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Effect of disorder on the dilute equilibrium vacancy concentrations of multicomponent
crystalline solids
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We develop statistical mechanical methods to predict the thermodynamic properties of dilute vacancies in
multicomponent solids from first principles. The approach relies on a coarse-graining procedure to predict
dilute vacancy concentrations with Monte Carlo simulations in alloys exhibiting varying degrees of short- and
long-range order. We apply this approach to a study of vacancies in hcp based Ti-Al binary alloys and find a
strong dependence of the equilibrium vacancy concentration on the Al concentration and the degree of long-range

order, especially at low temperature.
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I. INTRODUCTION

All crystalline solids contain imperfections, the most com-
mon of which are vacancy and interstitial point defects. Their
thermodynamic origin is often entropic as defect formation
energies tend to be positive. While the nature of point defects
in single component solids or highly ordered compounds
has received much experimental and theoretical attention
[1-8], far less effort has been devoted to understanding the
nature and concentration dependence of point defects in
disordered multicomponent solids or ordered compounds that
can tolerate a high degree of off-stoichiometry. Almost all
metals used in structural applications are alloys containing
a variety of elements that are added to optimize a mix of
mechanical, kinetic, and phase stability related properties
[9,10]. Alloys of semiconducting compounds are increasingly
utilized in electronic applications and are also actively pursued
in thermoelectrics as a way to reduce thermal conductivity
[11-14]. Changing the overall concentration of an alloy should
affect the equilibrium point defect concentration, as point
defects will interact differently with the various components of
the solid. Furthermore, point defect concentrations are likely
to depend on the degree of short- and long-range order, which
itself is a function of temperature and overall concentration.
In ordered compounds, point defects play a crucial role in
accommodating off-stoichiometry, with some intermetallic
compounds having sublattice vacancy concentrations that can
reach several percent [15].

Even low concentrations of point defects can have a dra-
matic effect on a range of properties that include electronic and
atomic mobilities. Vacancies, interstitials, and more complex
antisite or dumbbell-like defects scatter Bloch states thereby
resulting in lower electronic conductivity. In semiconductors,
they can also alter the Fermi level and thereby modify the
number of free carriers, either by trapping them or donating
them to the conduction band. Point defects are especially
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important in mediating atomic transport within the crystalline
state. Interstitial point defects are typically more mobile [16—
20], but vacancies are essential to redistribute substitutional
elements within alloys [21]. The Kirkendall effect is among
the most pronounced manifestations of vacancy mediated
substitutional diffusion within alloys and arises due to a
difference in vacancy exchange frequencies among the various
components of the alloy [21-24]. Any concentration gradient
in such alloys results in a net vacancy flux in a direction
opposite to the flux of the fastest diffuser. In the presence
of vacancy sources and sinks such as dislocations and grain
boundaries, a net vacancy flux results in a rigid drift of the
crystal frame of reference, often causing deleterious effects
within the solid, such as void formation.

Substitutional diffusion coefficients are to first order pro-
portional to the vacancy concentration [21]. Variations in
alloy concentration or the degree of short- or long-range
order will affect the vacancy concentration and thereby the
mobility of the constituents of the alloy. There is limited
understanding of the dependence of the equilibrium vacancy
concentration on alloy concentration and degree of order due
to difficulties in directly and precisely measuring vacancy
concentrations in multicomponent solids. Such understanding
is crucial in high-temperature applications relying on het-
erostructures with strong built-in chemical potential gradients
that drive interdiffusion [24,25]. It is also of importance in
thermoelectric applications where temperature gradients can
result in driving forces for demixing, which can be enhanced
by high concentrations of point defects.

Here, we develop statistical mechanical methods to predict
the thermodynamic properties of dilute vacancies within
multicomponent solids from first principles. We introduce
a coarse-graining procedure that enables the prediction of
very dilute vacancy concentrations and their associated ther-
modynamic properties with Monte Carlo simulations. When
applied to hcp based Ti-Al binary alloys, we find a strong
dependence of the equilibrium vacancy concentration on Al
concentration and degree of long-range order, especially at low
temperature.
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II. METHODS

A. Alloy Hamiltonian and vacancies

As an alloy Hamiltonian, we use a cluster expansion,
which is a mathematical tool to describe any property of
a multicomponent crystalline solid that depends on how
the various components of the solid are arranged within
a particular parent crystal structure [26,27]. It relies on
occupation variables assigned to each site within a crystal that
can take on discrete values depending on the specie occupying
the site. In a binary A-B alloy, spinlike occupation variables
o; are typically used, which take a value of 41 if site i in
the crystal is occupied by B and —1 if it is occupied by
A. Polynomials constructed by taking products of occupation
variables belonging to all possible clusters of sites, including
clusters containing only one site (a point cluster), pair clusters,
triplet clusters, etc., can then be shown to form a complete
and orthonormal basis in configuration space [26]. Hence, any
property of the crystal that depends on how the A and B atoms
are arranged on the crystal can be expanded in terms of these
polynomial basis functions. The fully relaxed energy of the
crystal, for example, can be written as

E@G)=Vo+ ) Va- Pu(5),. (1)

where ¢ = {01, ...,0i,...,0u} denotes the collection of all
occupation variables in the crystal having M sites, V; and
V, are expansion coefficients to be parametrized with a first-
principles total-energy method, and

®,6) =[] &)
lea
are cluster functions defined as the product of occupation
variables of sites belonging to a cluster of crystal sites «.

The constant term V, in Eq. (1) is equal to the average
energy of the crystal in the fully disordered state when there
is an equal number of A and B atoms. In the fully disordered
state at an alloy concentration x = 1/2, the averages of all the
cluster functions are zero because the occupation variables
of different sites are uncorrelated and the averages of the
spinlike occupation variables at x = 1/2 are zero. The above
expression for the configurational energy of the crystal can thus
be viewed as an expansion around the fully disordered alloy
at x = 1/2. This feature is a result of the particular choice of
values that the occupation variables o; can take.

