
PHYSICAL REVIEW B 91, 224106 (2015)

Diffusion of point defects in crystalline silicon using the kinetic activation-relaxation
technique method
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We study point-defect diffusion in crystalline silicon using the kinetic activation-relaxation technique
(k-ART), an off-lattice kinetic Monte Carlo method with on-the-fly catalog building capabilities based on the
activation-relaxation technique (ART nouveau), coupled to the standard Stillinger-Weber potential. We focus
more particularly on the evolution of crystalline cells with one to four vacancies and one to four interstitials in
order to provide a detailed picture of both the atomistic diffusion mechanisms and overall kinetics. We show
formation energies, activation barriers for the ground state of all eight systems, and migration barriers for those
systems that diffuse. Additionally, we characterize diffusion paths and special configurations such as dumbbell
complex, di-interstitial (IV-pair+2I) superdiffuser, tetrahedral vacancy complex, and more. This study points
to an unsuspected dynamical richness even for this apparently simple system that can only be uncovered by
exhaustive and systematic approaches such as the kinetic activation-relaxation technique.
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I. INTRODUCTION

The discovery by Kellogg and Feibelman of the concerted
diffusion mechanism for adatom diffusing on a (100) metallic
surface, more than 25 years ago, demonstrated the potential
richness of atomistic kinetics and the difficulty of predicting
these motions through inspection alone [1]. Even for such
a simple symmetry, the number of low-energy pathways
associated with adatom diffusion turns out to be remarkably
large, with concerted diffusion taking place, as discovered
later by Henkelman and Jonsson, over a range of atomic
distances [2]. Similar complexity is also observed in bulk
systems such as silicon [3–7] and iron [8–10], as demonstrated
by extensive searches for defect structures and pathways.
Understanding these microscopic mechanisms is crucial then
for the characterization of long-time defect diffusion and
structural evolution.

Finding the relevant self-defect structures and diffusion
pathways requires both a reliable physical description and
an efficient search and sampling approach. Here, we focus
on the latter requirement. Over the years, open-ended search
methods such as the activation-relaxation technique (ART
nouveau) [11,12], the dimer, and similar methods [13,14] have
provided useful tools for finding unsuspected pathways to new
states. Yet, these search methods do not provide direct kinetic
information with respect to these defects.

In this paper, we demonstrate how the use of the kinetic
activation-relaxation technique (k-ART), an off-lattice kinetic
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Monte Carlo method with on-the-fly catalog building capa-
bilities, can provide detailed characterization of the diffusion
pathways of complex defects. To illustrate this, we focus on
small self-defect cluster diffusion in bulk Stillinger-Weber
crystalline silicon (c-Si). This system has received consid-
erable attention over the years [15–17], but a systematic study
of defect diffusion is still missing due to the lack of efficient
numerical tools. We show that even these simple assemblies,
from one to four vacancies and one to four interstitials, can
present complex reorganizations that affect considerably their
diffusion properties.

This paper is constructed as follows. We first give a
brief overview of the kinetic activation-relaxation tech-
nique [18,19]. We then apply k-ART to vacancies and inter-
stitials. Finally, we discuss the relevance of our current results
with respect to the general understanding of the diffusion of
point defects in crystalline silicon.

II. METHODS: KINETIC ART

All simulations presented here are performed using the
kinetic activation-relaxation technique [18,19]. This algorithm
introduces three improvements over standard kinetic Monte
Carlo (KMC) [20] in order to treat correctly the kinetics of
complex materials.

First, the algorithm is fundamentally off lattice, using a
topological classification scheme to identify local environ-
ments. This approach makes it possible to handle with the
same ease both crystalline and disordered configurations.
Second, this topological classification is used to generate an
event (see next paragraph) catalog on-the-fly, reducing the
amount of computation to be performed at the simulation
onset. It also ensures that events associated with new atomic
configurations are fully considered. Third, it accounts for
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FIG. 1. (Color online) Topological classification using NAUTY.
(a) Atoms within a sphere of a given radius around a central atom
are extracted from the system. (b) Edges are drawn between pairs of
atoms below a cutoff distance. (c) The resulting graph is analyzed by
NAUTY and (d) characterized by a unique identifier.

short- and long-range elastic deformations by reconstructing
and reconverging all relevant transition-state barriers at every
step.

While the k-ART algorithm is described in more details in
previous publications [18,19,21–23], we present here a brief
description of its implementation.

After a k-ART step, the local topology of each atom is
reassessed using the topological analysis package NAUTY [24].
For this, all atoms within a certain radius surrounding an
atom (here 6 Å) are selected as vertices of a graph. Edges are
drawn between atoms separated by less than a neighbor cutoff
(here 2.8 Å). The automorphic group of the resulting graph
is then computed, providing a unique identifier and sufficient
information to recover permutations and symmetry operations
between two automorphic graphs (Fig. 1).

All atomistic environments belonging to the same automor-
phic group are considered to share a common list of events.
After each k-ART move, event searches are launched for all
newly identified automorphic groups using ART nouveau, an
efficient open-ended transition-state finding algorithm [12,25].

