublattice by the ordering process
of the O2− ions.

224205-2



ORDER-DISORDER TYPE CRITICAL BEHAVIOR AT THE . . . PHYSICAL REVIEW B 91, 224205 (2015)

FIG. 1. (Color online) Pseudospin model. (a) Short-range cy-
cloidal order of the Mn3+ magnetic moments for T > TC . (b)
According to Eq. (1), electric dipoles associated with the O2− ions
are generated by the canting of neighboring spins leading to a
mesoscopic electric polarization (red and green zones), however the
macroscopic electric polarization is zero for T > TC . Each electric
dipole interacts with neighboring electric dipoles. (c) Ising-type
pseudospins in a local double-well potential separating energetically
the clockwise ab-cycloidal and the counterclockwise ab-cycloidal
order of the Mn3+ magnetic moments. Each pseudospin is in a local
double-well potential and interacts with neighboring pseudospins
by harmonic forces, represented as springs. Each pseudospin gen-
erates an electric dipole moment of μR = σRq�x. Although the
microscopic mechanism of the magnetoelectric coupling is more
complex, within the present simple model it is represented as an
interaction between neighboring pseudospins via harmonic forces.
(d) Long-range cycloidal order of the Mn3+ magnetic moments for
T 	 TC and leading to (e) nonzero macroscopic polarization. (f) At
low temperatures, most of the pseudospins occupy the same side of
the double-well potential.

A useful tool for studying phase transitions is provided by
the unidimensional φ4 single-ion model [47–51]. This model
contains an array of atoms linked by harmonic forces, with one
atom in each unit cell (Fig. 1). Each atom is located in its local
double-well potential, which represents the rest of the crystal.

Assuming an order-disorder limit (EA/kBTC 
 1 [52,53]),
the system can be described by the pseudospin formalism,
and thus the model Hamiltonian is essentially governed by an
Ising-type interaction in combination with an interaction of
dipoles with a homogeneous electric field [52–54],

H ∝ −
∑
R,Ŕ

�x2JR,ŔσRσŔ −
∑
R

E(t)q�xσR, (3)

where �x is the displacement of the O2− ion, JR,Ŕ is the
coupling constant between O2− ions at position R and Ŕ, E(t)
is a time-dependent homogeneous electric field, q is the charge

of the oxygen ion, and σR is the pseudospin at position R with
σR = xR/�x, which can take the values +1 and −1.

Introducing a statistical mean value of the spin variable,
s = (N+ − N−)/(N+ + N−), with N+ and N− being the
occupation numbers of O2− ions in the +1 and −1 state,
respectively, and neglecting fluctuations of correlations, the
free energy of the system with polarization P = nq�xs is
given by [54]

F = −kBT ln Z =
∫ {

J0

nq2�x
P 2 − nkBT

× ln

[
2 cosh

( 2�xJ0
nq

P + E(t)q�x

kBT

)]}
dV, (4)

where n is the dipole density and J0 = ∑
Ŕ JR,Ŕ represents

the coupling constant characterizing the interaction of an O2−
ion at position R with another O2− ion at position Ŕ located
within an interaction radius. Since the first term in Eq. (3) is
bilinear in the displacements of O2− ions, it corresponds to an
electric dipole-dipole interaction.

Expanding F with respect to P and E and taking
the functional derivative of F with respect to P leads
to an equation of motion of the homogeneous order
parameter:

∂P (t)

∂t
= −�

δF

δP
= −�

[
2

(
J0

nq2
− 2(�x)2J 2

0

nq2kBT

)
P

+ 32(�x)4J 4
0

6n3q4k3
BT 3

P 3 − 2(�x)2J0

kBT
E(t)

]
. (5)