Alternative choices for the values of the occupation
variables are possible [28,29] and may be more convenient
for particular applications. Most metallic alloys and mul-
ticomponent ceramics of technological importance have a
solvent, which is the dominant specie, and a variety of solutes
that have significantly lower concentrations than the solvent.
Important examples include alloyed steels, which are Fe rich,
and Ni-based superalloys, which are Ni rich. Especially the
vacancies within a substitutional alloy, which need to be treated
as an explicit component, will have very low concentrations.
For these cases, it is more convenient to use an array of
occupation variables p? assigned to each site, which are 1
if site i is occupied by specie B and O otherwise. For an
n-component solid, n — 1 such occupation variables must be
assigned to each site. These occupation variables are linearly
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related to the spinlike occupation variables o; [30]. While there
is no restriction on the choice of n — 1 occupation variables
to explicitly work with, it is most convenient to introduce
occupation variables for the solutes only. For a binary A-B
alloy also containing vacancies (where A is the solvent), we
would then use p? and pl.Va corresponding to the occupation
variables for the solute B and the vacancy “Va.” In terms of
these occupation variables, the total energy of the crystal can
be written as

E(P)=Eo+ Y ED-AD(p), 3)

where p={pE, ....pE, .. .pB.p/% ....pY, ... pyY s
the collection of all occupation variables for each crystallo-
graphic site, and E and E” are expansion coefficients, again to
be determined with a first-principles total-energy method. The
basis functions are products of occupation variables belonging
to the sites of a cluster & and can be written as

AP =TT PP )

ica

In this expressiog, the index i runs over the sites of a
cluster ¢ while D = {D(i)} labels the type of occupation
variable at each site i (i.e., p? or pY*). All cluster basis
functions that can be mapped onto each other by a space-group
symmetry operation of the crystal will have the same expansion

coefficient EP. In contrast to a cluster expansion expressed in
terms of spinlike occupation variables o;, the constant term Ej
in Eq. (3) is now the energy of the pure solvent, as then all of
the occupation variables are equal to 0. The above expression
can therefore be viewed as an expansion relative to the energy
of the crystal containing only solvent atoms A. Hence, for
solvent rich alloys we can expect the above expression to
converge more rapidly than an equivalent expansion in terms
of spin occupation variables. In this work, we develop a
multicomponent cluster expansion using occupation variables
p? and p)* (as opposed to spin occupation variables) to
describe the configurational energy of a multicomponent solid
containing a dilute concentration of vacancies. This contrasts
with a local cluster expansion approach to treat vacancies in a
binary alloy when using spinlike occupation variables [15,31].

B. Thermodynamics of a binary alloy containing vacancies

Most alloys of technological interest contain dislocations
and grain boundaries that act as local vacancy sources and
sinks. These extended defects can regulate an equilibrium
vacancy concentration within the crystalline regions of the
alloy. While a binary substitutional solid contains two atomic
species with the amounts of A and B controlled experimen-
tally, in the crystalline regions away from dislocations and
grain boundaries, the solid is effectively a ternary system as
the number of crystal sites there is conserved and each site can
be occupied by A, B, or a vacancy. We denote the Gibbs free
energy of a crystalline region of M sites that does not include
dislocations or grain boundaries with G. Its differential form
at constant temperature 7' and pressure P can be written as

dG = padNy + pdNp + pivad Nv,,
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FIG. 1. (Color online) Ternary free-energy diagram with a
schematic of the chemical potentials and the zero vacancy chemical
potential.

where the u; are the chemical potentials of component i and the
N; refer to the number of each component i. This free energy
can be normalized by M to yield the Gibbs free energy per
crystal site g = G/M. The chemical potential of component
i, formally defined as

oG
Wi = (—) , &)
dN; T,P,Nj4

can be expressed in terms of g according to [32]
dg
0xvy

pi =g+ @i — xB)a—g +Giva —xva) 77—, (6)
0x B

where §;; is the Kronecker § and the x; = N;/M are
mole fractions. Due to the conservation of crystal sites in
single crystalline regions x4 + xp + xv, = 1 and only two
of the three mole fractions are independent. Graphically, the
chemical potentials p; correspond to the intercept of the plane
tangent to the Gibbs free energy g(xp,xy,) with the x; = 1
axis as illustrated in Fig. 1.

In the presence of vacancy sources and sinks, the vacancy
concentration within crystalline regions cannot be controlled
experimentally and is an internal degree of freedom. The
solid will then pick the equilibrium vacancy concentration that
minimizes the Gibbs free energy at constant 7', P, N4, and
Np. Mathematically this is equivalent to setting the vacancy
chemical potential equal to zero,

< oG ) 0 o
Hva = = V.
9 Nva T,P,Ns,Ng

Any deviations in the local vacancy concentration from its
equilibrium value will result in a vacancy chemical potential
that differs from zero. Using Eq. (6), the vacancy chemical
potential can be written in terms of the free energy per crystal
site g as

®)

8
MUva = g(Xp,Xva) — xp— + (1 — xva) ,
0xp 0Xvy
Once the Gibbs free energy per crystal site, g(xp,xy,), is
known, it is possible to determine the equilibrium vacancy
concentration as a function of the alloy concentration xp by
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setting Eq. (8) equal to zero and solving for xv,. This is shown
graphically in Fig. 1.

The thermodynamic quantities introduced so far can be
calculated with results from semigrand-canonical Monte Carlo
simulations. The number of crystal sites M remains fixed in a
lattice Monte Carlo simulation. Hence, the number of atoms of
each component are not independent due to the constraint that
N4 + N + Ny, = M. Since A is the solvent, it is convenient
to explicitly track Np and Nv,. Then using dNs =dM —
dNp — dNy,, the differential of the Gibbs free energy can be
rewritten as

dG = fipdNp + fivad Ny, + ppadM 9

with the exchange chemical potentials defined as i = up —
s and fiv, = va — (4. At constant M (i.e., dM = 0), the
exchange chemical potentials fip and iy, are conjugate to
Np and Ny, respectively. Equation (9) also shows that the
exchange chemical potentials iz and jiy, are related to the
Gibbs free energy per crystal site g = G /M according to

aig . 0g
Va — axva-

g = , (10)

0x B
These relations suggest that it is natural to work within the
semigrand-canonical ensemble in which fip and fiy, are
controlled at constant temperature. The partition function
within this semigrand-canonical ensemble when considering

only configurational excitations can be written as

Z=Y et (11)
7

where 8 = 1/kT and k is the Boltzmann constant. The
semigrand-canonical energy (p) appearing in Eq. (11) is
defined as

Q(p) = E(p) — Npfig — Nvafiva 12)

with E(p) the energy of configuration p.

