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Adiabatic release measurements in aluminum between 400 and 1200 GPa:
Characterization of aluminum as a shock standard in the multimegabar regime
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Aluminum has been used prolifically as an impedance matching standard in the multimegabar regime (1 Mbar =
100 GPa), particularly in nuclear driven, early laser driven, and early magnetically driven flyer plate experiments.
The accuracy of these impedance matching measurements depends upon the knowledge of both the Hugoniot and
release or reshock response of aluminum. Here, we present the results of several adiabatic release measurements
of aluminum from ∼400–1200 GPa states along the principal Hugoniot using full density polymethylpentene
(commonly known as TPX), and both ∼190 and ∼110 mg/cc silica aerogel standards. These data were analyzed
within the framework of a simple, analytical model that was motivated by a first-principles molecular dynamics
investigation into the release response of aluminum, as well as by a survey of the release response determined
from several tabular equations of state for aluminum. Combined, this theoretical and experimental study provides
a method to perform impedance matching calculations without the need to appeal to any tabular equation of
state for aluminum. As an analytical model, this method allows for propagation of all uncertainty, including
the random measurement uncertainties and the systematic uncertainties of the Hugoniot and release response of
aluminum. This work establishes aluminum for use as a high-precision standard for impedance matching in the
multimegabar regime.
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I. INTRODUCTION

The high-pressure equation of state (EOS) of materials
is important for various applications ranging from, among
others, planetary physics [1–3] to inertial confinement fu-
sion [4,5]. The predominant method of obtaining EOS data
in the multimegabar regime (1 Mbar = 100 GPa) is through
dynamic shock wave compression. Various techniques have
been used to perform such experiments, including chemical-
explosive drivers [6], conventional and modified light gas
guns [7,8], explosively driven striker plates [9–14], high-
intensity lasers [15–20], magnetically driven flyer plates [21–
25], and nuclear explosions [26–32]. The vast majority of
these techniques utilize a relative or impedance matching
(IM) method [7,33] to infer the high-pressure response of
the material of interest. In this method, the shock response
of the unknown material is compared to that of a standard.
The EOS of the standard is assumed to be known to the extent
that by comparing a kinematic measurement of the unknown
material, usually the shock velocity Us , with that of the
standard, the high-pressure response of the unknown material
can be determined through the use of the Rankine-Hugoniot
conservation equations [34].

In the past, aluminum has been the foremost IM standard
in shock wave experiments. Well characterized through gas
gun [7], explosively driven striker plates [10,11], magnet-
ically driven flyer plates [21], and nuclear driven tech-
niques [26,27,29–31], Us of aluminum would be used to
infer the pressure state of a baseplate upon which a sample
of interest was placed. Measurement of Us of the sample
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of interest and the known response of aluminum would then
allow the shocked state of the sample to be inferred. However,
the accuracy of the inferred shock response of the sample of
interest depends not only upon the Hugoniot response, but also
the reshock or release response, depending upon the sample’s
relative shock impedance with respect to aluminum. This is
particularly true in the multimegabar regime, where the often
used reflected Hugoniot (RH) approximation [33] breaks down
due to significant entropy and temperature increases associated
with large amplitude shock waves [34]. Several examples of
the use of aluminum as an IM standard can be found in the
literature, including, among others, α-quartz [18], LiF [15],
Be [32], polyimide [16], polystyrene [19], H2O [17,25],
LiD [29], LiH [30], N2 [8], and D2 [12–14,20,23]. In all of these
cases, the sample impedance is less than that of aluminum, and
thus the release response is crucial to accurately infer the shock
response through the IM technique.

Here, we present a detailed study of the release response
of aluminum, with the goal of characterizing the use of
aluminum as an IM standard for lower-impedance materials in
the multimegabar regime. In particular, we set out to develop
a simple, analytical model for IM calculations that would not
require the use of a particular tabular EOS. Such a method
would facilitate not only the IM calculation, but would also
simplify the use of Monte Carlo methods for propagation of
uncertainties in the inferred results [35].

This goal was accomplished through both theoretical and
experimental investigation of the release of aluminum, similar
to that used recently in the characterization of α-quartz
as a high-precision standard [36]. First-principles molecular
dynamics (FPMD) calculations were performed and several
tabular EOS models for aluminum [37–42] were analyzed
to provide insight into the release behavior. Analysis of the
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FPMD release calculations and tabular EOS release response
led to a model framework that was used as the basis to
analyze a series of plate-impact, adiabatic release experiments
performed at the Sandia Z machine, similar to the concept
used previously to investigate the adiabatic release response of
aluminum [43], and more recently α-quartz [36]. Three differ-
ent low-impedance materials, full density polymethylpentene
(commonly known as TPX), and both ∼190 and ∼110 mg/cc
silica aerogel, were used as standards to determine release
states at various pressures along the aluminum release path.
The results of these experiments validated the model frame-
work motivated by the FPMD calculations and tabular EOS
models, and provided experimentally determined parameters
for the model.

As a consistency check, this analytical release model was
used to perform IM calculations to infer Hugoniot states of
the standards for all of the release experiments. This allowed
comparison of the IM results with previous direct impact
experiments used to define the standards [44,45]. In all three
cases, the IM results were found to be very consistent with the
direct impact results, lending confidence that the analytical
release model can be used over a wide range of pressures
along the Hugoniot and a wide range of shock impedances.
Finally, this model was used to reanalyze laser driven Hugoniot
experiments on liquid deuterium [20], to illustrate how the
model developed here differs from other methods used in the
literature to perform IM with aluminum as the standard.

Section II discusses the FPMD calculations and tabular
EOS analysis performed to investigate the release behavior of
aluminum. Section III describes the results of the plate-impact
release experiments. Section IV demonstrates the use of the
analytical release model to perform IM calculations of the
release experiments and to reanalyze laser driven experiments
on liquid deuterium. The main findings are summarized in
Sec. V.