Fifty independent and random searches are launched for
each new topology. In order to ensure that events are not
missed, new ART nouveau searches are also launched reg-
ularly on configurations associated with frequently occurring
topologies. In Si, we typically find an average of three to four
different events with a barrier below 5 eV per topology. Once
the event catalog is updated, events are ordered as a function
of their rate, computed using harmonic transition-state theory,
as the barriers are high compared to the thermal energy, making
them “rare,” with a constant prefactor of 1013 Hz. Events
within 99.99% of the rate are fully reconstructed and their

transition state is relaxed to a precision of 0.02 eV Å
−1

, to take
into account all elastic and geometric particularities, leading
to a energy precision for each specific barrier of 0.01 eV or
better. Following standard KMC [26], a time step is computed

according to

�t = − ln(μ)/
∑

i

ri , (1)

where μ is a random number uniformly distributed between 0
and 1 and ri is the transition rate of event i; an event is then
selected with a probability proportional to its relative weight.

Flickering states, i.e., states of similar energy separated by
a relatively low-energy barrier that do not lead to diffusion,
are handled using the basin-accelerated mean-rate method
(bacMRM) [19] based on the the mean-rate method (MRM)
of Puchala et al. [27]. As connected flickering states are
discovered, they are added into a basin. The basin’s internal
kinetics is solved directly and exit rates are corrected for
the internal motion. This limits the computational efforts of
handling the nondiffusive motion while ensuring a correct
kinetics.

A. Topologies versus events

Each atom is associated with a topology based on its
surroundings. In a perfect cubic crystal, all atoms have the
same environment and, therefore, share the same topology.

If a vacancy is created, a number of new topologies
are created, associated with each of the neighboring shell
surrounding the vacancy. If the cutoff cluster radius is at the
fourth shell, for example, then four new topologies are created
attributed to a different number of atoms. Not all topologies,
however, correspond to unique and executed events since
events, for their part, are attributed to the topology centered
on the atom undergoing the largest displacement between the
initial and final states.

Still in the case of a single vacancy, the dominant event
generated from the three new topologies will be the va-
cancy first-neighbor diffusion, which will systematically be
attributed to the vacancy’s first atomic neighbors allowing us
to identify the four new topologies with a single dominant
diffusion event.

B. Simulated system

We characterize the diffusion pathways of vacancies and
self-interstitials in a crystalline box of 512 Stillinger-Weber Si
atoms [28] with periodic boundary conditions. The Stillinger-
Webber potential was chosen because this potential ensures the
tetrahedron environment of the silicon atoms. It is composed
of two terms: a two-body and a three-body term. It is well
known that all results extracted from a numerical Monte Carlo
simulation are deeply dependent on the potential choice as
well as k-ART. For each system, containing between one and
four vacancies or interstitials, we perform runs at 500 K. The
length of these runs is set as a function of the system’s kinetics
and complexity. Vacancies and self-interstitials are created by
removing atoms at random position in the box or by adding
Si atoms in octahedral sites, respectively. In all cases, the
system’s energy is first minimized at T = 0 K before k-ART
simulations are launched. We compute the formation energy
according to

EF = −
[
E512

(
N

512

)
− E

]
, (2)
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TABLE I. Comparison of the formation and migration energies,
respectively, Ef and Em, for the monovacancy obtained by different
groups using the Stillinger-Weber potential (SW), tight-binding
approximation, and local-density approximation (in eV).

Vacancy Ef Em

(eV) (eV)

SW potential
Our work 2.65 0.51
Gilmer [29] 2.64 0.43
Maroudas [30] 2.66 0.43

Tight-binding approximation
Lenosky [31] 3.780
Tang [17] 4.2 0.1
Munro [32] 3.90 0.723

Local-density approximation
El-Mellouhi [33] 3.36 0.40 ± 0.02

where E512 is the total energy of the 512 c-Si, N is the number
of atoms (from 508 to 516), and E the total energy for the
systems studied. We test that this box is large enough to ensure
convergence by comparing the configuration energy and
activation barriers for the monovacancy and the di-interstitial
systems with a 4096-atom box (at constant density), finding a
0.01-eV energy different at most for an overall error on relative
energies of at most 0.02 eV.

III. RESULTS

A. Vacancies

1. Monovacancy

At the beginning of each simulation, k-ART performs a
local minimization using FIRE that leads to a first metastable
configuration. After crossing a low 0.13-eV barrier, the system
relaxes a further 1.68 eV to reach the global energy minimum
for the monovacancy characterized by a formation energy
of EF1V = 2.65 eV, in agreement with previous simulations
(see Table I). From the relaxed state, k-ART finds one event
type with an activation barrier below 5 eV, corresponding to
diffusion to the nearest-neighbor crystalline site, with 0.51 eV.
It is the only event generated during the 5000-step 500-K
simulation samples, corresponding to a 2-μs simulation time.
With displacement of 2.35 Å (distance between two crystalline
sites) per jump with the associated time of 13.8 ns, the
diffusion coefficient is found to be D = 4.00 × 10−8 cm2s−1.
This simulation requires 30 min of CPU time on one 12-core
node composed of two processor Intel Westmere-EP X5650
hexa-cores, @2,667GHz.

The barrier we find is slightly higher than that obtained
indirectly by Gilmer et al. [29] and Maroudas et al. [30]. This
difference is likely due to the uncertainties on the diffusion
coefficient at low temperature used in these two papers to
extract the barrier from an Arrhenius plot. Ours is calculated
thanks to the mean square displacement versus the simulated
time.