Semigrand-canonical Monte Carlo simulations of a crystal
containing A, B, and vacancies enable the calculation of
ensemble averages of the semigrand-canonical energy 2 and
the averages of the number of B and vacancies Ng and Ny,,
all as a function of temperature 7 and exchange chemical
potentials fig and jiv,. The free energy per crystal site at
constant temperature, g(xp,xva), can then be calculated by
integrating Eq. (10) along a path for which xz = Ng/M and
Xva = Nva/M has been calculated as a function of fip and
fiva. More details about free-energy integration methods can
be found for example in Refs. [15,33].

A simplification in the determination of the equilibrium va-
cancy concentration is possible for substitutional alloys having
very dilute equilibrium vacancy concentrations. Combining
Egs. (8) and (10) we can solve for fiy, as a function of
fip along the path corresponding to an equilibrium vacancy
concentration (i.e., iy, = 0),

_ g(xp,xva) — xpfip
Uva = —
(1 —xva)

When the equilibrium vacancy concentration is very dilute,
we can accurately approximate the free energy per crystal
site, g(xp,Xxva), with that of the strict binary, g(xp,xv, = 0).
Furthermore, 1 — xv, can be approximated as 1. The resulting

13)
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expression then allows us to determine a path in jivy, and jip
space corresponding to an equilibrium vacancy concentration
with knowledge only of the binary free energy g(xp,xva =
0). The resulting values of fiy, and fig can then be used as
input for semigrand-canonical Monte Carlo simulations of the
ternary alloy (A, B, and vacancies) to calculate the equilibrium
vacancy concentration as a function of alloy concentration xp.

C. Coarse graining the vacancies in an alloy partition function

The equilibrium vacancy concentrations on the substitu-
tional sites of many alloys are exceedingly low. The vacancy
formation energy in hcp Ti as predicted with approximations
to density functional theory (DFT), for example, are in the
vicinity of 2 eV [34,35]. Effective vacancy formation energies
of 1.55 + 0.2 and 1.8 £ 0.2 eV have been reported in ordered
Tiz Al at off-stoichiometric concentrations as determined with
positron lifetime measurements [36]. A large fraction of
substitutional binary alloys and multicomponent solids contain
thermal vacancies, which are usually substantially more dilute
than structural vacancies that accommodate off-stoichiometry
as occurs in some intermetallic compounds such as Al rich B2-
NiAl [15]. Calculating the equilibrium vacancy concentration
in binary alloys when their concentrations are very low using
a cluster expansion and Monte Carlo simulations requires a
very large number of Monte Carlo passes [31]. An equilibrium
vacancy concentration of 107'2 in an fcc or hep based alloy,
for example, will require on average 10° Monte Carlo passes
in a 10 x 10 x 10 Monte Carlo cell to sample the occurrence
of a single vacancy. The statistics using traditional Metropolis
Monte Carlo will therefore be poor and will require exorbitant
simulation times. Since the occurrence of vacancies at these
equilibrium vacancy concentrations is so rare, though, it
becomes feasible and sufficiently accurate to perform a coarse-
graining procedure combined with a low-temperature-like
expansion of the partition function.

Configurations with vacancies in alloys where the equilib-
rium vacancy concentration is very low have much higher
grand-canonical energies than configurations without va-
cancies, and therefore have a much lower probability of
occurrence compared to purely binary A-B configurations.
We can use this fact to develop a coarse-graining scheme
valid for a grand-canonical Monte Carlo simulation of a
crystal having periodic boundary conditions. We proceed by
writing the sum over all configurations p as first a sum
over binary configurations § followed by a sum over all
configurations obtained by inserting vacancies into the binary
A-B configuration s, which we denote by g(5). To avoid
double counting of configurations containing vacancies, we
only sum over vacancy configurations g(5) obtained from s by
exchanging either A or B with a vacancy, but not both,

7 — Z e PO 4 Ze—ﬂﬂ(l}(;‘)) . (14)

(O]

7 — Ze—ﬁﬂ(f) 1+ Z e~ BARGE) (15)

4@
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with
AQ(q(5)) = Q) — Q@) (16)

equal to the cost in the grand-canonical energy of introducing
vacancies having configuration ¢(5) derived from a binary
configuration 5 at constant jiz and fiy,. For a fixed binary
configuration §, it is convenient to introduce a vacancy partition
function defined as

Zuae(§) = Y e PO, (17
q@)
The sum in Eq. (17) extends over all configurations with at
least one vacancy derived from the binary configuration 5.
It will prove useful to write the ternary partition function,
Eq. (15), in terms of the binary partition function

7= e f® (18)
as
Z=2Z(+%) 19)
with
PR

E=) —

s

: Zvac(E) = (Zvac(E»binary (20)

being the average of the vacancy partition function taken over
the binary ensemble.

D. Equilibrium vacancy concentration

The equilibrium number of vacancies is equal to the
ensemble average of vacancies given by

_ 1 N _ -
M =~ Zm@) PP, @1
P

where Nv,(p) is the number of vacancies in configuration p.
The expression for the equilibrium number vacancies can be
rewritten using Eq. (19) as

B2

_ 1 N
_ =V, —BALAG())
Ny, = a+8 E = E Nva(q(s))e 1

5 g

(22)
The expression in brackets is equivalent to the partial derivative
of the vacancy partition function, Eq. (17), with respect to
ﬂﬂvan i'e'9

10 vac 5 ooy — GG
_Z~—(S) — Z Nva(g(5))e BAQ(G(S)) (23)
ﬂ a/~‘LVa i)

Inserting Eq. (23) into Eq. (22), we can write the equilibrium
number of vacancies as

1 e PO <1 Bzvac(§)>
I+6& Z \p opv
or, because the binary grand-canonical energy Q(s) and the

binary partition function Z do not depend on jiy,, we can
write using Eq. (20)

Ny, = (24)