II. FIRST-PRINCIPLES MOLECULAR DYNAMICS
AND TABULAR EQUATION-OF-STATE INVESTIGATION

OF THE RELEASE RESPONSE OF ALUMINUM

To investigate the release response of aluminum, first-
principles molecular dynamics (FPMD) calculations were per-
formed using VASP (Vienna ab-initio simulation program [46]),
a plane-wave density functional theory code developed at
the Technical University of Vienna. We used a method
similar to that used recently in an investigation of the release
response of α-quartz [36]. Specifically, the aluminum atoms
were represented with projector augmented wave (PAW)
potentials [47,48] and exchange and correlation were modeled
with the Perdew-Burke-Ernzerhof (PBE) functional [49]. A
total of 108 atoms were included in the supercell, with a
plane-wave cutoff energy of 280 and 650 eV for lower pressure
(P ) and higher P adiabats, respectively. Simulations were
performed in the canonical ensemble, with simple velocity
scaling as a thermostat, and typically covered a few to several
picoseconds of real time. We used the Baldereschi mean value
point [50] of the supercell for the evaluation of the Brillouin
zone.

The release paths were calculated using the method outlined
in Ref. [36]. In short, we took advantage of the fact that

FIG. 1. (Color) Comparison of the FPMD release path (green)
to the RH (black). Also shown are the Hugoniots of polyimide
(dashed dark gray), polystyrene (solid dark gray), H2O (dotted-
dashed dark gray), D2 (solid light gray), H2 (dotted light gray),
TPX (dotted-dashed blue), 190 mg/cc aerogel (dashed blue), and
110 mg/cc aerogel (solid blue). The right panel shows the particle
velocity residual of the FPMD release with respect to the RH.

at the initial reference state, the isentrope and the Hugoniot
have a second-order contact [34], which is most easily seen
by considering a Taylor series expansion of the entropy
as a function of volume (V ). Thus, for small-V changes
the isentrope is well approximated by the Hugoniot. We
therefore approximated each release path as a series of small
Hugoniot jumps, where each calculated Hugoniot state along
the approximated release path served as the initial reference
state for the subsequent Hugoniot calculation. Typical V jumps
were of the order of 5%, resulting in P jumps of ∼5%–10%,
with a total of ∼12–15 individual calculations per release path.
More details can be found in Ref. [36].

A release path calculated in this way from ∼900 GPa is
shown as the green line in Fig. 1. Also shown for comparison
(black line) is a reflection of the aluminum principal Hugoniot
about the particle velocity (up) of the shocked state (see
Table I). This so-called reflected Hugoniot (RH) is oftentimes
used to approximate the release path in the P−up plane [33].
The right panel of Fig. 1 shows a useful metric, the particle
velocity residual, defined to be the percent difference in
particle velocity of the FPMD release with respect to the RH.
At low stress or P states on the principal Hugoniot, the RH
approximation is reasonably good; recall that the isentrope and
Hugoniot have a second-order contact. However, at sufficiently

TABLE I. Aluminum [7,10,11,21,26,27,29–31,51] Us − up coef-
ficients and covariance matrix elements (Us = C0 + Sup). Note that
in this study we only consider the high-P branch of the aluminum
Hugoniot (up > 6.25 km/s).

C0 σ 2
C0

σ 2
S σC0σS

(km/s) S (×10−3) (×10−3) (×10−3)

High-P 6.322 1.189 53.581 0.4196 −4.605
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high Hugoniot P , the RH approximation breaks down, as can
be seen in Fig. 1.

For reference, shown as gray lines in Fig. 1, are Hugoniots
for several materials that have been studied in dynamic
compression experiments using aluminum as a standard. As
can been seen in the right panel of Fig. 1, for moderate
impedance materials, such as polyimide, polystyrene, and
H2O, the correction to the RH in up is ∼1% negative, while for
low-impedance materials, such as D2 and H2, the correction
to up is significantly larger, ∼2%–6%, but opposite sign.
This is significant given that errors in up are magnified by
a factor of roughly (ρ/ρ0 − 1) when expressed in terms of
density ρ (the subscript 0 denotes the initial value), i.e.,
δρ/ρ ∼ (ρ/ρ0 − 1)δup/up. These materials exhibit density
compression (ρ/ρ0) between 3 and 4 in the multimegabar
regime, and thus errors in ρ are two to three times larger than
the errors in up.

In accordance with the previous study on the release
response of α-quartz [36], we evaluated the aluminum release
curves using a Mie-Grüneisen (MG) model with a linear
Us − up Hugoniot response as the reference curve, which
we will call the MG linear reference (MGLR) model. In
this model, the Grüneisen parameter � = V (dP/dE)V is held
constant along a given release path. In the α-quartz study, such
a model was found to quite accurately reproduce the FPMD
calculated release paths along nearly their entirety over a very
wide P range. The MGLR model has two parameters: � and
the slope S of the linear Us − up Hugoniot (Us = C0 + Sup)
used for the reference curve. Note that for a given value of S,
which we will denote as S1, there is a unique value of C0 that
will produce (P1,up1) along the Hugoniot:

C01 = P1

ρ0up1
− S1up1. (1)

FIG. 2. (Color online) Comparison of the MGLR release paths
(black) with the FPMD release paths (green) and release paths from
the 3700 EOS [37,38] (red), each from three different principal
Hugoniot states of aluminum. Here, both � and S are optimized
for each release path; the values are listed in Tables II and III. Also
shown for reference are the Hugoniots for TPX (dotted-dashed blue),
190 mg/cc aerogel (dashed blue), and 110 mg/cc aerogel (solid blue).
The right panel shows the particle velocity residuals of the MGLR
release paths with respect to the FPMD and 3700 release paths. Note
the change in scale on the residual plot with respect to Fig. 1.

TABLE II. Values for � and S for the FPMD release paths using
the MGLR model for both cases (i) � and S optimized, and (ii) �

optimized and S(ual
p ) given by Eq. (3).

