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High-field termination of a Cooper-pair insulator
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We conducted a systematic study of the disorder dependence of the termination of superconductivity, at high
magnetic fields (B), of amorphous indium oxide films. Our lower disorder films show conventional behavior
where superconductivity is terminated with a transition to a metallic state at a well-defined critical field, B.,.
Our higher-disorder samples undergo a B-induced transition into a strongly insulating state, which terminates at
higher B’s forming an insulating peak. We demonstrate that the B terminating this peak coincides with By, of the
lower disorder samples. Additionally, we show that, beyond this field, these samples enter a different insulating
state in which the magnetic field dependence of the resistance is weak. These results provide crucial evidence
for the importance of Cooper-pairing in the insulating peak regime.

DOI: 10.1103/PhysRevB.91.220508

When a highly disordered, superconducting, film is sub-
jected to a strong magnetic field (B) it can undergo a transition
to an insulating state [1,2]. In recent years, this insulator drew
significant attention because of the prospect that the charge
carriers in it are Cooper pairs. Evidence for this comes from
a variety of different materials and experimental techniques,
such as low-temperature (7) transport [3—12], measurements
of Little-Parks oscillations [13,14], microwave-frequency con-
ductivity measurements [15], and tunneling [16-23]. Similar
indications arrive from several theoretical works that attempt
to explain these experimental results [24-34].

A key ingredient implicit in this picture relates to the high- B
limit of this Cooper-pair insulator (CPI). If this insulator is
comprised of (localized) Cooper pairs one expects that, at high
enough B such that the pairs are locally broken [4], the CPI
will cease to exist and a B-induced transition to a different
phase will take place. In this Rapid Communication, we
experimentally study this transition in thin films of amorphous
indium oxide (a:InO) and show that this higher-B phase is
also an insulator, distinct from the CPI, and that the transition
between the two insulators takes place at a B range that is close
to the microscopic critical field for superconductivity B.,. The
coincidence of B, with the rapid termination of the insulating
peak is a central indication for the role of Cooper pairs in the
formation of the CPIL.

To achieve the results of this work, we conducted a
comparative study of a wide range of disorder levels in a:InO
films. The samples were prepared on a SiO, substrate cleaned
and plasma polished immediately prior to the e-gun deposition
using 99.99% In,03 pellets in a high-vacuum chamber with
a controlled O, partial pressure of 1.5-15 x 1073 Torr. The
samples, ranging in size from 20-200 pum, were contacted
using pre-deposited Au-Ti pads. The measurements were
carried out at the high- B facility in Grenoble, using a dilution
refrigerator capable of base T > 0.035 K mounted in the
bore of a resistive magnet capable of B = 30 T. Transport
measurements were conducted using low-frequency (typically
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3 Hz) four-terminal lock-in technique for R < 1 MQ and
extended to higher R (<10' Q) using two-terminal ac
measurements [35]. Wherever the two methods overlapped
in range the results were in agreement within experimental
noise and error.

The results of these measurements are represented in
Fig. 1 where, depending on disorder, several distinct types
of behavior can be seen. The lowest disorder samples, such as
JO69, provide insight into the superconducting properties far
from the transition to the insulator. They exhibit a transition
into a superconducting state at 7 = 7T, ~ 3 K and, when a
strong perpendicular B is applied, revert to the normal state
with a slight hump observed only at our lowest 7"’s (see sample
JO69 in Fig. 1). Since such a behavior belongs to the well-
understood realm of conventional dirty superconductors [37],
we can use the study of the 7" and disorder dependence of their
B, to extract parameters that will be relevant for the more
disordered samples where they are much harder to evaluate.

To extract these parameters we plot, in Fig. 2(a), B, versus
T, near T, taken from four of our low-disorder samples whose
parameters are given in Table I. We define B, at the half-point
of the transition of the R versus B curves and verified that
other choices of the transition point lead to similar results.

Inspecting Fig. 2(a), we first note that the slope of B.,(T')
in the vicinity of T, increases with disorder level (indicated by
RX°K). This behavior reflects the reduction of the diffusion
coefficient D by disorder that, in turn, increases the slope
(dBo(T)/dT)r_ 7, = —A@okg /D, where ¢o = h/2e is
the flux quantum [37]. For these four samples D is reduced
from 0.28 cm?/s (sample JO12) to 0.18 cm?/s (sample J022).