1 9

Nyy = —n——.
B+ &) 0ftva

(25)
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No approximations have been made up to this point. Equa-
tion (25) shows that the equilibrium vacancy concentration
should be accessible with a binary Monte Carlo simulation
provided that the vacancy partition function, Eq. (17), can be
evaluated in each binary configuration. The number of ternary
vacancy configurations ¢(5) for each binary configuration s is
unfortunately too large to be explicitly enumerated. However,
if the equilibrium vacancy concentration is very low and the
size of the crystal in the Monte Carlo cell is not too large, then
microstates with two or more vacancies can be neglected in the
vacancy partition function, Eq. (17), and we can approximate
the vacancy partition function as

~ > —BAQGGGY
Zvac A 2o (5) = Ze BARGE)) (26)
6]
where the sum now extends only over microstates containing
one vacancy. This approximation is similar to that of a low-
temperature expansion. Within this approximation,
;g
1oz _
/3 aﬂVa vae
allowing us to rewrite the expression for the equilibrium
number of vacancies, Eq. (25), as

), 27)

_ &
Ny, ~ , 28
Va ( 1+ E ,) ( )
where
g/ = (Z;ac(E))binary- (29)
The approximate vacancy partition function 2, .(5) can be

readily evaluated in a binary Monte Carlo simulation. The
equilibrium vacancy concentration is defined as

My &

M M(1+§&)
This expression makes it possible to calculate the equilibrium
vacancy concentration in a binary alloy with an arbitrary
degree of disorder using a binary grand-canonical Monte
Carlo simulation. For each binary configuration sampled in the
simulation, it is then necessary to calculate the grand-canonical
energy change of replacing each B atom at a time (or A,
but not both) with a vacancy such that the vacancy partition
function can be approximated using Eq. (26). The binary
ensemble average of the vacancy partition function then yields
&', Eq. (29), which is then to be inserted into Eq. (30). We
emphasize that Eq. (30) is only valid if the equilibrium vacancy
concentration is very dilute.

(30)

Xva =

III. RESULTS

As an application of this approach, we study the thermo-
dynamics of vacancies in hcp based Ti-Al binary alloys. The
hcp crystal is a thermodynamically stable phase in the Ti-Al
system for Al concentrations between 0 to 0.35, forming an hcp
based solid solution at Ti rich concentrations and an ordered
compound with stoichiometry around TizAl. The hcp derived
Tiz Al compound has the DOjg ordering (2 x 2 x 1 supercell
of the hcp unit cell) and is shown in Fig. 2. The solubility of
Al in the hcp based Ti-Al solid solution, commonly referred
to as «, is large, reaching values above xa; = 0.25 at 1170°C
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FIG. 2. (Color online) Crystal structure schematics of the DOq
(arp) ordered phase, including a three-dimensional representation and
a projection view down the c¢ axis.

[37]. The DOjg ordered phase, referred to as «», is stable over
a wide concentration range around the perfect stoichiometry
of x = 0.25. The rich variety of long- and short-range order
as well as large degrees of off-stoichiometry make the Ti-Al
binary alloy a useful model system to explore the effect of
alloy concentration and degree of ordering on the equilibrium
vacancy concentration.

A. First-principles parametrization of alloy Hamiltonian

We parametrized a cluster expansion by fitting the co-
efficients of a truncated form of Eq. (3) to reproduce the
formation energies of different arrangements of Ti, Al, and
dilute vacancies over the sites of the hcp crystal structure
(Fig. 3). The energies of these configurations were calculated
with density functional theory (DFT) as implemented in the
Vienna ab initio Simulation Package (VASP) [38-42]. We
used the projector augmented wave (PAW) pseudopotential
method to treat the interaction between valence and core
electronic states. A 10 x 10 x 5 k-point mesh, yielding a
convergence to within 1.0 meV per atom, was used for the
hep primitive cell and scaled accordingly to achieve equivalent
(or greater) k-point densities in supercells of the hcp primitive
cell. The atomic positions, lattice parameters, and cell shape
were allowed to relax fully. An energy cutoff of 450 eV was
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FIG. 3. (Color online) DFT (blue diamonds) and cluster expan-
sion predicted (pink circles) formation energies for the Ti-Al binary
system as a function of Al concentration. Blue lines denote the convex
hull and correspond to two-phase regions.

chosen for the plane-wave basis set. These calculations were
performed without the inclusion of spin polarization.

We calculated the energies of over 600 binary configu-
rations by enumerating the symmetrically unique orderings
of Ti and Al in all distinct supercells containing up to 6
hcp unit cells (up to 12 atoms per cell). In addition to
these configurations, we also systematically enumerated dilute
perturbations around the ground-state configurations, which
for the hcp based Ti-Al alloy are pure Ti and the ordered
DOy TizAl phase. These dilute configurational perturbations
were enumerated in a 128 atom, 4 x 4 x 4 supercell of the hcp
unit cell. For pure Ti, in the 4 x 4 x 4 supercell, we calculated
the energy of configurations generated by substituting one
Ti for an Al, two Ti for a pair of Al, and three Ti for
a triplet of Al. For the pair and triplet substitutions, we
considered all symmetrically distinct Al-Al pairs up to the
eighth nearest neighbor and a variety of symmetrically distinct
Al-Al-Al triplets of increasing radius. Similar configurations
were enumerated in a 128-atom supercell of DOjg (i.e.,
a 2 x 2 x4 supercell of the DOjg unit cell). Within this
supercell, we calculated the energies of all antisite defects (i.e.,
an Al on the Ti sublattice and a Ti on the Al sublattice), all
symmetrically distinct pairs of antisite defects up to the eighth
nearest neighbor, and several symmetrically distinct triplets of
antisite defects.

The 4 x 4 x 4 supercells were also used to enumerate
different Al arrangements around a single vacancy. The choice
of the 4 x 4 x 4 supercell was motivated by a convergence
analysis of the vacancy formation energy as a function of
supercell size. We calculated the vacancy formation energy
using supercells ranging from 42 to 162 atoms, allowing both
the volume and lattice parameters to relax fully. We find that
a 128-atom supercell yields a vacancy formation energy to
within about 25 meV with respect to the largest 162 atom
cell considered. Additionally, we find that smaller cells are
noticeably less suitable as they differ by up to 50 meV from
the most accurate value. This is shown in Fig. 4.
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FIG. 4. (Color online) Convergence test data for the vacancy
formation energy in pure hcp Ti as a function of supercell size and
shape.