Pal ual
p �,S optimized � optimized

(GPa) (km/s) � S � S(ual
p )

489 9.980 1.399 1.510 1.320 1.444
603 11.337 1.284 1.484 1.215 1.422
911 14.339 1.071 1.408 1.041 1.381

The values of � and S can be simultaneously optimized to
minimize the integral

∫ P1

Pmin

[
urel

p (P ′) − uCalc
p (P ′)

]2
dP ′, (2)

where urel
p and uCalc

p are the particle velocities along the MGLR
and the calculated release paths (either from FPMD simu-
lations or a tabular EOS), respectively. These optimizations
were performed for a total of 3 FPMD calculated release
paths, as well as 8–10 release paths obtained from several
different tabular EOS models for aluminum, including 3700
(Refs. [37,38]), 3715 (Refs. [39,40]), and 3719 (Refs. [41,42]).
These release paths emanated from various states along the
principal Hugoniot ranging from ∼300–3500 GPa. The results
of several of these optimizations are shown in Fig. 2, and the
values for � and S of all the optimizations are displayed in
Tables II–V.

As can be seen in Fig. 2, the MGLR model is able to
reproduce quite well the FPMD and tabular EOS release paths
over the entire regime studied here. However, in contrast to the
previous α-quartz study, where S was found to be essentially
independent of the Hugoniot P , S was found to decrease
monotonically with Hugoniot P in the present aluminum
study. This difference in behavior is likely related to the fact
that in this regime aluminum is a monatomic, metallic fluid,
while α-quartz is a molecular fluid that exhibits significant
disordering and dissociation as the temperature and pressure
are increased [60]. It was also found that for a given release
path there exists a broad, shallow minimum in the evaluated
integral [Eq. (2)] along a line in �-S space, as illustrated in
Fig. 3. This broad minimum allowed us to consider prescribing

TABLE III. Values for � and S for release paths from the 3700
EOS [37,38] using the MGLR model for both cases (i) � and S

optimized, and (ii) � optimized and S(ual
p ) given by Eq. (3).

Pal ual
p �,S optimized � optimized

(GPa) (km/s) � S � S(ual
p )

300.8 7.393 1.411 1.466 1.450 1.491
491.6 9.985 1.188 1.411 1.232 1.444
599.6 11.236 1.117 1.394 1.155 1.424
774.2 13.045 1.041 1.376 1.067 1.398
923.6 14.438 0.995 1.364 1.012 1.379
1115.9 16.073 0.962 1.359 0.963 1.360
1309.7 17.587 0.935 1.357 0.921 1.344
1537.3 19.226 0.900 1.350 0.879 1.328

224105-3



KNUDSON, DESJARLAIS, AND PRIBRAM-JONES PHYSICAL REVIEW B 91, 224105 (2015)

TABLE IV. Values for � and S for release paths from the 3715
EOS [39,40] using the MGLR model for both cases (i) � and S

optimized, and (ii) � optimized and S(ual
p ) given by Eq. (3).

Pal ual
p �,S optimized � optimized

(GPa) (km/s) � S � S(ual
p )

303.1 7.470 1.789 1.568 1.686 1.489
499.2 10.156 1.398 1.515 1.312 1.441
602.6 11.348 1.288 1.492 1.210 1.422
761.8 12.990 1.191 1.474 1.113 1.398
917.3 14.448 1.146 1.475 1.054 1.379
1106.1 16.072 1.108 1.473 1.001 1.360
1317.8 17.744 1.042 1.445 0.955 1.342
2022.8 22.568 0.882 1.364 0.831 1.301
2685.6 26.386 0.745 1.306 0.719 1.276
3516.5 30.553 0.602 1.222 0.635 1.256

a particular S(P ), or more appropriately for the purposes of
an IM model, S(ual

p ), with only a negligible degradation in the
agreement between the MGLR and FPMD release paths; i.e.,
for a reasonable prescribed value of S, a value of � can be
found that results in essentially the same minimum for Eq. (2).
Since S was found to monotonically decrease with increased
Hugoniot P , and S appears to asymptote to ∼1.2, a value very
close to the actual Hugoniot slope (see Table I), we chose to fit
the various values of S in Tables II–V to a simple exponential
functional form that exhibits this type of behavior:

S
(
ual

p

) = a1 − a2exp
[ − a3u

al
p

]
, (3)

where a1 was fixed to the actual Hugoniot slope of 1.189 (see
Table I). The best fit values of the other two free parameters
are listed in Table VI.

We then repeated the optimization process, this time
optimizing only � while determining S(ual

p ) through Eq. (3).
The results of this optimization are shown in Fig. 4 and
the values of � and S(ual

p ) are displayed in Tables II–V.
Comparison of Figs. 2 and 4 indicates that, as expected,
simplification in the MGLR model by prescribing S(ual

p )
through Eq. (3) results in only a negligible degradation in
the agreement between the MGLR and FPMD release paths.

TABLE V. Values for � and S for release paths from the 3719
EOS [41,42] using the MGLR model for both cases (i) � and S

optimized, and (ii) � optimized and S(ual
p ) given by Eq. (3).

Pal ual
p �,S optimized � optimized

(GPa) (km/s) � S � S(ual
p )

306.2 7.526 1.302 1.385 1.463 1.488
490.1 9.999 1.105 1.355 1.229 1.443
600.6 11.277 1.035 1.338 1.148 1.423
771.7 13.058 0.921 1.324 1.033 1.397
919.4 14.400 0.877 1.292 0.982 1.380
1105.5 16.040 0.828 1.278 0.927 1.360
1317.0 17.708 0.785 1.266 0.874 1.343
2008.7 22.406 0.691 1.236 0.764 1.302
2702.4 26.362 0.638 1.220 0.698 1.276
3535.3 30.489 0.601 1.209 0.649 1.256

FIG. 3. (Color online) Integrated difference between the MGLR
and the FPMD release paths [Eq. (2)] as a function of both � and S.
Note the shallow minimum along a line in �-S space.