Another consequence of the increase in disorder is the
increase of the extrapolated B.,(0). Disregarding spin effects
B (0) is directly related to the (dirty) superconducting
coherence length &; through B.,(0) = 0.69¢/ 27153 [37]. The
increase in B(0) corresponds to a decrease of &;, and the
above relation yields &; ~ 4.7-4.0 nm for our samples [7].
These estimates are consistent with those obtained by using
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FIG. 1. (Color online) R vs B obtained from four a:InO films
with different disorder, measured at 7' ranging from 0.035 to 1 K.
The highest-disorder sample, H34S03, is insulating at B = 0 (top).
The lowest disordered samples, J069 and JO71, were measured in a
four-terminal configuration with ac excitation current of 10 nA. The
higher-disordered films, GR12H6 and H34S03 were measured in a
two-terminal configuration with ac excitation voltages of 100 and
500 wV, respectively. The inset shows the B = 0 superconducting
transitions of the three superconducting films.

the superconducting gap value A ~ 0.55 meV measured by
tunneling, see Ref. [36] and the values of D in Table I yielding
&, =0.83/AD/A ~ 4.7-3.7 nm [37].

For four of our low-disorder samples, we measured the
magnetoresistance isotherms down to 7" = 0.035 K in order
to approach B(0) limit. Interestingly, the resulting B (T),
shown in Fig. 2(b), do not follow the expected behavior
of type II superconductors (solid line); instead it decreases
linearly with 7' down to our lowest 7. This linear decrease of
B (T) is accompanied by sharper B-driven transitions to the
normal state, shown in Fig. 2(c), indicating a smaller contribu-
tion from vortex creep at low 7"’s. A similar upturn of B.,(T) at
low T have been observed in similar systems [38,39]. For dis-
ordered superconductors, recent theoretical works accounted
for this deviation by including the effects of superconducting
inhomogeneities induced by mesoscopic fluctuations [40].
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FIG. 2. (Color online) (a) B., vs T for low disordered a:InO
samples (see Table I). (b) B, vs T in our low-T range for four
different low disordered a:InO samples including J036 [see (c)]. The
solid lines in (a) and (b) are the BCS-fitting curves [37]. (c) Ro vs B

for one of our cleanest a:InO samples, JO36, which is similar to JO13
and J0O69 at T from 0.044 to 1.75 K.

Inhomogeneities in such systems were observed in scanning
tunneling experiments [16,18,19,21,23].

Given our T, values of 2.7 to 3.5 K, the corresponding
B:(0)’s are unexpected. In conventional type II supercon-
ductors, B(0) is determined by orbital effects and rarely
exceeds the Pauli paramagnetic limit given by B,[T] =~
1.8 T.[K] [41,42]. The fact that B,(0) significantly exceeds
the Pauli limit in our samples indicates that the effective
spin susceptibility is reduced, most likely due to spin-orbit
scattering by the indium atoms [43].

Because the spin susceptibility is corrected by spin-orbit
scattering according to xs/xy =~ 1 — 2At,/hfor A K h/7y,
where xg(v) is the spin susceptibility in the superconducting
(normal) state and 7y, the spin-orbit scattering time [43],
the resulting correction to the Pauli field:' B, « I%B\/%o/h
leads to an increase of B, with spin-orbit scattering rate. In
our samples 7y, can be readily estimated from the elastic
scattering time t through 7y, =~ r/(Zoz)“, where Z is the
atomic number of the scattering atom and o >~ 1/137 the
fine-structure constant [44,45]. With T ~ 3.1071¢ s extracted

'M. Feigel’man (private communication).
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TABLE 1. Parameters of the superconducting films. All films are 60-nm thick, excepted JO71, GR12H6 and H34S03 which are 30-nm
thick. R5™ is the maximum resistance reached before the superconducting transition; szt(O) is obtained from the BCS fit of the B.,(T') curves;

B**(0.035 K) is the measured value at 7 = 0.035 K.

Sample RE™ (k) R (k) T.(K) B(0)(T) BI(0.035 K) (T) D (em?*/s) £ (nm)
1012 05 0.4 3.5 10.2 - 0.28 47
J013 0.7 0.5 3.4 11.1 - 0.26 45
1019 13 0.7 3.1 12.1 - 0.22 43
1022 2.3 1.0 2.7 12.6 - 0.18 42
1033 13 0.8 3.2 12.5 13.3 0.20 4.1
1036 1.0 0.6 3.5 11.9 12.8 0.23 42
1038 12 0.7 3.5 11.7 12.6 0.23 42
1039 1.7 0.9 3.0 13.3 14.1 0.18 4.0
1069 1.3 - 3.1 11.9 13.0 021 42
J071 47 - 2.3 N/A N/A N/A N/A
GRI12H6 6.3 - 12 N/A N/A N/A N/A

from the room temperature Boltzmann conductivity of sample
JO12, one obtains 7, ~ 2.107 4 s, leading to an enhancement
of B, by a factor 1/\/Aty,/h ~ 7. These rough estimates
point to a purely orbital suppression of superconductivity
at B,,. We note that, as the superconducting state is three
dimensional (thickness >&;), we cannot use parallel field
magnetoresistance measurements to disentangle the spin from
the orbital contributions to B.,.