2. Divacancy

Divacancy simulations are launched from an initial struc-
ture consisting of two isolated vacancies in their fundamental
state separated by 11.76 Å. Due to elastic interactions, the
two vacancies aggregate rapidly, in less than 30 ns (100
KMC steps), and continue to diffuse as a pair over the next
0.11 s of the 5000-KMC step simulation. The formation
energy for the divacancy complex in first-neighbor position is
EF2Va = 4.58 eV (EF2Va − 2EF1V = −0.72 eV), in agreement
with literature [34].

Figure 2 shows the energy details for all 5000 accepted
events measured with respect to the ground state. Each point
represents an executed event which is characterized by an
initial-energy state (x axis), a final-energy state (y axis), and
an energy barrier (color bar). As an example, the farthest point
to the right is associated with the first executed event, at t =
79.6 fs, which shows initial and final relative energies of 4.09
and 2.40 eV, respectively, with an energy barrier of 0.14 eV.

Kinetic ART identifies 618 different topologies associated
with various configurations for the two vacancies and visits 79
of them during the simulation. Most topologies correspond to
the two vacancies approaching and forming a bound complex.
Once vacancies reach the ground state, six characteristic
configurations dominate, representing more than 95% of all
accepted configurations (see top Fig. 3).

These configurations and their associated topologies corre-
spond to vacancies in first- to sixth-nearest-neighbor (NN)
position and they are alphabetically named from 2Va to
2Vf. They are connected through 19 different barriers (or
events) that control, at 500 K, the divacancy complex diffusion
and characterize a surprisingly rich landscape with complex
diffusion pathways (see Table II for the details regarding these
six states).

2Vb 2Vc 2Vf 2Ve2Vd  2Va

FIG. 2. (Color online) Representation of all 5000 k-ART ac-
cepted activation events for the divacancy system (inset: zoom-in
between 0.5 to 0.9 eV). All initial and final energies are measured
from 2Va, the ground state (set to 0.0 eV). While the x and y axes
represent the initial and final energy for each event, the color defines
the saddle energy. The energy of the various minima is indicated
above the graph and the black arrows represent the trajectory of the
first three accepted events.
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FIG. 3. (Color online) Top panel: Energy histogram of the visited
states during the 5000-event simulation of the divacancy with the
ground state set at 0.0 eV. Middle panel: Histogram of the activation
energy barrier for selected events during the 5000-event simulation.
Bottom panel: Energy histogram final state for each of the 5000
accepted events with the ground state set to 0.0 eV. Colors are set
according to the energy of initial configurations then used in the two
others histograms to follow the possible transition path for each of
them. These colors are associated to configurations 2Va (blue), 2Vc
(green), 2Vd (red), 2Ve (yellow), 2Vf (cyan), and 2Vb (purple).

Our k-ART simulation reveals two particular features for
the divacancy system: First, the 2Vb configuration with the
two vacancies in second NN, while crucial for the divacancy
complex diffusion, is less stable than the two isolated mono-
vacancy (EF2Vb − 2EF1V = +0.07 eV). Second, we observe
the presence of a degenerate transition state at 1.00 eV above
ground state that connects three states together: the first (2Va),
the second (2Vb), and third NN states (2Vc), with relative

TABLE II. Relative configuration energies (�E) (top line) and
barrier energies for pathways between the six dominant bound states
for the divacancy complex. Energies are in eV.

�����To
Form

2Va 2Vb 2Vc 2Vd 2Ve 2Vf

�E 0 0.78 0.58 0.63 0.68 0.72
2Va 0.235 0.427
2Vb 1.00 0.236 0.432
2Vc 1.00 0.236 0.432 0.521 0.395
2Vd 0.501 0.535 0.478 0.440
2Ve 0.501 0.532 0.489
2Vf 0.532 0.527

FIG. 4. (Color online) Squared displacement of a function of
time (in blue) for the divacancy system. The green line shows a
linear regression used to extract the self-diffusion coefficient at 500 K
(D = 1.7 × 10−11 cm2s−1).

energies of 0.78 and 0.58 eV, respectively, above ground state
(see Fig. 3).

The relatively high energy of 2Vb, with the vacancies
in second-neighbor position, is readily explained by bond
counting: while most divacancy complexes are associated with
only six threefold-coordinated atoms, 2Vb has a seventh one
which is twofold coordinated, a very unstable state higher in
energy than the eight threefold atoms found with two isolated
vacancies.

The previously unknown degenerate saddle point, for its
part, was identified straightforwardly by k-ART. It connects
three minima through as many pathways (2Va to 2Vb, 2Va to
2Vc, and 2Vb to 2Vc). This leads to a nonuniform diffusion
process where the system must first leave the ground state
by going through a 1-eV energy barrier, associated with a
characteristic time of 50 μs at 500 K. The system can then
diffuse rapidly by repeatedly hopping between 2Vb and 2Vc,
with a characteristic time scale of 0.4 ns, determined by the
0.45-eV barrier from 2Vc, before being trapped again in 2Va.
These mechanisms dominate the divacancy kinetics although
we also observe the two vacancies moving to fourth-, fifth-,
and even sixth-neighbor position, before moving back towards
the ground state.