� was also found to have a strong dependence on the
Hugoniot P . � is relatively large at low P , decreases with
increasing P , and appears to asymptote to a value of ∼0.6.
This is very similar to the asymptotic value found on the
α-quartz study [36] and is quite close to the value of 2

3 that one
would expect for an ideal gas. As was the case in the α-quartz
study, the asymptotic behavior of � and S is quite intriguing.
However, it is not clear whether the behaviors of � and S

are the result of underlying physics, or merely a coincidence.
To understand this further would require a rather extensive
FPMD investigation, which is outside of the scope of this
study.

It should be emphasized that the MGLR model discussed
here is only intended to calculate kinematic variables for
aluminum upon release, in particular the release paths in
the P − up plane for purposes of impedance matching. For
instance, it is anticipated that the temperatures and specific
heats of the MGLR model do not reflect the behavior of
aluminum in this regime. To underscore this, we choose to
refer to � in the MGLR model as the effective �, or �eff , from
this point forward.

This investigation of the release response of aluminum
suggests that from a given aluminum Hugoniot state, the
release path can be calculated using a MGLR model with a
constant �eff . �eff is a function of P , or more appropriately
for the purposes of an IM model, a function of ual

p along
the aluminum Hugoniot. S of the linear Us − up Hugoniot
used as the reference for the MG model is also a function of
ual

p , and is given by Eq. (3). C01 is then determined through
Eq. (1). This model serves as the framework for analysis of
the release measurements that will be discussed in the next
section.

TABLE VI. Fit parameters for S(ual
p ) [Eq. (3)].

a3

a1 a2 (km/s)−1

1.189 0.4883 0.0652
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FIG. 4. (Color online) Comparison of the MGLR release paths
(black) with the FPMD release paths (green) and release paths from
the 3700 EOS (red), each from three different principal Hugoniot
states of aluminum. Here, S(ual

p ) is given by Eq. (3) and only
� is optimized for each release path; the values are listed in
Tables II and III. Also shown for reference are the Hugoniots for
TPX (dotted-dashed blue), 190 mg/cc aerogel (dashed blue), and
110 mg/cc aerogel (solid blue). The right panel shows the particle
velocity residuals of the MGLR release paths with respect to the
FPMD and 3700 release paths.

III. EXPERIMENTAL RESULTS AND DISCUSSION

A series of planar, plate-impact, shock wave experiments
were performed at the Sandia Z machine [52] to investigate the
release response of aluminum, using the experimental configu-
rations described in Ref. [36]. Three different low-impedance
standards were used to obtain release states from shocked
aluminum: polymethylpentene (commonly known as TPX),
and both ∼190 and ∼110 mg/cc silica aerogel. The shock
response of these standards has been previously investigated
on the Z machine [44,45]. Since these samples are solid, they
could be directly impacted by the flyer plate, and thus the
Hugoniot states could be inferred through simple IM with
aluminum under compression, to relatively high precision.
The linear Us − up coefficients and associated uncertainties
for these three materials, which were used in the analysis of
the release experiments described here, are listed in Table VII.

The aluminum (6061-T6), TPX (obtained from Mitsui
Chemicals America), and ∼190 and ∼110 mg/cc silica
aerogel (fabricated by General Atomics) samples were all
nominally 5 mm in lateral dimension. The thickness of the

TABLE VII. TPX and silica aerogel Us − up coefficients and
covariance matrix elements [36,44,45]. Note that the values for the
aerogel standards are slightly different than those reported in Ref. [44]
due to a more careful treatment of the uncertainty in the refractive
index of the aerogel.

C0 σ 2
C0

σ 2
S σC0σS

(km/s) S (×10−3) (×10−3) (×10−3)

TPX 2.707 1.307 3.485 0.0174 − 0.2252
190 mg/cc aerogel − 0.385 1.248 26.31 0.271 − 1.493
110 mg/cc aerogel − 0.710 1.233 44.37 0.156 − 2.208

FIG. 5. (Color online) Representative experimental VISAR data.
Black (blue) line, aluminum flyer plate velocity below (above)
release sample stack; cyan line, release standard shock velocity. The
inset shows a schematic of the experimental configuration. Note the
dimensions are not to scale.

aluminum was nominally 300 microns, while the thicknesses
of the release standards were all nominally 1000 microns. The
samples were metrologized using a measuring microscope to
determine sample diameters and an interferometer to measure
thickness to uncertainties of ∼5 microns and less than 1
micron, respectively. Density of the silica aerogel was inferred
from high-precision mass measurements and inferred volume
assuming the samples were right-circular cylinders. Slight
departure from the right-circular cylinder assumption resulted
in density uncertainty of ∼2% and ∼5% for the 190 and
110 mg/cc aerogel, respectively.

The aluminum samples and release standards were glued
together to form experimental “stacks” using the techniques
described in Ref. [36]. The flyer plates and experimental
“stacks” were diagnosed using a velocity interferometer
(VISAR [53]). Since the aluminum is opaque, the 532-nm
laser light would pass through the transparent low-impedance
standard and reflect off the aluminum/standard interface, as
illustrated in the inset of Fig. 5. Shock breakout into the release
standard resulted in a 10–100’s of GPa shock that was of
sufficient magnitude that the release standard became weakly
reflecting, allowing direct measure of the shock velocity in
the release standard with the VISAR diagnostic. As in the
α-quartz study, the measured apparent velocity of the shock
in the release standards was reduced by a factor equal to
the refractive index of the unshocked material: v = va/n0.
The values of n0 used in this study for TPX and the ∼190
and ∼110 mg/cc silica aerogel were 1.462, 1.038, and 1.02,
respectively [44,54–56]. Representative velocity profiles are
shown in Fig. 5. The inferred shocked state of the aluminum
sample relied on flyer plate velocity measurements directly
above and below the sample “stack” obtained from the VISAR
diagnostic, as illustrated in Fig. 5. The impact velocity was
taken to be the average of these two measurements, which
typically differed by less than 1%. ual

p of the shocked state was
then 1

2 the impact velocity, as a result of the symmetric impact.
Uncertainties in the flyer plate and shock velocities were a few
tenths of a percent.
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FIG. 6. (Color online) Aluminum release measurements. Black
line, aluminum principal Hugoniot; black circles, initial shocked
states of aluminum; dotted-dashed blue line, TPX Hugoniot; dashed
(solid) blue line, 190 mg/cc (110 mg/cc) aerogel Hugoniot; red
diamonds, measured release states; solid (dashed) gray lines, release
paths for the best fit �eff (one-sigma standard deviation). Right panels
shown for more detail.