Furthermore, using the 128-atom 4 x 4 x 4 supercell of
pure Ti, we calculated the energy of a single vacancy, of
symmetrically distinct Al-vacancy pairs up to the eighth
nearest neighbor, and of a variety of Al-Al-vacancy triplets.
Similar configurations were enumerated in the 128-atom
supercell of DO19. A single vacancy was placed on both the Al
and Ti sublattices. We also enumerated symmetrically distinct
vacancy-antisite pairs up to the eighth nearest neighbor as
well as several symmetrically distinct triplets containing two
antisites and one vacancy. Configurations containing more than
one vacancy were not considered due to the very dilute vacancy
concentration in the alloy.

A large number of the more than 600 hcp based configura-
tions considered here were found to be dynamically unstable
and relaxed to fcc based orderings. This is consistent with
the fact that the Ti-Al alloy forms fcc based compounds at
aluminum concentrations of x = 1/2 and above. We did not
include the energies of the dynamically unstable hcp-based
orderings when fitting the coefficients of the cluster expansion.
We identified configurations that relax to an fcc-based ordering
based on the coordination number in the third and fourth
nearest-neighbor shells. The fcc crystal has 24 and 12 third-
and fourth-nearest neighbors while the hcp crystal has 2 and
18. We only included the energies of configurations that can
be mapped onto an hep parent crystal if their nearest-neighbor
tables matched those of the primitive cell with a 0.2 A tolerance
on mapping any given atom into a shell. This leaves only 317
configurations, most of them Ti rich.

The coefficients of the cluster expansion were determined
by fitting to the fully relaxed DFT energies of 317 configura-
tions using a genetic algorithm [43] followed by a depth-first-
search algorithm to determine the optimal set of nonzero terms
in the expansion [44] to minimize the cross validation score
[45] and a penalty to minimize the number of coefficients in
the expansion [46]. We use a number of different metrics to
verify the predictive capability of the cluster expansion. The
root-mean-square error between the original DFT energies and
the corresponding energies predicted by the cluster expansion
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FIG. 5. (Color online) Comparison of (a) Al-Va and (b) Al-Al
pair cluster relative energies as calculated with DFT (blue diamonds)
and predicted with the cluster expansion (pink circles).

is 0.004 eV per primitive cell (containing two atoms). We
also ensured that key trends in the first-principles data are
reproduced by the cluster expansion. We verified, for example,
that the energies of Al-Al and Al-Va pairs within a Ti hcp
crystal have the same qualitative dependence on distance.
The DFT calculations predict that the third-nearest-neighbor
Al-Al pair in pure Ti is energetically more favorable than
the first- or second-nearest-neighbor pairs [Fig. 5(b)], while
the energy varies negligibly beyond the fifth-nearest-neighbor
(NN) distance. With Al-Va pairs, the energy spikes for the
second NN drops for the third, and spikes again for the fourth.
These trends are all reproduced with the cluster expansion
and shown in Fig. 5. One exception is the failure of the
cluster expansion to capture the spike in the energy for a
fifth-nearest-neighbor Al-Al pair in pure Ti. Similar trends
were reproduced between a pair of antisite defects and a
vacancy-antisite defect in DOj9. We also ensured that the
cluster expansion predicts the correct ground states along the
binary Ti-Al concentration axis between xa; = 0 and 0.35
by calculating the energies of many additional configurations
using the cluster expansion and by performing cooling runs
in semigrand-canonical Monte Carlo simulations over a wide
range of chemical potentials. The only ground states found
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to be stable on hcp at low Al concentrations are pure Ti and
DOy TisAL

As a final test of the quality of the cluster expansion, we
sampled representative configurations within grand-canonical
Monte Carlo simulations at temperatures slightly above the
order-disorder transition temperature of DO;9 and compared
their DFT energies with the energies predicted with the cluster
expansion. The DFT-PBE energies of eight disordered configu-
rations as sampledin a4 x 4 x 4 supercell of the primitive cell
within Monte Carlo simulations were calculated with VASP.
The rms between the DFT energies and those predicted by the
cluster expansion for these eight configurations was 2 meV per
hcp primitive unit cell. This low value, which is of the same
order as the numerical accuracy of the direct DFT calculations,
indicates that the cluster expansion has a predictive capability
with first-principles accuracy.

B. Monte Carlo simulations

The cluster expansion was subjected to grand-canonical
Monte Carlo simulations to predict a variety of thermodynamic
properties, including the temperature concentration phase
diagram of hcp based Ti-Al and the equilibrium vacancy con-
centration as a function of temperature and alloy concentration.

1. Phase equilibrium

Monte Carlo simulations were used to determine the binary
temperature-concentration phase diagram. Since the vacancy
concentration is very dilute in hep Ti-Al, we performed binary
semigrand-canonical Monte Carlo simulations (i.e., Xy, =
0) to calculate bulk thermodynamic properties. Two-phase
bounds separating the Ti;_, Al, solid solution and DO;9 Ti3Al
at low to intermediate temperatures were determined by
minimizing over Gibbs free energies and grand-canonical free
energies as obtained with integration techniques of Monte
Carlo calculated averages [33,44]. The two-phase bounds at
high temperature were determined by tracking discontinuities
in the concentration versus temperature curves obtained with
heating and cooling grand-canonical Monte Carlo simulations.
At high temperature, there is very little hysteresis between
heating and cooling runs. Figure 6 shows the resulting phase
diagram for Ti-rich hcp Ti-Al. The DO;9 Ti3Al ordered
phase, also referred to as o, is predicted to be stable up to
approximately 1970 K (about 1700°C) and is stable over
a wide concentration range. A wide two-phase coexistence
region separates DOj9 from a Ti-rich solid solution «, while
a narrower two-phase region separates DO9 from a high Al
concentration hep solid solution. Atlow temperature, DO;9 can
coexist with an fcc based ordering having TiAl stoichiometry.
We did not consider phase stability between the hcp and
fcc parent crystal structures. The lines in the phase diagram
show the dependence of the average concentration x4; on
temperature 7 at constant fia; = pa; — i (i.e., isochemical
potential lines). Figure 7 shows several binary Gibbs free-
energy curves [g(xa;) with xy, = 0] as calculated at different
temperatures. The reference states of the free energies shown
in Fig. 7 are pure hcp Ti and fcc Al These free energies were
obtained by integrating fia; as a function of alloy concentration
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xa1 according to