Integrating over the 5000 k-ART steps, we find a diffusion
coefficient at 500 K of D = 1.69 × 10−11 cm2 s−1 correspond-
ing to an average migration barrier of Em = 0.84 eV (see
Fig. 4). Clearly, the presence of multiple pathways should
also lead to a nonmonotonous thermal behavior as the relative
rates for the various mechanisms change as a function of
temperature [34].

3. Trivacancy

The trivacancy simulation is launched from an initial
structure consisting of three isolated vacancies separated by
10 to 13 Å. It runs for 2000 KMC steps representing 68 ms
of simulated time. From the launch of the simulation, the
trivacancy complex forms within 58 ms (36 steps), assembling
first into a less-mobile divacancy which rapidly attracts the
remaining monovacancy. The released energy at these two
stages is 6.46 and 0.91 eV, respectively, computed from the
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FIG. 5. (Color online) Representation of all 2000 k-ART ac-
cepted activation events for the trivacancy system. All initial and
final energies are measured from 3Va, the ground state (set to 0). The
energy position of the three dominant configurations is indicated.
Configurations 3Va and 3V(2,5) are shown above the panel; blue
sphere represents empty crystalline silicon site.

three unrelaxed isolated vacancies and the divacancy plus
monovacancy relaxed configurations, respectively.

The ground-state formation energy of EF3Va = 6.41 eV
(EF3Va − 3EF1V = −1.54 eV) corresponds to the three va-
cancies positioned in first-neighbor position on crystalline
sites as shown by the 3Va configuration in Fig. 5. Kinetic
ART identifies and visits, respectively, 8548 and 514 different
topologies associated with various configurations for the
three-vacancy system. Once vacancies reach the ground state,
three configurations dominate, representing more than 95% of
all accepted configurations (see top Fig. 6).

These three configurations are related through seven events
that control, at 500 K, the trivacancy complex diffusion,
as shown on Fig. 6. These configurations are labeled in
the following format: 3V(x,y) (except for the ground state
named 3Va), indicating the xth NN and yth NN positions of
the monovacancy with respect to the two vacancies of the
divacancy complex. With this notation, the jump from one
3V(2,5) to another 3V(2,5) involves the diffusion of one atom
from a divacancy complex to an isolated vacancy to form
a new divacancy complex. As with 2Vb, we note that the
configuration 3V(2,3) is less favorable due to a relative energy
of 1.02 eV associated with missing bond, as discussed above.

Although there is a lot of motion, only one actual diffusion
event takes place during the k-ART simulation after the
trimer is formed. Including various oscillations, it takes place
over 100 KMC steps. Neglecting oscillations between various
metastable states associated with the 3V(2,5) configuration, it
can be reduced, however, to only three steps (see Fig. 7).

Indeed, the 3V(2,5) configuration can reorganize itself at
relatively low cost as can be seen in Fig. 8. The 3V(2,5) is con-
nected to two different but equivalent configurations through

FIG. 6. (Color online) Top panel: Energy histogram of the visited
states during the 2000-event simulation of the trivacancy with the
ground state set at 0.0 eV. Middle panel: Histogram of the activation
energy barrier for selected events during the 2000-event simulation.
Bottom panel: Energy histogram final state for each of the 2000
accepted events with the ground state set to 0.0 eV. For the trivacancy
system, see Fig. 3 for more information. Configurations 3Va (blue),
3V(3,6) (green), 3V(2,5) (red).

a 0.31-eV barrier that is associated with the reorganization of
the divacancy complex, and a third pathway, with a 0.72-eV
barrier, that corresponds to an actual diffusion associated with
the breaking of the divacancy complex to form a new one (see

FIG. 7. (Color online) Shortest diffusion mechanisms for the
trivacancy (left panel) and the tetravacancy systems (right panel)
as measured from the 3Va and 4Va configurations, respectively.
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(b)

(d)

(a)

(c)

FIG. 8. (Color online) (a)–(d) Cartoon representation of three
events connecting different 3V(2,5) configurations. Blue and green
color spheres represent silicon atoms and vacancies, respectively.
(a) Initial configuration 3V(2,5). (b), (c) Final configuration 3V(2,5)
without break of the divacancy. (d) Final configuration 3V(2,5)
with break of the divacancy. Red, green, and blue arrows represent
movement of silicon atom (thin arrows) and energy barrier (thick
arrows) associated to the transition from (a) to (b), (c), and (d),
respectively.

Table III for the details regarding these three states energies
and activation energies between them).

This shortest three-step diffusion process is the following.
First, a jump occurs from the ground state to the configuration
3V(2,5) crossing a 1.00-eV barrier. The diffusive 3V(2,5) to
3V(2,5) move discussed in the previous paragraph (with a
0.72-eV barrier) then takes place followed by the third step,
the inverse of the first one, with the vacancy jumping from
3V(2,5) to 3Va with an activation barrier of 0.37 eV:

τ3V,diff

τ3V,osc
= exp[−(0.72 − 0.31)/kBT ] ≈ 7.36 × 10−5. (3)

This three-step diffusion process moves the center of mass
of the trivacancy ground state by �r = 1.97 Å. The overall
limiting migration barrier is (EF3V(2,5) − EF3Va) + 0.72 eV =
(0.60 + 0.72) eV = 1.32 eV, corresponding to a characteristic
time scale of �t = 2.01 s. The characteristic time scale of
∼2 s explains why it is seen only once in the 68-ms k-ART
simulation.