The aluminum release experiments were analyzed within
the framework of the MGLR model described in the previ-
ous section, which is graphically illustrated in Fig. 6. The
measured impact velocity and known Hugoniot of aluminum
(fit parameters and uncertainties are listed in Table I) defined
the initial state in the P − up plane (P1,up1). The measured
shock velocity and the known Hugoniot of the release standard
defined the release state along the aluminum release path
(Pr,upr ). The MGLR model, with S1 and C01 given by Eqs. (3)
and (1), respectively, was then used to determine the value
of �eff such that the release path emanating from (P1,up1)
went through the point (Pr,upr ). Uncertainties in the inferred
quantities were determined using the Monte Carlo method
described in Ref. [36]. Note that the uncertainty in upr that
arises from both the uncertainty of the standard Hugoniot
and the measured U standard

s is less than 1%, and provides a
tight constraint on the value of �eff that connects (P1,up1) and
(Pr,upr ). This translates into an uncertainty in �eff of between
0.04 and 0.17 for the individual release measurements.

A total of seven, seven, and five aluminum release exper-
iments were performed with TPX, ∼190 and ∼110 mg/cc
silica aerogel, respectively. The pertinent parameters for these
experiments are listed in Tables VIII–X. ual

p , U standard
s , and

ρstandard
0 denote the measured particle velocity in the aluminum

sample, shock velocity in the release standard, and density
of the release standard, respectively. �eff denotes the inferred
value of the effective � for the MGLR model obtained using the
method described above. uIM

p is the inferred particle velocity
in the shocked standard as determined through IM calculations
using the MGLR model. These calculations will be discussed
in the next section.

The values for �eff inferred from all three release standards
are plotted as a function of ual

p in Fig. 7. Also plotted in the
figure are the optimized �eff obtained from the MGLR model
with S(ual

p ) given by Eq. (3) that best matched the FPMD
release paths and the release paths from various tabular EOS
models for aluminum, including 3700 (Refs. [37,38]), 3711
(Ref. [57]), 3715 (Refs. [39,40]), 3719 (Refs. [41,42]), and
3720 (Ref. [58]). The trend exhibited by the experimentally
determined �eff is very similar to that exhibited by the FPMD
and tabular EOS derived values. Furthermore, the data for
all three release standards, which vary by roughly an order
of magnitude in shock impedance, all fall along the same
trend line. These two observations are a strong indicator
that the MGLR framework adequately describes the release
response of aluminum in the multimegabar regime over a fairly
substantial P range along the Hugoniot and over a wide range
of shock impedances.

Just as in the case of the FPMD and tabular EOS derived
�eff , the experimentally determined �eff appears to asymptote
at high P . We therefore fit the experimentally determined �eff

to a simple exponential functional form that exhibits this type
of behavior:

�eff
(
ual

p

) = a1 − a2exp
[ − a3u

al
p

]
, (4)

where a1 was fixed at 0.6, similar to the asymptotic value that
was observed in the α-quartz release study [36]. As can be seen
in Fig. 7, the weighted fit to this functional form provides a
reasonably good description of the experimentally determined
�eff . Also shown in the figure are the one-sigma uncertainty
bands, which take into account the correlation of the uncer-
tainty in the parameters from the weighted fit. The best fit val-
ues and the covariance matrix elements are listed in Table XI.

TABLE VIII. �eff for the TPX release experiments. ual
p , UTPX

s , and ρTPX
0 are the measured particle velocity of the aluminum (half the

measured impact velocity), the measured shock velocity of the TPX samples, and the measured TPX initial density, respectively. �eff is the
inferred value of the effective � for the MGLR model. uIM

p is the inferred particle velocity in the shocked TPX determined from the MGLR
model as described in Sec. IV.

ual
p UTPX

s ρTPX
0 uIM

p

Expt. (km/s) (km/s) (g/cc) �eff (km/s)

Z2450N 8.86 ± 0.03 18.72 ± 0.03 0.83 ± 0.004 1.425 ± 0.087 12.26 ± 0.06
Z2450S 9.75 ± 0.03 20.21 ± 0.03 0.83 ± 0.004 1.343 ± 0.072 13.42 ± 0.05
Z2345N 11.97 ± 0.03 23.99 ± 0.03 0.83 ± 0.004 1.246 ± 0.055 16.26 ± 0.05
Z2345S 12.98 ± 0.03 25.68 ± 0.03 0.83 ± 0.004 1.192 ± 0.047 17.55 ± 0.05
Z2333N 12.98 ± 0.03 25.73 ± 0.03 0.83 ± 0.004 1.231 ± 0.049 17.54 ± 0.05
Z2333S 13.82 ± 0.03 27.04 ± 0.03 0.83 ± 0.004 1.121 ± 0.044 18.62 ± 0.06
Z2375 15.80 ± 0.07 30.31 ± 0.03 0.83 ± 0.004 1.035 ± 0.074 21.13 ± 0.13
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TABLE IX. �eff for the ∼190 mg/cc silica aerogel release experiments. ual
p , U gel

s , and ρ
gel
0 are the measured particle velocity of the aluminum

(half the measured impact velocity), the measured shock velocity of the aerogel samples, and the measured aerogel initial density, respectively.
�eff is the inferred value of the effective � for the MGLR model. uIM

p is the inferred particle velocity in the shocked aerogel determined from
the MGLR model as described in Sec. IV.