Here � = nq2J−1
0 ν0 exp(−EA/kBT ) is the damping parame-

ter.
According to Landau theory [55], the phase transitions

takes place when the term in Eq. (5) linear in P vanishes.
This determines the phase-transition temperature as TC =
2J0(�x)2/kB . Substituting E(t) = δE exp(−iωt) and P (t) =
PS + δP exp(−iωt) [56], where PS is the static electric
polarization, and comparing the relaxation rate in a single
double-well potential [54,57,58], we get an expression for the
relaxation strength �εr = δP/(ε0δE) and the relaxation time
τ in close agreement with Lines and Glass [56] and Blinc and
Žekš [59] as

�ε−1
r =

{
ε0kB

nq2(�x)2 (T − TC), T > TC,

2 ε0kB

nq2(�x)2 (TC − T ), T < TC,
(6)

(2πτ )−1 =
{[

ν0
π

(
T −TC

T

)
exp

(− EA

kBT

)]
, T > TC,

2
[

ν0
π

(
TC−T

T

)
exp

(− EA

kBT

)]
, T < TC.

(7)

Here ν0 is the attempt frequency and EA is the energy barrier
separating two local minima (Fig. 1).

Equations (6) and (7) correspond to an order parameter that
is homogeneous throughout the entire volume of the crystal.
For a spatially dependent order parameter, P (r), and assuming
the Gaussian approximation, the relaxation time in Fourier
space becomes [38,39]

τ (q)−1 = (2a + bq2)�, (8)

where a = A(T − TC), b is a constant, and q is the wave
vector. As a consequence, we see that each Fourier component
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of the order parameter behaves like an independent particle
connected to a spring [39], and the fluctuations in each
mode decay with a different relaxation time. Only in the
long-wavelength limit, q = 0, is the relaxation time in Eq. (8)
equal to that in Eq. (7).

In the opposite (displacive) limit of the model, EA/kBTC 	
1, the well-known expressions of Ginsburg-Landau mean-field
theory are obtained for q → 0:

�ε−1
r =

{
2ε0A

C
(T − TC), T > TC

4ε0A

C
(TC − T ), T < TC.

(9)

(2πτ )−1 =
{

�dA

π
(T − TC), T > TC

2�dA

π
(TC − T ), T < TC.

(10)

Here A = 3θkB/(8πJ0), TC = η/A, and �d and C are
constants of the displacive limit; θ and η are microscopic
parameters characterizing the nature of the potential in the
φ4 single-ion model [47–51]. Nota bene, in canonical ferro-
electrics, the ferroelectric phase transition of the displacive
type is accompanied by softening of a characteristic phonon.
In the long-wavelength limit, an overdamped softening mode is
characterized according to Eqs. (9) and (10) [59,60]. Recently,
a critical slowing down at the ferroelectric phase transition
has been observed in a chiral multiferroic MnWO4 [61].
This behavior has been attributed to an overdamped softening
of an electromagnon mode [36,62] obeying the temperature
characteristic given in Eqs. (9) and (10) with a critical exponent
larger than 1.

IV. RESULTS AND DISCUSSION

As demonstrated in Fig. 2(a), the dielectric permittivity
closely follows the known phase diagram of DyMnO3 for the
B‖b axis [7]. The changes in the dielectric permittivity are
especially strong at the transition to the ferroelectric state with
P ‖a [Fig. 2(b)]. In addition, a well-pronounced absorption
is observed in the close vicinity of TC [Fig. 2(c)]. Detailed
analysis of the low-frequency dielectric relaxation is presented
for magnetic fields of 4, 10, and 12 T corresponding to the
transition from the sinusoidal paraelectric to the P ‖a-axis
ferroelectric phase.

Figure 3 shows typical dielectric spectra of DyMnO3 close
to the ferroelectric transition temperature TC ≈ 18 K. The
spectra below the megahertz range are dominated by two
relaxation processes. Only a wing of the high-frequency
relaxation is seen in our spectra because the characteristic
frequency of this mode is far above 1 MHz. According to
previous dielectric studies, the high-frequency mode can be
attributed to the relaxation of the domain walls [63,64] in
DyMnO3.