TABLE III. Relative configuration energies (�E) (top line) and
barrier energies for pathways between the three dominant bound
states for the trivacancy complex (nondiffusion motion). The values
in parentheses represent a diffusive process. Energies are in eV.

�������To
Form

3Va 3V(3,6) 3V(2,5)

�E 0 0.496 0.60
3Va 0.37
3V(3,6) 0.42 0.31
3V(2,5) 1.00 0.42 0.31 (0.72)

FIG. 9. (Color online) Representation of all 2671 k-ART ac-
cepted activation events for the tetravacancy system. All initial and
final energies are measured from 4Va, the ground state (set to 0). Inset:
zoom-in between 0 and 2 eV. Configurations 4Va and 4V(chain) are
shown above the figure.

4. Tetravacancy

Tetravacancy simulations are launched from an initial
structure consisting of four isolated vacancies positioned from
3.8 to 7.7 Å apart and run for 2671 KMC steps, representing
7.29 s of simulation time. From the initial configuration,
the tetravacancy forms within 2.50 ms (155 steps), faster
than for the three-vacancy system due to the increased
defect density. With a formation energy of EF4Va = 7.93 eV
(EF4Va − 4EF1V = −2.67 eV), the ground state corresponds to
a four-vacancies truncated tetrahedron (see configuration 4Va
in Fig. 9).

K-ART identifies and visits 12 360 and 1010 different
topologies associated with various configurations for the
three-vacancy system, respectively. Once vacancies reach the
ground state, seven configurations dominate the dynamic
of the system, representing more than 90% of all accepted
configurations (see top Fig. 10).

These configurations are related through 27 different events
that control, at 500 K, the tetravacancy complex diffusion (see
Table IV). As indicated, the barrier for leaving the ground state
is fairly high, at 1.2 eV, associated with a 0.13-s time scale. The
nearest excited states correspond to a monovacancy hovering
around the trivacancy remaining cluster since further splitting
of the trivacancy cluster requires crossing an additional 1.0 eV
barrier. We therefore identify the various topologies around
the ground state as 4V(x,y,z) with x, y, and z corresponding
to the monovacancy position, in units of neighbor shell, with
respect to the the trivacancy complex. Once again, dangling
bond distribution provides a qualitative explanation for the
relative energies of the various states.

Because the cost associated with splitting the tetravacancy
into a divacancy plus either two monovacancies or a divacancy
complex is of the order of 2.2 eV or more, the tetravacancy
cluster diffuses through a dominant four-step mechanism that
preserves a compact trivacancy complex at all times. In its sim-
plest implementation, as shown in Fig. 7(b), a monovacancy
first moves to second-neighbor position by crossing a 1.2-eV
barrier [originating 4Va and reaching 4V(2,3,5)]. After another
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FIG. 10. (Color online) Top panel: Energy histogram of the
visited states during the 2671-event simulation of the tetravacancy
with the ground state set at 0.0 eV. Middle panel: Histogram of the
activation energy barrier for selected events during the 2671-event
simulation. Bottom panel: Energy histogram final state for each of
the 2671 accepted events with the ground state set to 0.0 eV. For the
tetravacancy system (see Fig. 3 for more information). Configurations
4Va (blue), 4V(chain) (green), 4V(3,4,6) (yellow), 4V(6,7,11) (pink),
4V(2,3,5) (orange), 4V(2,3,5)* (purple).

jump of 0.45 eV, the tetravacancy cluster adopts a compact
chainlike conformation, only 0.22 eV above the ground state
[originating from 4V(2,3,5) and reaching 4V(chain)]. From
this state, the system diffuses by moving the vacancy at the
other end of the chain, through a two-step motion, into the
compact truncated tetrahedron state, with a displacement of
�r = 1.50 Å.

This diffusion pathways require crossing barriers totaling
1.52 eV with a characteristic time scale, at 500 K, of 209 s,

well beyond the reach of any standard simulation method. Yet,
it was identified and generated without bias with k-ART.

Altogether, the diffusing behavior of growing vacancy
clusters shows a clear critical slowing down; these act as
traps that become more and more effective with cluster size
in the absence of collective mechanism that could overcome
this trend. The situation, as we will see, is different with
interstitials.

B. Interstitials

1. Monointerstitial

A monointerstitial simulation is launched from an initial
structure consisting of one isolated adatom placed in an octa-
hedral site of the silicon crystal, and run for 5797 KMC steps,
representing 1.58 ms of simulation time. After minimization on
the first KMC step, the ground state is reached with a formation
energy of EF1Ia = 3.685 eV (EF1Ia = 1.035 eV vs EF1V). It
represents a monointerstitial dumbbell complex (1Ia) with the
silicon adatom and a neighbor c-Si atom sharing the crystalline
site (by displacement of the c-Si atom from its crystalline site).

K-ART identifies 3929 different topologies and visits 204
of them during the simulation. Most are associated with
the interstitial in various dumbbell configurations. In spite
of these large numbers, the dynamics is dominated by two
configurations that represent more than 95% of all accepted
configurations.