ual
p U

gel
s ρ

gel
0 uIM

p

Expt. (km/s) (km/s) (mg/cc) �eff (km/s)

Z1452 11.91 ± 0.07 25.45 ± 0.14 202 ± 4 1.138 ± 0.165 20.82 ± 0.15
Z1474 12.86 ± 0.07 27.68 ± 0.14 197 ± 4 1.236 ± 0.171 22.42 ± 0.16
Z1421 13.38 ± 0.07 28.65 ± 0.14 202 ± 4 1.203 ± 0.154 23.20 ± 0.16
Z1472 13.55 ± 0.07 28.99 ± 0.14 203 ± 4 1.203 ± 0.153 23.46 ± 0.16
Z1473 14.00 ± 0.07 29.71 ± 0.14 200 ± 4 1.033 ± 0.124 24.27 ± 0.16
Z1451 14.35 ± 0.07 30.71 ± 0.14 202 ± 4 1.203 ± 0.142 24.76 ± 0.16
Z1490 16.85 ± 0.15 35.45 ± 0.25 201 ± 4 0.947 ± 0.163 28.94 ± 0.31

We caution the use of this model outside of the range of the
experimental data, specifically for ual

p below and above ∼9 and
∼17 km/s, respectively. This is particularly true for ual

p below
∼9 km/s, where there are no data and it is unclear how best to
extrapolate. Because both S and �eff seem to asymptote at high
P , one could likely use this fit for ual

p above ∼17 km/s with
some confidence. At P above this limit, roughly 1200 GPa, S

asymptotes to the actual Hugoniot slope and �eff approaches
a value close to what one would expect for an ideal gas.

IV. ANALYTICAL RELEASE MODEL

As examples of this analytical release model, and as a
consistency check, this IM method was used to determine
the shocked states of the release standards for all of the
aluminum release measurements listed in Tables VIII–X.
Measurement of ual

p (in this case directly through impact
velocity measurements, but could also be inferred through
measured U al

s and the known aluminum Hugoniot), determines
(i) the Hugoniot state of the aluminum, and thus (P1,up1)
from which the release path emanates, (ii) the value of S1

and therefore C01 that defines the Hugoniot reference curve
for the MGLR model [Eqs. (3) and (1), respectively], and
(iii) the value of �eff [Eq. (4)]. One then solves a set of
coupled ordinary differential equations (ODEs), as described
in detail in Ref. [36], to determine (P,up) along the release
path emanating from (P1,up1). P

sample
1 and u

sample
p1 in the

shocked state of the sample material are then determined by

the intersection of (P,up) along the release path and the chord
defined by P = (ρsample

0 U
sample
s )up.

For each series of IM calculations, the coefficients of
the aluminum Hugoniot are sampled within their uncertainty
defined by the covariance matrix (Table I). This propagates the
uncertainty in the initial state (P1,up1) as well as uncertainties
in S1 and C01. Then for each IM calculation in the series of
measurements, ual

p , �eff , U
sample
s , and ρ

sample
0 are all sampled

within their one-sigma uncertainty. (P sample
1 ,u

sample
p1 ) is then

determined as the intersection of the chord and release
path, and the remaining kinematic variables can be evaluated
through the use of the Rankine-Hugoniot jump conditions [34].
This process is repeated for 106 iterations, and the reported
values and one-sigma uncertainties of the inferred quantities
are taken to be the mean and standard deviations of the Monte
Carlo distributions, respectively.

The resulting Us − up points from the IM method using
the analytical release model (the inferred up are listed in the
last column of Tables VIII–X) are in excellent agreement
with the direct impact results [44,45,59]. This provides a
consistency check, and indicates that the assumptions of the
analytical model, namely that �eff can be treated as a constant
regardless of the impedance of the unknown material, is
justified. Furthermore, the uncertainty in the inferred up is
roughly equivalent for both the analytical IM release model
and for the direct impact experiments. This suggests that
there is very little loss in precision or accuracy in using
aluminum as an IM standard as opposed to performing direct
impact experiments with aluminum. This is significant in

TABLE X. �eff for the ∼110 mg/cc silica aerogel release experiments. ual
p , U gel

s , and ρ
gel
0 are the measured particle velocity of the aluminum

(half the measured impact velocity), the measured shock velocity of the aerogel samples, and the measured aerogel initial density, respectively.
�eff is the inferred value of the effective � for the MGLR model. uIM

p is the inferred particle velocity in the shocked aerogel determined from
the MGLR model as described in Sec. IV.

ual
p U

gel
s ρ

gel
0 uIM

p

Expt. (km/s) (km/s) (mg/cc) �eff (km/s)

Z2450S 9.76 ± 0.03 22.16 ± 0.06 107 ± 6 1.353 ± 0.136 18.59 ± 0.12
Z2333N 12.95 ± 0.03 29.03 ± 0.06 111 ± 6 1.084 ± 0.108 24.21 ± 0.16
Z2333S 13.95 ± 0.03 31.3 ± 0.06 111 ± 6 1.092 ± 0.114 25.97 ± 0.18
Z2375 15.74 ± 0.07 35.25 ± 0.06 107 ± 6 0.978 ± 0.106 29.36 ± 0.25
Z2332 16.10 ± 0.07 35.88 ± 0.06 108 ± 6 0.921 ± 0.103 29.94 ± 0.25
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FIG. 7. (Color) �eff as a function of the aluminum particle
velocity along the Hugoniot ual

p . Open diamonds, TPX release mea-
surements; blue (red) diamonds, ∼190 (∼110) mg/cc silica aerogel
release measurements; green circles, FPMD release calculations;
black solid (dashed) line, 3700 (3719) EOS; green solid (dashed)
line, 3711 (3720) EOS; magenta solid line, 3715 EOS; blue solid
(dashed) line, best fit (one-sigma deviation) to the experimental data.

that impact-type experiments in the multimegabar regime
are currently limited to explosively driven striker-plate and
magnetically driven flyer plate platforms.