In the following, we concentrate the analysis on an
absorption peak observed for frequencies below 1 kHz. As seen
already in the spectra in Figs. 3, 2(b), and 2(c), this peak grows
in magnitude with decreasing temperature, reaches a maxi-
mum value at TC , and decreases again after passing the critical
temperature. The observed dielectric relaxation is slightly
asymmetrical with broadening toward low frequencies.

To obtain quantitative information of the origin of
the low-frequency mode, the spectra were fitted to the

FIG. 2. (Color online) Phase diagram of magnetoelectric
DyMnO3 in magnetic fields along the b axis. (a) The color map is a
contour plot of the real part of the dielectric constant along the a axis
measured at 10 Hz. The ground state of DyMnO3 in zero magnetic
field is a bc cycloid with P ‖c. In external magnetic fields, the electric
polarization flops from P ‖c to P ‖a. (b) Low-frequency dispersion
phenomena near TC . (c) The logarithmic plot of the imaginary part of
the permittivity reveals a well-pronounced absorption in the vicinity
of the paraelectric to ferroelectric phase transition and the signature
of domain-wall relaxation phenomenon at higher frequencies [63].
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FIG. 3. (Color online) Spectrum of the dielectric permittivity in
a magnetic field of μ0H = 12 T. Typical frequency dependence of
the dielectric constant, Re(ε), and dielectric loss, Im(ε), at several
temperatures above (T = 18 and 20 K) and below (T = 14, 15, and
16 K) the critical temperature, TC ≈ 17 K (at 12 T). Black solids
lines represents the fit according to the Havriliak-Negami relaxation
function, Eq. (11). The dashed black line shows the fit according to
the Cole-Cole equation, Eq. (12). Dash-dotted lines with open circles
schematically indicate the position of the spectra with increasing
temperature.

phenomenological Havriliak-Negami equation [57]:

ε′ + ε′′ = ε∞ + �ε

[1 + (iωτ )1−α]β
. (11)

Here �ε is the relaxation strength, ε∞ is the high-frequency
limit of the dielectric constant, τ is the characteristic relaxation
time, and α and β are the width and asymmetry parameters,
respectively. A simple Debye behavior in Eq. (11) would
correspond to α = 0 and β = 1. Values of 0 < α < 1 and
0 < β < (1 − α)−1 result in broadened asymmetric loss peaks
with power laws of ω1−α and ω−(1−α)β as the low- and
high-frequency asymptotic behavior, respectively.

Since the symmetric Cole-Cole function given by

ε′ + ε′′ = ε∞ + �ε

[1 + (iωτ )1−α]
(12)

is intensively used as a fitting function to describe permittivity
data of conventional materials as well as magnetoelectric
materials [11,61], we demonstrated by the dashed line in Fig. 3

FIG. 4. (Color online) Cole-Cole plots of low-frequency relax-
ation. The inset shows the temperature dependence of the relaxation
time in the Arrhenius representation (see Sec. IV B).

for the T = 16 K data that the symmetric Cole-Cole function
results in a worse fit to the data compared to the Havriliak-
Negami expression. Therefore, the subsequent analysis within
the present work has been done according to Eq. (11). Most
probably, a fitting procedure using the Cole-Cole function
would lead to qualitatively similar behavior of the relaxation
time and dielectric strength.

The deviations from a Debye spectral shape of the relax-
ation are commonly ascribed to a distribution of relaxation
times. According to Eq. (8), this can be caused by fluctuations
of the order parameter near the phase-transition temperature.
The mean logarithmic relaxation time is related to the
characteristic relaxation time by [65]

〈ln τHN〉 = ln τ + ψ(β) + Eu

1 − α
, (13)

where ψ(β) is the digamma function and Eu ≈ 0.577 is
the Euler constant. The width of a non-Debye relaxation
is defined as the variance, σ 2 = 〈(ln τHN)2〉 − 〈ln τHN〉2, of
the distribution of logarithmic relaxation times, and for a
Havriliak-Negami function it is given by [65]