XAl
g(xa) = g(x,rflf) +/ ) Aadxal, 31
XAl
where g(x'%) is the Gibbs free energy at a reference concen-
tration x, and the relation between fia; and x,; is calculated
with binary semigrand-canonical Monte Carlo simulations
(xva = 0). As the reference concentration for the free energy
of the Ti-rich solid solution, we used x'& = 0 where g(x~f) =
0 is the formation energy of pure Ti (the configurational

entropy is zero at xfflf = (). For the free energy of DOy,

we used a value for x&f within the oy stability domain
and determined the reference Gibbs free energy g(xj\elf) by
integrating the grand-canonical free energy, ¢ = g — fiaiXal,

at constant fia) as a function of temperature using [33]

B
Bo(fia1,T) = Brei(fiar, Trer) +/ wdp, (32)

ref
where w = e — [ia1xa] is the average grand-canonical energy
calculated with the Monte Carlo simulations. As reference for
the above integral, we used the ground-state grand-canonical
energy of DO atlow temperature [i.e., @(firer, Tref) = @DO,, -

The Gibbs free energy in addition to enabling the cal-
culation of the equilibrium phase diagram is also needed
to determine the values of fiy, corresponding to an equi-
librium vacancy concentration (i.e., v, = 0) according to
Eq. (13). Because the vacancy concentration in the Ti-Al
alloy is exceedingly low (about 107'7-107°), we can use
the Gibbs free energy of the binary alloy in the absence of
vacancies and neglect xv, in Eq. (13). The resulting expression
fiva = g(xa1) — xa1fta) then yields a relation between fiy, and
fia consistent with an equilibrium vacancy concentration.
Figures 8(a) and 8(b) show jia; and fivy, as a function of alloy
concentration calculated in this way. Figure 8(c) shows the
relation between fivy, and fia.

The exchange chemical potentials fia; and fiy, of Fig. 8
appear in the expression for the semigrand-canonical energy,
Eq. (12). The Al exchange chemical potential fia; of Fig. 8
increases with alloy concentration. The plateau (coinciding
with a discontinuity in concentration) in i as a function of
alloy concentration [Fig. 8(a)] corresponds to the two-phase
region separating the Ti rich solid solution and the DOq
ordered phase. The vacancy exchange chemical potential fiv,,
when vacancies are in equilibrium, is equal to — 1, which
using Eqgs. (6) and (10) can be shown to be related to the
semigrand-canonical free energy (per crystal site) according
to uti = ¢ = g — xa1flal — ¥vafiva. The vacancy exchange
chemical potential fiv, also increases with alloy concentration.
Both fis; and fiv, increase very steeply at the stoichiometric
Tiz Al concentration due to the energetic preference for DO
ordering and the energy penalty of antisite defects that are
needed when deviating from stoichiometry.

2. Equilibrium vacancy concentration and the effect of order

The large vacancy formation energy of approximately
2.15 eV in pure hep Ti (Fig. 4) suggests that the equilibrium
vacancy concentration will be very low in dilute hcp Ti-Al
solid solutions. In addition to being thermal defects, vacancies
can also serve as structural defects in ordered compounds to
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accommodate deviations from perfect stoichiometry. While
antisite defects are commonly the dominant defect in many
off-stoichiometric intermetallic compounds, compounds such
as B2-NiAl can achieve substantial deviations from perfect
stoichiometry through the introduction of very large concen-
trations of vacancies on one of the sublattices. The dominant
point defects in a particular compound can be assessed by
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FIG. 9. (Color online) Comparison of vacancy concentration as
a function of Al concentration obtained by the coarse-grained Monte
Carlo method (red diamonds) and the full ternary Monte Carlo
simulations (black squares) at 1600 K.

comparing defect formation energies defined as differences in
the grand-canonical energy of the compound with and without
the point defect [4]. We find, using point defect energies
calculated in 128 atom supercells, that the defect formation
energies for vacancies are substantially larger than that for
forming antisite defects (by 1-2 eV) in the chemical potential
interval stabilizing DOjg9 TizAl. This indicates that antisite
defects accommodate off-stoichiometry in DO9 TizAl (i.e.,
Al on the Ti sublattice or Ti on the Al sublattice) and that
the concentration of antisite defects is much higher than the
equilibrium vacancy concentration. This is consistent with a
previous analysis of point defects in DO9 TizAl using point
defect energies calculated with embedded atom interatomic
potentials [47].

We calculated the equilibrium vacancy concentration at
finite temperature within grand-canonical Monte Carlo sim-
ulations applied to the ternary cluster expansion by explicitly
sampling microstates in the full Ti-Al-Va ternary and by using
the coarse-grained binary Monte Carlo algorithm introduced in
Sec. I D. We used the relation between fia; and jiv, of Fig. 8 in
the Monte Carlo simulations to ensure a path corresponding to
an equilibrium vacancy concentration consistent with py, = 0.
Figure 9 compares the equilibrium vacancy concentrations at
1600 K as calculated with both approaches. The agreement
between the full ternary Monte Carlo simulations and the
coarse-grained binary Monte Carlo simulations is very good. In
the full ternary simulations, 6 to 12 million Monte Carlo passes
were required (a Monte Carlo pass is the number of attempted
site occupant exchanges per site) to attain well-averaged
vacancy concentrations. The coarse-grained binary Monte
Carlo required only of the order of several thousand Monte
Carlo passes to achieve the same quality in the average vacancy
concentration. Figure 10 shows the calculated equilibrium
vacancy concentrations at several temperatures. Only the
coarse-grained binary Monte Carlo algorithm was viable at
the lower temperatures.