As a final example, we discuss previously published laser
driven Hugoniot experiments on deuterium reported by Hicks
et al. [20]. In that study, a laser driven shock in aluminum
was driven into both a liquid deuterium sample and an
α-quartz sample used to better determine the shocked state
of the aluminum drive plate. To perform the IM analysis,
an experimentally determined mapping was used to infer the
shocked state of the aluminum from the measured U

q
s . The

inferred U al
s along with a fit of available absolute Hugoniot data

for aluminum then defined (P1,up1) of the shocked aluminum.
The release response was then determined through a model
developed by comparing the difference between the RH and
the calculated release response of several different tabular EOS
models from aluminum, as described in Ref. [20].

For this reanalysis we take advantage of the recent,
significant improvement in precision of the α-quartz Hugo-
niot [36,60] and the present aluminum release model. In
particular, we used the measured U

q
s and the known α-quartz

Hugoniot [36,60] to define a point (Pq,u
q
p) through which

the aluminum release must pass through. To do this we first

TABLE XI. Fit parameters and covariance matrix elements for
�eff (ual

p ) [Eq. (4)].

a3 σ 2
a2

σ 2
a3

σa2σa3

a1 a2 (km/s)−1 (×10−2) (×10−4) (×10−3)

0.6 1.942 0.0951 6.882 1.167 2.793

reconstructed the measured U
q
s in Ref. [20] from the reported

U al
s by inverting the relationship between U al

s and U
q
s :

U q
s = β + (

U al
s − a0

)
/a1, (5)

δU q
s =

{[(
δU al

s

)2 − σ 2
a0

] − (
U

q
s − β

)2
σ 2

a1

}1/2

a1
, (6)

where β = 20.57 km/s, a0 = 21.14 km/s, a1 = 0.91, σa0 =
0.12 km/s, and σa1 = 0.03. The resulting values of U

q
s and

δU
q
s are listed in Table XII.
For each experiment we then used the MGLR model to

determine (P1,up1) for the shocked state of aluminum such
that the release path passed through (Pq,u

q
p) obtained from the

measured U
q
s . The intersection of this release path with the

chord defined by P = (ρD2
0 UD2

s )up then provided (PD2,u
D2
p ).

The remaining kinematic variables for the deuterium were
determined using the Rankine-Hugoniot relations [34]. The
inferred values from this reanalysis are listed in Table XII and
displayed in Fig. 8.

As can be seen in Table XII and Fig. 8, the reanalysis
results in a systemically lower density compression with
respect to the published values [20]. This is predominantly
due to the improved description of the α-quartz Hugoniot; the
recently published α-quartz Hugoniot [36,60] is significantly
less compressible than the effective Hugoniot used in Ref. [20]
(linear mapping relating U

q
s to U al

s ), resulting in lower inferred
density compression for the deuterium. A close comparison of
Fig. 5 from Ref. [60], which essentially only corrected for
the difference in the α-quartz Hugoniot, with Fig. 8 from
this work shows that the effect of the present aluminum
release model somewhat compensates for this error. This
would indicate that the present aluminum release model results
in systematically slightly higher inferred up along the release
path when compared to the release model used in Ref. [60],
which was based mainly on the difference between the release
path and the RH for the 3700 EOS model, in accordance
with a previous aluminum release study [43]. This difference
is consistent with Fig. 7 in that the best fit trend line of
the experimentally determined �eff is systematically higher
than that determined from the 3700 EOS table, which would
result in a slightly higher inferred up along the aluminum
release path and therefore a slightly higher inferred ρ/ρ0 for
deuterium.

More significantly, comparison of the two analyses dis-
played in Fig. 8 demonstrates that the uncertainty in the
inferred shock state is significantly smaller for the MGLR
analysis as compared to the analysis used in Ref. [20]. This is
undoubtedly due to experimental constraint on the release be-
havior from this work. With little direct experimental guidance,
Hicks et al. were forced to resort to examination of various
EOS models in an attempt to constrain the release behavior of
aluminum, with resultantly large contributions from potential
systematic uncertainty (note the large systematic spread in �eff

between the various tabular EOS models displayed in Fig. 7).
The experiments described in Sec. III enabled a determination
of �eff with relatively tight constraint. As a result, the
inferred quantities, particularly ρ/ρ0, exhibit significantly
lower uncertainty, thereby increasing the precision of the IM
method with aluminum as the standard.
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TABLE XII. Comparison of the inferred P and ρ/ρ0 for laser driven experiments on deuterium using the aluminum IM method, as
described in the text. The uncertainties in P and ρ/ρ0 from Ref. [20] list the random and systematic components of the uncertainties explicitly
in parentheses: (ran, sys). The quadrature sum of these individual components of uncertainty is displayed in Fig. 8.