σ 2 = ψ ′(β)

(1 − α)2
+ π2

6(1 − α)2
− π2

3
. (14)

In the present work, we do not consider the relaxations by
the domain walls. Compared to fluctuations on the atomic
level, ferroelectric domains are typically [1] of μm size
and they are responsible for the high-frequency dielectric
relaxation [63,64]. Two additional arguments are in favor of
the nanosized origin of the relaxation discussed here: (i) the
low-frequency relaxation (Fig. 3) is well pronounced below
and above TC , and (ii) no signature of thermally activated
creep motion of domain walls is evident in the Cole-Cole
plots (Fig. 4). In the latter case, a linear relationship between
the imaginary and real part of the permittivity with Im(ε) ∝
tan(πβ/2) Re(ε) and 0 < β < 1 is expected [66–68].
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FIG. 5. (Color online) Relaxation strength in DyMnO3. Inverse
relaxation strength along the a axis of the low-frequency mode as a
function of temperature for different magnetic fields along the b axis.
The yellow symbols are obtained by the spectral analysis procedure,
and the red solid line corresponds to the fit function according to
Eq. (6).

A. Relaxation strength

The temperature dependence of the inverse relaxation
strength of the low-frequency mode is presented in Fig. 5.
Dielectric permittivity diverges as the temperature approaches
TC . At the ferroelectric transition temperature, DyMnO3
undergoes a phase transition accompanied by a minimum
in �ε−1

r at TC . As predicted by Eq. (6), close to transition
�ε−1

r (T ) the regions of linear dependence are shown. This
behavior demonstrates critical dynamics characteristic for
order-disorder phase transitions.

A significant rounding near TC is attributed to fluctuations
of the order parameter and to limitation of the correlation
length close to TC [56]. In addition, the straight lines of the
model fits cross the x axis at temperatures deviating by about
1 K. These effects are not accounted for within the present
simple model since it implies a molecular field approach
and neglects fluctuations. Alternatively, a narrow temperature
range near TC may be analyzed using the formalism of
critical exponents, �ε−1 ∝ |T − TC |γ . Such analysis (not
shown) reveals critical exponents for the relaxation strength
of the low-frequency mode near TC between γ = 1.8 and 2.3

FIG. 6. (Color online) Crystal structure of the orthorhombic rare-
earth manganite DyMnO3. Green spheres are Dy ions, blue spheres
represent Mn ions, and magenta spheres are O ions in a Pbnm setting.
Solid gray lines mark the unit cell. Lower frame shows the ab plane
of DyMnO3 cut at the MnO2 plane (dashed gray lines).

depending on the magnetic field. These rather high values
of the critical exponents may also be seen as evidence for
order-disorder type phase transitions [69].

The electric dipole moment is generated by the displace-
ments of the O2− ions, and only the ions labeled as O2
in Fig. 6 generate a static electric polarization along the
a axis. Therefore, we assume an electric dipole density in
DyMnO3 equal to 2/3 of the density of O2− ions in the
unit cell, nO2− = n0 ∼ 3.5 × 1028 m−3 [70,71], and a charge
of q = 2e, where e is the elementary charge. According
to Eq. (6), the slope of �ε−1

r is inversely proportional to
n(q�x)2 = 2P 2

s /n with static electric polarization along the
a axis, Ps = nq�x/

√
2. The factor

√
2 appears due to a 45◦

degree misalignment between the oxygen displacement and
the a axis (Fig. 6). Hence, from the slope of �ε−1

r at T < TC
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we may directly estimate the static electric polarization.
The microscopic parameters of the model, �x and J0, are
obtained from the values of the static polarization and from
J0 = kBTC/2(�x)2. These parameters are given in Fig. 5.
Taking into account the simplicity of the model, the obtained
values of the electric polarization agree reasonably well with
directly measured data [7] P ∼ 2000 μC/m2. In addition,
the obtained coupling constants coincide with the classical
electric dipole energy in the Mn-O-Mn chains along the b

axis, J0 ∼ (q2/2πε0)/(l2 + s2)3/2 ∼ 70 J/m2 (Fig. 6), with
l = 2.22 Å and s = 1.90 Å being the long and short bond
distances [71].