Figure 11 shows three mechanisms named A, B, and C
that control, at 500 K, the monointerstitial complex diffusion.
Remarkably, each of these mechanisms is associated with the
same two different saddle points as indicated in the figure.
For example, mechanism A is a one-step process connecting
two ground-state configurations. This diffusion can take place
either through saddle 1, at 0.78 eV above ground state, or
saddle 2, at 0.94 eV. Mechanism B connects the two 1Ib
configurations (the metastable state at 0.75 eV above the
ground state through the same barriers). Finally, mechanism
C is a multiple-diffusion-steps process that inserts the B
mechanism into the A one. C′ shortest pathway is a jump from
1Ia to 1Ib going down to 1Ia with, at all steps, the possibility
to pass through the low or the high saddle point.

Previous work had shown a migration barrier of 0.9 [29]
and 0.77 eV [35] using MD simulations, but not identifying the
degeneracy clearly observed here. K-ART is able to find two

TABLE IV. Relative configuration energies (�E) (top line) and barrier energies for pathways between the seven dominant bound states for
the tetravacancy complex. The values in parentheses represent alternative higher saddle points and starred values are transition found in catalog
but not executed during the simulation. Energies in eV.

�������To
Form

4Va 4V(3,4,6) 4V(6,7,11) 4V(2,3,5) 4V(2,3,5)* 4V(chain) 4V(2,5,8)

�E 0 0.79 0.97 1.07 1.14 0.22 1.24
4Va 0.41 0.13 0.06
4V(3,4,6) 1.20 0.31 0.16 0.1
4V(6,7,11) 0.49 0.22 0.14 and 0.27
4V(2,3,5) 1.20 0.44 0.32 0.04 and 0.17 0.24 1.30
4V(2,3,5)* 1.20 0.44 0.31 and 0.44 0.17 0.1
4V(chain) 0.45 0.09
4V(2,5,8) 1.10
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A B C

C1 C2 

FIG. 11. (Color online) Diffusion mechanisms for the monoin-
terstitial. Lines represent events passing by the low saddle point
(Sad1), dot lines represent events passing by the high saddle point
(Sad2). Mechanisms denote A, B, and C are events, from and to the
ground state 1Ia, from and to the metastable state 1Ib, and from 1Ia
to 1Ia passing by 1Ib, respectively. C1, C2 correspond to transition
from 1Ia to 1Ib, from 1Ib to 1Ia, respectively.

events with same initial and final configurations but passing by
two different saddle points. These events are associated with
the symmetric transition 1Ia with activation energies of 0.78 or
0.94 eV according to the saddle point chosen. The difference is
activation energies of these transition is due to the elasticity of
surrounding c-Si atoms that allow different transition path. As
expected, the probability of passing by the low (high) saddle
point is 97%(3%), respectively, as expected according to the
ratio of the transition rate of both events at 500 K:

τ1Ia−sad2−1Ib

τ1Ia−sad1−1Ib
= exp[−(0.94 − 0.78)/kBT ] ≈ 0.03. (4)

Mechanism A (or C1) passing by the low saddle point of
0.78 eV, associated to a 7.26-μs time scale is the limiting
activation energy that allows the complex to diffuse. The
diffusion mechanism is characterized by a displacement of
3.84 Å since it is a diffusion process in second-nearest-
neighbor jump.

2. Di-interstitials

A di-interstitial simulation is launched from an initial
structure consisting of two isolated adatoms separated by 9 Å.
The simulation is run for 1048 KMC steps for a total of 128 μs.

Aggregation into the ground state occurs over 28 KMC
steps and takes most of the 128 μs, with a formation energy
of EF2Ia = 5.74 eV (EF2Ia − 2EF1Ia = −1.63 eV) for the two
adatoms in first-neighbor position. This structure involves
a local reconstruction of the network that corresponds to
the combination of two interstitials with 2 IV pairs or two
dumbbells back to back and is denoted 2Ia.

This 2Ia structure kinetics is dominated by a 0.28-eV two-
step one-dimensional diffusion mechanism that takes place
along the 110 axis. Indeed, while k-ART identifies and visits,
respectively, 9378 and 458 different topologies associated with
various configurations for the two adatoms (see Fig. 12 and top
Fig. 13), the 2Ia and its associated excited state 2Ib, shown in
Fig. 12, represent more than 95% of all accepted events. This

FIG. 12. (Color online) Representation of all 1048 k-ART ac-
cepted activation events for the di-interstitial system. All initial and
final energies are measured from 2Ia, the ground state (set to 0).
Inset: zoom-in of the region 0 to 0.5 eV. The ground state 2Ia and
metastable state 2Ib are represented above the panel. Blue and beige
spheres represent empty crystalline site and off-lattice Si atoms,
respectively.

FIG. 13. (Color online) Top panel: Energy histogram of the
visited states during the 1048-event simulation with the ground state
set at 0.0 eV. Middle panel: Histogram of the activation energy barrier
for selected events during the 1048-event simulation. Bottom panel:
Energy histogram final state for each of the 1048 accepted events
with the ground state set to 0.0 eV. For the di-interstitial system
(see Fig. 3 for more information). Configurations 2Ia (blue), 2Ib
(red).
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excited state, with an energy of only 0.03 eV below the barrier,
can be seen as the center of a long energy plateau between two
2Ia states.

The top of Fig. 13 clearly shows two configurations that lead
to four different events controlling the 2Ia complex diffusion
at 500 K. These events are transitions 2Ia to 2Ib, 2Ib to 2Ia,
symmetric 2Ia, and symmetric 2Ib.