We now turn to the higher-disorder a:InO samples. For these
samples, B, can no longer be identified because it is masked
by the appearance of a pronounced magnetoresistance peak.
Instead superconductivity is terminated by another transition,
at a well-defined (and lower) B¢, to a strongly insulating
state [5]. The strength and position of the peak, as well
as B¢, evolve with disorder as can be seen in the two
intermediate-disorder samples in Fig. 1, JO71 and GR12H6.
For sample JO71, R at the peak is ~10° Q (at T = 0.035 K)
and the peak’s location is at B = 12 T, while for GR12H6, R
is beyond our measurement capability at 7 < 0.15 K, and the
peak is located at ~7.5 T. For these two samples, Bc = 10 and
0.8 T, respectively.

For the highest-disorder sample in this study, H34S03,
superconductivity is no longer observed and the sample is
insulating at B = 0. Despite this marked difference a similar
insulating peak is found at B =~ 5 T [8].

The large range of disorder spanned by the samples in this
study enables the central observation of this work. Despite the
vastly different low-B characteristics of the four samples in
Fig. 1, they all undergo a dramatic change in R at a similar
B range of 13-15 T. For our lowest-disorder sample, JO69,
we have already identified this region with the critical B for
superconductivity, B.,. The large, sometimes precipitous, drop
of R terminating the insulating peak in the higher-disorder
samples occurs at the same B range.

For less-disordered thin-film superconductors, B, marks
the B where superconductivity is terminated by elimination
of Cooper pairing. The coincidence of B, with the B that
terminates the CPI in the three higher-disorder samples implies
a remarkable possibility: if we assume that, in the insulating
peak, transport is maintained by Cooper pairs that are localized
in space, then breaking these pairs by applying B > B, should

destroy the CPI and strongly modify the transport in the
sample.

If the termination of the insulating peak is a result of full
pair breaking at B ~ B, a natural question arises: what is
the electronic state at B> B, for our higher-disorder samples.
The high- B state beyond the CPI in titanium-nitride and a:InO
has been recently studied by Baturina ef al. [8]. They found
that its resistance is metallic with an extrapolated 7 = 0 value
close to the quantum unit, 1/e”, leading them to propose the
existence of a quantum metal phase [46] in these materials at
high-B and T = 0. This intriguing possibility has prompted
us to study our films at extremely high-B’s and low-T"’s.

The study of our samples reveals a different picture. In
Fig. 3, we show the high-B, low-T magnetoresistance of
samples GR12H6 and H34S03 exhibiting a clear insulating
behavior. We found that the T dependence in this regime
is best-described by 2D single-electron Mott hopping [47],
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FIG. 3. (Color online) Sheet resistance R as a function of 7~
of our highest-disordered superconducting film GR12H6 and the
insulating film H34S03 at different magnetic fields, ranging from
15 to 25 T. The data points are extracted from the R versus B

measurements shown in Fig. 1.
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R ~ exp(Typ /T)l/ 3 where T»p is the model characteristic
T.2 Sample H34S03 shows deviation from the Mott law for
the lowest T points. We did not find any hopping exponent that
fits the entire T range including these deviations. This upward
deviation is nevertheless consistent with an insulating ground
state in the zero temperature limit. With our ability to span a
large B range and achieve very low T’s we have thus ruled out
metallic behavior in our samples as the phase terminating the
CPI at very high B.

Another question raised by our findings pertains to the
microscopic mechanism by which the system undergoes the
B-driven transition from the insulating-peak regime, the CPI

While the limited range of our data allows for different T
dependencies such as 3D Mott hopping [R ~ exp(T3p/T)"*] or
Efros-Shklovskii (ES) hopping [R ~ exp(Tgs/T)"/?], where T3p and
Tgs are the relevant model characteristic 7', the parameters we
obtain from fitting our data to these other forms are inconsistent:
by using the 3D hopping form we obtain the localization length,
&, = 60-500 nm, larger than the film thickness, contradicting the
3D hopping assumption. Similarly, for ES hopping, we obtain
&, ~ 50-1000 pm, which is physically unreasonable. For the 2D
case that fits best our data, we obtain &, ~ 200-1000 nm for sample
GR12H6 and &;, ~ 100-200 nm for sample H28S03, consistent with
a 2D hopping regime.
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where transport is by Cooper-pairs, into the high-B insulating
state that, being above B, should only comprise unpaired
electrons. The observation of such a transition opens the
possibility for a new transition, between bosonic and fermionic
insulators, driven by an increase in B. The details of this
transition awaits further theoretical and experimental inputs.

In summary, we have conducted a comprehensive study
of a:InO films spanning the largest B range and the widest
range of disorder levels to date. The breadth of our study
enabled us to make two new observations. First, we showed
that the insulating peak observed in higher-disorder samples
terminates at a typical B = 13-15 T that coincides with
B> in our cleanest samples, providing further evidence for
localized Cooper pairing in the insulating peak. Second, we
demonstrated that the high-B phase terminating the CPI in
a:InO is another insulating phase, having transport properties
consistent with conventional Mott hopping of single electrons.
The nature of the transition between these two distinct
insulators is still unclear.
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