The temperature dependence of the inverse relaxation
strength becomes steeper in the paraelectric phase T > TC ,
although the model predicts the opposite behavior. This effect
is evidently not captured within the assumptions of the present
simple model. Two possible explanations for this behavior
may be suggested in the present stage: (i) There is a change
in the effective dipole density at the phase transition. In the
disordered state, a large portion of the magnetic cycloid is
distorted and is included in the border regions between the
left- and right-rotating cycloids. The oxygen ions in these
regions are effectively excluded from the relaxation process,
thus reducing the effective dipole density n of the model.
This explanation has been used in the fits to the data in
Fig. 5, and the effective dipole density for T > TC is indicated
at the fit lines. (ii) The model can be modified to account
for higher-order terms [72,73]. A coupling term between the
polarization and magnetization may be explicitly included in
the free energy expansion, Eq. (5). The term that is always
allowed by symmetry is γP 2M2 where M is the magnetic
order parameter. Thus the free-energy expansion near TC ,
Eq. (4), can be written as

F = aP 2 + bP 4 − gEP + γP 2M2, (15)

where a = A(T − TC), and b, g, and γ are the constants of the
model. In these modifications, M has to be understood as the
amplitude of the transverse component of the spin cycloidal
S = (0,M cos qy,M sin qy). Applying Eq. (15) to Eq. (2) leads
to

∂P (t)

∂t
= −�(2aP + 4bP 3 − gE + γPM2). (16)

With E = δE exp (−iωt) and P = PS + δP exp (−iωt)
and assuming that M2 ∝ (TC − T ) = −Ca below TC and
M2 = 0 above TC , the relaxation strength and relaxation time
become

�ε−1
r =

{
ε0kB

nq2(�x)2 (T − TC), T > TC,

2(1 − γC) ε0kB

nq2(�x)2 (TC − T ), T < TC,
(17)

(2πτ )−1 =
{[

ν0
π

(
T −TC

T

)
exp

(− EA

kBT

)]
, T > TC,

2(1 − γC)
[

ν0
π

(
TC−T

T

)
exp

(− EA

kBT

)]
, T < TC.

(18)

It is clear that upon adding explicitly magnetoelectric terms
into the free energy, the ratio of the slopes of the relaxation
strength below and above TC deviate from the value of 2, as
predicted by a simple model. In this case, the slope below TC is
governed by a new parameter (1 − γC) in Eqs. (17) and (18).

FIG. 7. (Color online) Relaxation time in DyMnO3. Inverse
mean relaxation time along the a axis of the low-frequency mode
as a function of temperature for different magnetic fields (B‖b axis).
The yellow symbols are obtained by the spectral analysis procedure,
and the red solid line corresponds to the fit function according to
Eq. (7).

B. Relaxation time

The inverse relaxation time of the low-frequency mode
obtained from the spectral analysis is shown in Fig. 7.
Upon cooling from the paraelectric phase, the inverse re-
laxation time decreases toward TC . Below TC , 1/τ shows
a broad characteristic maximum and decreases again for
low temperatures. Qualitatively, the temperature behavior
of the relaxation time can be explained as a superposition
of two processes: (i) temperature activated behavior with a
characteristic energy of Ea ∼ 100 K, and (ii) critical slowing
down of the relaxation in the vicinity of TC . This observation is
typical for order-disorder phase transitions involving shallow
double-well potentials [56,58,74].