Diffusion of the di-interstitial complex is essentially one
dimensional. The effective migration energy is found to be
0.28 eV with a basic jump �x = 1.92 Å.

This result is in agreement with Gilmeret al. [29] who
had observed a 0.2-eV migration barrier for the di-interstitial
without providing a description. The very low-energy barrier
of this complex, half that of the vacancy, makes it the fastest
self-defect diffuser in silicon.

3. Tri-interstitials

The tri-interstitial simulation is launched from an initial
structure consisting of three isolated adatoms separated by
3 to 10 Å. It runs for 13 623 KMC steps, representing
22.54 s of simulated time (see Fig. 14). From the initial
configuration, the tri-interstitial ground state is formed within
58 ms, corresponding to 5028 steps due to the high activation
barrier associated with interstitial migration.

FIG. 14. (Color online) Top panel: Energy histogram of the
visited states during the 13 623-event simulation with the ground state
set at 0.0 eV. Middle panel: Histogram of the activation energy barrier
for selected events during the 13 623-event simulation. Bottom panel:
Energy histogram final state for each of the 13 623 accepted events
with the ground state set to 0.0 eV. For the tri-interstitial system (see
Fig. 3 for more information). Configurations 3Ia (blue), 3Ib (green),
3Ic (red), 3Id (yellow), 3Ie (pink).

FIG. 15. (Color online) Dominant configurations and transitions
for the tri-interstitial system. Si atoms are in beige color and empty
crystalline sites are in blue. A cyan circle is used as a reference point
for the configurational changes. Arrows show movement of atoms
(thin arrow) over structural transitions (thick arrow).

The ground state has a formation energy of EF3I = 7.21 eV
(EF3Ia − 3EF1Ia = −3.85 eV) and corresponds to a tetrahedral
complex composed of four atoms out of crystalline site around
a commonly shared crystalline site (Fig. 15).

Kinetic ART identifies 102 543 different topologies asso-
ciated with various configurations for the three adatoms and
visits 2062 of them. Once the three adatoms aggregate, five
configurations associated with the bound tri-interstitial are
found to dominate, representing more than 95% of all accepted
configurations (Fig. 16). Indeed, once the tri-interstitial com-
plex is formed, it is trapped for the whole 22.54 s of simulation,
with the atoms exploring four nearby bound states represented
in Fig. 15.

As shown in Fig. 15, the three-interstitial ground state 3Ia
can be seen as four Si atoms sharing a crystalline site forming a
tetrahedron around it. From this point, the complex can explore
the locally bound states by moving one interstitial at a time to
a neighbor state. However, the elastic deformation is large

3Ia 3Ib 3Ic 3Id 3Ie 

FIG. 16. (Color online) Representation of all 13 623 k-ART ac-
cepted activation events for the tri-interstitial system. All initial and
final energies are measured from 3Va, the ground state (set to 0).
Relative energies for the various states are indicated.
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TABLE V. Relative minimum (�E) (top line) and barrier energies
for pathways between the five dominant bound states for the tri-
interstitial complex. The values in parentheses represent alternative
higher saddle points and starred values are transition found in the
catalog but not executed during the simulation. Energies are in eV.

�����To
Form

3Ia 3Ib 3Ic 3Id 3Ie

�E 0 0.50 0.72 0.94 1.31
3Ia 0.07 0.05 (0.20*) 0.06
3Ib 0.55 (0.70) 0.02 (0.28)
3Ic 0.78 0.24 (0.50) 0.04 0.35
3Id 0.11
3Ie 0.94* 0.49

enough to prevent the breakup of the complex, even on the
extended simulated time scale reached here. The first 5000
events consist mostly of an oscillation 3Id and 3Ie states, with
a forward and reverse energy barrier of 0.49 and 0.11 eV,
respectively (Table V).

This oscillation is broken by a transition from 3Ie to 3Ic
associated with an energy barrier of 0.35 eV, 0.24 eV higher
than that associated in the 3Ie to 3Id states oscillation. At
500 K, this pathway with respect to the oscillation is 0.3%.
From 3Ic, the system moves rapidly into the ground state,
0.94 eV below 3Id, and remains trapped for the rest of the
simulation.

The lowest pathway for the tri-interstitial diffusion requires
crossing a total barrier of 1.66 eV, associated with a 5544-s
(1.54-h) time scale. No diffusion from the ground state is
observed in our 22.54-s simulation.

4. Tetrainterstitials

The tetrainterstitial simulation is launched from an initial
structure consisting of four isolated adatoms separated by
6.0 to 9.6 Å. It is run for 1595 KMC steps reaching
13.53 μs of simulation time. From the initial configuration,
the tetrainterstitial forms within 10.7 ns, after 26 KMC steps.

We find a formation energy of EF4Ia = 9.35 eV (EF4Ia −
4EF1Ia = −5.39 eV) for the ground state (see 4Ia in Fig. 17).
During the simulation, k-ART identifies 85 412 different
topologies and visits 2685 of them. As for the other complexes,
however, only a small number of bound states dominate
(five here), representing more than 85% of all accepted
configurations (see Fig. 17 and top Fig. 18).