The calculated equilibrium vacancy concentration has a
strong dependence on the alloy concentration, especially at
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FIG. 10. (Color online) Vacancy concentration as a function of
aluminum concentration at different temperatures: 600 K (blue
squares), 1100 K (purple circles), and 1600 K (red diamonds).

lower temperatures. At both 600 and 1100 K, the vacancy con-
centration varies by almost two orders of magnitude with alloy
concentration. At all temperatures, the equilibrium vacancy
concentration decreases with increasing Al concentration in
the solid solution. It drops further when passing through the
two-phase region from the solid solution to DO;9. Within
DOy, the equilibrium vacancy concentration decreases until
the Al concentration reaches x = 0.25, then increases abruptly
at x = 0.25, and finally levels off above x = 0.25. At 600 K,
for example, the vacancy concentration increases by almost
two orders of magnitude over a very narrow concentration
range (about 0.01) around x = 0.25.

The equilibrium vacancy concentration is affected by the
availability of energetically favorable local environments.
This is determined by the equilibrium degree of short- and
long-range order between Al and Ti. Figure 11 shows the av-
erage Al concentrations within successive neighboring shells
surrounding a vacancy [Figs. 11(a) and 11(c)] and an Al atom
[Figs. 11(b) and 11(d)] as a function of alloy concentration,
calculated at 1600 K. If the alloy is completely random, all
shell concentrations will equal the Al concentration of the
alloy. Deviations from x; indicate short-range order in the
solid solution and long-range order in DOg.

Figures 11(c) and 11(d) show that there is some degree of
short-range order between Al, even at temperatures as high
as 1600 K in the solid solution. At x = 0, all of the shell
concentrations are zero as there are no Al atoms present in pure
«-Ti. In the DOy9 at x = 0.25, however, the calculated shell
concentrations around Al [Fig. 11(d)] show a strong preference
for Al occupancy in the third-, fourth-, and eighth-neighbor
shells, which is consistent with the Al long-range ordering
in this phase. Figure 11(c) shows some degree of short-range
order around vacancies, with a clear tendency for vacancies
to prefer local environments in which the fourth-nearest
neighbor has a lower than average Al concentration. The
fourth-nearest neighbor as shown in Fig. 11(a) corresponds
to a pair parallel to the ¢ axis of the hcp crystal structure
that connects sites separated by one close-packed layer. As
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shown in Fig. 5(a), the energy of a 128-atom Ti supercell
containing a fourth-nearest neighbor vacancy-aluminum pair
is substantially higher than that of other vacancy-aluminum
pairs in the same Ti supercell. As a result, vacancies prefer
sites that have a low average Al concentration in the fourth-
nearest-neighbor shell. Figure 11(b) shows slightly more
short-range order in the neighboring shells of Al in the
solid solution than exists around vacancies. The short-range
order that Al prefers in the solid solution is similar to that
of DOj9, though not as pronounced. In DOy, the average
Al concentrations of neighboring shells around a vacancy
indicate that the vacancy prefers the Ti sublattice to the Al
sublattice.

IV. DISCUSSION

We have explored the role of alloy concentration and
variations in the degree of short- and long-range order on
the equilibrium vacancy concentration in multicomponent
crystalline solids, using the binary hcp based Ti-Al alloy as
an example. A multicomponent solid at finite temperature can
exhibit a range of short- and long-range order. The hcp based
Ti-Al alloy exhibits both a solid solution and a stable ordered
phase at x = 0.25 with a substantial tolerance to deviations
from this ideal stoichiometric concentration. Variations in
temperature and concentration in this alloy therefore result
in different degrees of short- and long-range order.

Explicitly accounting for vacancies in a two-component
solid turns it into a ternary problem. Here we have used a
ternary cluster expansion expressed in terms of polynomials
of occupation variables to describe the interactions among Al
and between Al and vacancies in an otherwise Ti-rich hcp
crystal. The equilibrium vacancy concentration is determined
by setting the vacancy chemical potential equal to zero, which
is equivalent to minimizing the free energy of the solid with
respect to the number of vacancies, holding the number of other
components of the solid constant. Because vacancies usually
have very low equilibrium concentrations, direct sampling us-
ing ternary grand canonical Monte Carlo simulations becomes
intractable, especially at low temperature. Exploiting the
exceedingly low equilibrium vacancy concentrations of most
solids, we have developed a coarse-graining scheme combined
with a low-temperature-like expansion to calculate equilibrium
vacancy concentrations with Monte Carlo simulations applied
to the binary alloy. This is achieved by integrating out all
dilute vacancy configurations within a disordered binary solid
to obtain a vacancy partition function for each explicitly
sampled binary configuration. The approach is similar in
spirit to that followed by Benedek er al. [48] to predict
the thermodynamics of dilute ternary alloying additions to
a binary alloy. A comparison between predictions of the
full ternary grand canonical Monte Carlo simulations that
explicitly account for vacancies and the coarse-grained binary
Monte Carlo at high temperatures demonstrates the validity of
the approximations inherent to the coarse-graining procedure.
The approximations within the coarse-grained algorithm be-
come more accurate with decreasing temperature, where the
errors incurred by neglecting microstates involving more than
one vacancy at a time in a Monte Carlo sized cell become
negligible.
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FIG. 11. (Color online) Short-range order around a vacancy and Al in the hep Ti-Al system. Images (a) and (b) illustrate the collection of
nearest neighbors 1-8 around a vacancy and aluminum, respectively, in hcp. The size of the balls correspond to the strength of the Va-Al and
Al-Al interaction (absolute value) in pure titanium. In (c) and (d), the corresponding Al shell concentration around a vacancy and aluminum,
respectively, is plotted as a function of the average Al concentration as calculated with the full ternary Monte Carlo simulations at 1600 K.
The colors in all images consistently correspond to a specific nearest-neighbor shell, as detailed in the plot legends (e.g., orange is always the

fourth nearest neighbor).