U al
s U q

s UD2
s Hicks et al. [20] This reanalysis

Shot (km/s) (km/s) (km/s) P (GPa) ρ/ρ0 P (GPa) ρ/ρ0

31700 26.07 ± 0.34 25.99 ± 0.30 36.87 ± 0.33 186 ± (4, 3) 4.66 ± (0.37, 0.26) 184 ± 3 4.47 ± 0.31
31692 21.88 ± 0.25 21.38 ± 0.24 28.89 ± 0.32 116 ± (2, 2) 4.94 ± (0.42, 0.27) 113 ± 2 4.56 ± 0.34
31912 18.75 ± 0.25 17.94 ± 0.22 23.83 ± 0.32 77 ± (2, 1) 4.47 ± (0.42, 0.21) 75 ± 2 4.16 ± 0.32
31910 15.51 ± 0.31 14.38 ± 0.24 18.96 ± 0.31 45 ± (2, 1) 3.65 ± (0.40, 0.17) 45 ± 1 3.57 ± 0.28
32248 23.30 ± 0.25 22.94 ± 0.23 32.03 ± 0.32 139 ± (3, 2) 4.56 ± (0.32, 0.23) 137 ± 2 4.28 ± 0.26
32252 25.65 ± 0.29 25.53 ± 0.24 35.48 ± 0.39 176 ± (3, 3) 5.03 ± (0.42, 0.31) 173 ± 3 4.79 ± 0.34
32254 27.08 ± 0.31 27.10 ± 0.23 38.81 ± 0.31 205 ± (4, 3) 4.61 ± (0.32, 0.26) 203 ± 3 4.46 ± 0.24
32258 27.96 ± 0.32 28.06 ± 0.21 40.13 ± 0.31 221 ± (4, 4) 4.74 ± (0.33, 0.28) 220 ± 3 4.63 ± 0.24
32864 19.45 ± 0.29 18.71 ± 0.28 25.76 ± 0.34 87 ± (2, 1) 4.07 ± (0.36, 0.17) 85 ± 2 3.81 ± 0.29
32866 21.67 ± 0.27 21.15 ± 0.27 28.57 ± 0.39 113 ± (3, 2) 4.90 ± (0.47, 0.26) 111 ± 2 4.52 ± 0.39
33190 25.89 ± 0.31 25.79 ± 0.26 36.26 ± 0.34 181 ± (3, 3) 4.82 ± (0.38, 0.28) 179 ± 3 4.61 ± 0.30
33194 23.24 ± 0.27 22.88 ± 0.25 32.14 ± 0.34 139 ± (3, 2) 4.44 ± (0.32, 0.22) 137 ± 3 4.17 ± 0.27
34135 20.55 ± 0.28 19.92 ± 0.28 27.67 ± 0.34 101 ± (2, 1) 4.16 ± (0.34, 0.18) 99 ± 2 3.88 ± 0.28
34139 23.58 ± 0.26 23.25 ± 0.24 31.89 ± 0.31 141 ± (3, 2) 4.97 ± (0.39, 0.29) 139 ± 2 4.64 ± 0.31
34144 22.51 ± 0.27 22.08 ± 0.26 30.27 ± 0.37 126 ± (3, 2) 4.76 ± (0.41, 0.25) 123 ± 2 4.43 ± 0.34

V. CONCLUSION

The release response of aluminum was investigated within
the framework of first-principles molecular dynamics (FPMD)
and several tabular equation-of-state (EOS) models for alu-
minum. These calculations provided insight into the release
response of aluminum, and motivated a simple Mie-Grüneisen
model with a linear Us − up Hugoniot as the reference,
referred to as the MGLR model. This model was shown to
reproduce the FPMD and tabular EOS release paths extremely
well with a constant �eff along the release path, with both S,
the slope of the Hugoniot reference for the MG model, and
�eff being functions of ual

p [see Eqs. (3) and (4)].

FIG. 8. (Color online) P -ρ/ρ0 Hugoniot for laser driven deu-
terium experiments [20]. Black solid (dashed) line, Hugoniot from
the Kerley03 EOS [61] (Holst FPMD [62]). Gray circles, Hugoniot
data as published in Ref. [20]; red circles, this reanalysis.

A series of plate-impact, shock wave experiments were
performed on the Sandia Z machine to obtain release data
for aluminum from ∼400–1200 GPa states on the principal
Hugoniot. Three different low-impedance standards were
used, TPX, ∼190 and ∼110 mg/cc silica aerogel, which vary
in shock impedance by roughly an order of magnitude. These
data validated the MGLR model that was motivated by the
FPMD and tabular EOS study, and provided an experimentally
determined �eff as a function of ual

p .
This theoretical and experimental study of the release

response of aluminum provides a simple, analytical model
for performing IM calculations without the need to appeal to
any particular tabular EOS for aluminum. Since the model is
analytical, it is well suited for the use of Monte Carlo analysis
methods, enabling all uncertainty, including the random
measurement uncertainty and any systematic uncertainty in the
Hugoniot and release response of aluminum, to be propagated
to the inferred quantities. We also note that the experimentally
validated model framework should prove to be useful in the
development of wide range equations of state for aluminum,
in that it constrains the kinematic variables of aluminum upon
release over a wide range of P and ρ.

It is emphasized that the MGLR model discussed here is
only intended to calculate kinematic variables for aluminum
upon release, in particular, the release paths in the P − up

plane for purposes of impedance matching. It is fully expected
that other aspects of the MGLR model will be incorrect. In
particular, it is anticipated that the temperatures and specific
heats of the MGLR model do not reflect the behavior of
aluminum in this regime. Furthermore, we caution the use
of this model outside of the range of the experimental data,
specifically for ual

p below and above ∼9 and ∼17 km/s,
respectively. This is particularly true for ual

p below ∼9 km/s,
where there are no data and it is unclear how best to extrapolate.
Because both S and �eff seem to asymptote at high P , one
could likely use this fit for ual

p above ∼17 km/s with some
confidence. At P above this limit, roughly 1200 GPa, S
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asymptotes to the actual Hugoniot slope and �eff approaches
a value close to what one would expect for an ideal gas.

As an example of its use, the MGLR model was used to infer
Hugoniot states through the IM method for all of the aluminum
release measurements performed for this study. This provided
a consistency check in that the IM results could be compared to
the direct impact Hugoniot measurements of the standards. Not
only did the IM Hugoniot response agree extremely well with
the direct impact Hugoniot results, but the uncertainties from
the two methods were found to be roughly equivalent. This
suggests that the IM method can confidently be used to obtain
high-precision Hugoniot measurements regardless of the shock
impedance of the unknown material. In particular, given the
prolific use of aluminum as an IM standard, the present
IM model will enable reanalysis of numerous multimegabar
experiments in the literature. Such reanalyses will improve
both the accuracy and precision of the inferred shock response

by taking advantage of recent refinement of the Hugoniot
response of aluminum, as well as an experimentally validated
release model which tightly constrains the release response of
aluminum in the multimegabar regime.
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