The two lowest-energy states are shown in inset in Fig. 17.
4Ia corresponds as a chainlike complex composed of five
atoms around the center crystalline site and two other atoms
pushed away from their crystalline position. The most visited
configuration is the complex 4Ib with an energy is 0.15 eV
above 4Ia and a minimum energy barrier of 0.48 eV between
the two states (see Table VI for the details regarding these five
states energies and activation energies between them).

Interestingly, and contrary to the tri-interstitial, the tetrain-
terstitial complex diffuses relatively rapidly as a bound state.
Figure 19 shows a diffusion mechanism for the tetrainterstitial
system. From the ground state 4Ia, the system reaches
the configuration 4Ib by crossing an activation energy of

FIG. 17. (Color online) Representation of all 1595 k-ART ac-
cepted activation events for the tetrainterstitial system. The ground
state 4Ia and configuration 4Ib are shown above the panel. All initial
and final energies are measured from 4Ia, the ground state (set
to 0).

FIG. 18. (Color online) Top panel: Energy histogram of the
visited states during the 1595-event simulation with the ground state
set at 0.0 eV. Middle panel: Histogram of the activation energy barrier
for selected events during the 1595-event simulation. Bottom panel:
Energy histogram final state for each of the 1595 accepted events
with the ground state set to 0.0 eV. For the tetrainterstitial system (see
Fig. 3 for more information). Configurations 4Ia (blue), 4Ib (green),
class 4Ic (red), configuration 4Id (yellow), class 4Ie (cyan).
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TABLE VI. Relative configuration energies (�E) (top line) and barrier energies for pathways between the five dominant bound states for
the tetrainterstitial complex. Values in parentheses represent alternative higher saddle points and starred values are transition found in catalog
but not executed during the simulation. Energies are in eV.

���������To
Form

4Ia 4Ib 4Ic 4Id 4Ie

�E 0 0.148 0.36–0.38 0.48 0.50–0.53
4Ia 0.04 0.48 0.28 0.14
4Ib 0.63 (0.69; 0.73) 0.23 0.01; 0.17* 0.03 0.18
4Ic 0.65* 0.23; 0.39* 0.03 0.03 0.06
4Id 0.36 0.15 0.10 0.05
4Ie 0.56 0.22 0.10 0.02 (0.57)

0.63 eV. From the configuration 4Ib the system reaches the
configuration 4Ie by crossing a barrier with an activation
energy of 0.56 eV, then, a transition from 4Ie to 4Ie with an
activation energy of 0.57 eV. From here, the complex diffused
and goes back to the ground state 4Ia. This complex diffusion
mechanism leads to a simple atomic jump with �r = 2.35 Å
with a limiting migration energy of Em = 1.10 eV, associated
to a 12.2-ms time scale.

IV. DISCUSSION AND CONCLUSION

We have explored the energy landscape associated with
a small number of self-defects in c-Si, demonstrating a
surprising richness for such simple systems. Characterization
of this richness is made possible with the use of an unbiased
off-lattice accelerated method, kinetic ART, an off-lattice
kinetic Monte Carlo algorithm with on-the-fly catalog building
capabilities. (Kinetic ART is still under development, but a
version is available for distribution. To receive the code or for
more information, please see the Supplemental Material [36].)
In this paper, we focus more precisely on the aggregation and
diffusion processes associated with vacancies and interstitials
in c-Si described with the Stillinger-Weber potential [28]. We
characterize the nature and kinetics of several self-defect com-
plexes, some already known, most of them newly described.

With kinetic ART, we recover the basic diffusion barriers
already identified in previous numerical work [17,29–35], such

FIG. 19. (Color online) Shortest diffusion mechanisms for the
tetrainterstitial system. (The 0 eV is 4Ia configuration for the
tetravacancy.)

as the monovacancy and monointerstitial migration barriers.
The number of possible barriers, however, is found to be much
larger than what had previously been found, with those relevant
at 500 K multiplying the complexity of the system. We find, for
example, that degenerate or quasidegenerate saddle points are
not so rare, contrary to what is normally thought. These states
play an important role in the divacancy and the monointerstitial
diffusion. We also show that, while vacancy clusters become
less and less mobile as they grow, the mobility associated with
interstitial clusters is not monotonous with size: while the
monointerstitial and tri-interstitial are pinned by very high-
energy barriers, the di-interstitial can reconstruct as a raft with
a diffusion barrier lower than that of the monovacancy and
the tetrainterstitial can move around by moving a single atom
around a tri-interstitial cluster, accelerating considerably its
diffusion. This forces us to revise our general understanding
of self-diffusion and, very likely, diffusion in general as we
find that local defects can undergo considerable geometric
reconstruction that modifies their diffusion properties.

If the general application of the specific results presented
here is limited by the use of an empirical potential, the
general findings raise the possibility of complex diffusion
mechanisms even in systems as simple as the one presented
here. Recovering dominant diffusion, but also trapping mech-
anisms, requires clearly well beyond the identification of a few
configurations by symmetry analysis or through molecular
dynamics that cannot offer a detailed characterization for
temperatures well below melting, particularly because some
of the transformations require visiting metastable states that
cannot survive these high temperatures and can only play a
dynamical and structural role at lower temperature.

The development of accelerated methods such as kinetic
ART opens up a whole new area of study into mechanisms that
we did not know existed until now. The systematic use of such
methods will help improve considerably our understanding of
diffusion at the atomistic level in materials.
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