To ensure that the equilibrium short-range order sampled
in Monte Carlo simulations is representative of that predicted
by density functional theory, we fit the ternary cluster
expansion to a large (>300) database of DFT energies of
Ti-Al-vacancy orderings on hcp. Among the configurations
used to parametrize the cluster expansion were symmetrically
distinct arrangements of a large number of point, pair, and
triplet Al and vacancy arrangements within a large supercell
of pure Ti and within a supercell of DOy TizAl. We
ensured that the cluster expansion accurately reproduces the
trends in Al-Al and Al-vacancy pair energies in pure Ti as

well as antisite-antisite and antisite-vacancy pair energies in
DOj9. A comparison with representative high-temperature
configurations sampled at high temperature with Monte Carlo
simulations also demonstrated that the cluster expansion has
a predictive capability that matches the numerical accuracy
of direct DFT calculations. The calculated phase diagram
using this cluster expansion is similar to previous predic-
tions of the o + o, phase bounds and predicts a transi-
tion temperature around 1970 K (about 1700°C), a value
that is close to that predicted by van de Walle and Asta
[33].
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The experimental order-disorder transformation tempera-
ture is unknown due to the transformation of hcp Ti-Al to bce
Ti-Al at temperatures where DOjg TizAl is still stable [37].
While early assessments of the Ti-Al binary phase diagram
depicted an order-disorder transition temperature below the
transformation of hcp Ti-Al to bce [49-51], more recent
assessments have concluded that it occurs at temperatures
above the hcp to bece transition [37,52]. The two-phase bounds
and order-disorder transition temperature of approximately
1700 °C were calculated in the absence of coherency strains.
Most experimental samples, however, consist of a coherent
two-phase mixture of an hcp Ti-rich solid solution, «,
and DOj¢ TizAl, ap [52,53]. Coherency strains introduce
a free-energy penalty that depresses transition temperatures
and decreases the widths of two-phase bounds [53-55]. An
additional complexity arises from the fact that hcp Ti is
capable of dissolving very high concentrations of oxygen in
its interstitial octahedral sites, reaching concentrations as high
as TiOy /. Many of the hcp based Ti-Al alloys also contain
non-negligible oxygen concentrations, which will have an
important effect on the order-disorder transition temperature
of DOjg. Only a limited number of studies have explored the
role of oxygen in modifying the equilibrium phase bounds
between o and «, [56]. Furthermore, there is a likelihood
that dissolved oxygen can couple with coherency strains, for
example by relieving a portion of the coherency strain energy
penalty of two-phase coexistence by redistributing between the
two phases [53]. This further complicates a comparison of the
calculated order-disorder transition temperature to experiment.

Our present study only accounts for configurational degrees
of freedom and neglects vibrational excitations. Van de
Walle [57] recently incorporated the effect of vibrations
in calculating the Ti-rich hcp Ti-Al phase diagram using
length transferable force constants (LDTFCs) and a cluster
expansion for the coarse-grained vibrational free energies.
This study showed that the inclusion of vibrational excitations
substantially decreases the DO;9 order-disorder transition
temperature. In fact, within the LDTFC approximation, the
inclusion of vibrations decreases the transition temperature to
values that are even below the earliest experimental estimates
of this temperature. As with the phase diagram, the role
of vibrational excitations is also likely to be important in
determining the equilibrium vacancy concentration. In fact, a
recent study has demonstrated the crucial role of anharmonic
contributions in determining the equilibrium vacancy concen-
tration in pure Al and Cu [58]. The same cluster expansion
approach as well as the coarse-grained Monte Carlo algorithm
used here can be applied when accounting for vibrational
excitations in addition to configurational degrees of freedom.

The results presented here show that the equilibrium
vacancy concentration can vary by several orders of magnitude
over relatively small intervals of alloy concentration. In the
absence of long-range order, the vacancy concentration is
predicted to decrease with increasing Al concentration. In
DOy TisAl, the vacancy prefers to occupy the Ti sublattice
rather than the Al sublattice. This result is in qualitative
agreement with predictions made with embedded atom inter-
atomic potentials as implemented in a mean-field framework
[47]. A vacancy preference for the Ti sublattice of TizAl
causes the vacancy concentration to increase abruptly once
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the Al concentration increases above the stoichiometric value
of x = 0.25. An increase in the Al concentration above a
stoichiometric Ti3 Al can be achieved in two ways: (i) by adding
energetically costly Al antisite defects to the Ti sublattice
and (i) by adding energetically more costly vacancies to
the Ti sublattice. While the vacancy concentration increases
above x = 0.25, Al antisite defects on the Ti sublattice
dominate to accommodate off stoichiometry in DO9. The
increase in vacancy concentration with Al concentration in
oy between x = 0.22 and x = 0.35 agrees qualitatively with
the dependence of an effective vacancy formation energy
with Al concentration as determined with positron lifetime
measurements [36].

An accurate description of vacancy solute interactions is
a crucial input for predictions of diffusion coefficients in
multicomponent solids [59,60]. Interdiffusion coefficients are
to first order proportional to the vacancy concentration [21].
The interdiffusion coefficient will therefore be very sensitive
to large variations in the equilibrium vacancy concentration as
a function of alloy concentration. The preference of vacancies
for the Ti sublattice of DOj9 TizAl [31] will have important
consequences for diffusion in this ordered phase [47]. The
Ti sublattice forms an interconnected network, linked by
nearest-neighbor pairs. Hence, vacancies on the Ti sublattice
can freely diffuse through DO;¢ without introducing any more
disorder. The correlation factor for vacancies will therefore
be quite high. In contrast, when vacancies prefer the minority
sublattice (such as the Li sublattice of L1, Als;Li), which do
not form an interconnected network, they will generally be
trapped as typical nearest-neighbor vacancy-atom exchanges
result in an increase in disorder. The vacancy correlation factor
is then very low [59]. The results here in combination with a
prediction of the relevant diffusion coefficients [21] are of
value in Allen-Cahn- and Cahn-Hilliard-type approaches to
study precipitation of DOy in supersaturated hcp based Ti-Al
solid solutions.

V. CONCLUSION

We have developed a coarse-graining scheme to predict
the equilibrium vacancy concentration in alloys exhibiting
arbitrary degrees of long- and short-range order. We have
applied this approach to determine the dependence of the
equilibrium vacancy concentration on temperature and alloy
concentration in hcp based Ti-Al binary alloys. We used a
ternary cluster expansion, parametrized with first-principles
DFT energies, to describe the interactions among solute
atoms and vacancies within grand-canonical Monte Carlo
simulations. In the hcp based Ti-Al system, we find a strong
dependence of the equilibrium vacancy concentration on Al
concentration and degree of long-range order.
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