Both processes determining the temperature evolution of
the relaxation time are qualitatively well captured within the
present simple model. The temperature-activated behavior,
expressed by the exponential factor in Eq. (7), prevails for
temperatures far from TC and, therefore, causes an overall
decrease of the relaxation time for decreasing tempera-
ture. Qualitatively similar behavior of the relaxation time
was found [11] for a c-axis relaxation (e‖c) in DyMnO3
for a transition to a bc-cycloidal magnetic ordering. The
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FIG. 8. (Color online) Relaxation width in DyMnO3. Asymme-
try and width of the low-frequency dielectric relaxation in DyMnO3,
obtained via Eq. (14).

P ‖c-axis state is achieved in DyMnO3 for cooling in a zero
external magnetic field. It seems plausible that the c-axis
relaxation in multiferroic manganites may be explained by
the present model as well.

In the case of inverse relaxation time, the suggested model
gives a qualitative explanation of the observed data. Equa-
tion (7) contains two temperature-dependent factors, namely
the Arrhenius term exp[−EA/(kBT )] and the critical-slowing
term ν0(T − TC)/T . These two terms explain qualitatively
the temperature dependence of the relaxation time close
to the phase transition. To obtain reasonable fits to the
critical behavior of the relaxation time, different values of
the attempt frequency above and below TC have been used,
and a constant was added to Eq. (7). Nota bene, accounting for
magnetodielectric effects, the slope of the inverse relaxation
time is not necessarily 2; see Eq. (18). Thus the values of
the attempt frequency above and below TC can take the same
value. Eventually, in addition to magnetodielectric effects, the
distribution of relaxation times plays a role in explaining that
feature.

The ratio of EA/kBTC ∼ 5 is further evidence of an
order-disorder type phase transition [52] and is in contrast
to a displacive-type phase transition where EA/kBTC 	 1
holds. Furthermore, EA/kB ∼ 100 K corresponds well to a
characteristic energy of the magnetic order as determined by
a Néel temperature of TN ∼ 39 K [53].

Finally, Fig. 8 shows the width of the low-frequency
dielectric relaxation in DyMnO3, obtained via Eq. (14). The
increase of the characteristic width below TC ∼ 18 K is clearly
seen. In the ordered magnetic state, the effective length of the

elementary cycloids increases, thus leading to a broader length
distribution. Most probably, this also leads to the observed
broadening of the dielectric relaxation.

V. DISCUSSION

The analysis of low-frequency dielectric relaxation demon-
strates an overlap of two processes: critical dynamics close
to TC and activation behavior in the broader frequency range.
This observation may be reasonably explained using a simple
model of an order-disorder phase transition with a double-
well potential. This potential reflects a dynamical switching
between cycloids of opposite chirality. Several parameters
of the model correlate well with the physical properties
of DyMnO3. Thus, the characteristic energies of magnetic
ordering and the value of the static electric polarization are
in agreement with known values. We note that the present
experiments could be analyzed up to T = 22 K only. Strictly
speaking, the dynamical behavior of the cycloids still may
change close to TN .

Most importantly, the present experimental data and the
simple model suggest that the paraelectric sinusoidal phase
in rare-earth manganate can be explained as a dynamical
equilibrium of cycloids with opposite chiralities. In addition
to the dielectric results, this hypothesis resolves several
experimental constraints that contradicted the concept of a
static sinusoidally modulated magnetic phase.

VI. CONCLUSIONS

A low-frequency relaxation mode is observed in the
dielectric properties of DyMnO3 multiferroic manganite, and
it reveals critical behavior at the ferroelectric transition tem-
perature, TC ∼ 18 K. Together with the temperature-activated
relaxation rate, the observed mode may be qualitatively ex-
plained within a model for an order-disorder phase transition.
The model assumes a switching between magnetic cycloids
with opposite chirality, and it correlates well with the known
physical properties of DyMnO3.

Combining the present results with several other exper-
iments on multiferroics, we suggest that the paramagnetic
sinusoidal phase should be explained as a dynamical equilib-
rium between the clockwise and counterclockwise cycloidal
magnetic orders. The short-range order in the paraelectric
phase is transformed to a long-range cycloid at the ferroelectric
transition temperature.
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