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We study the zero-temperature transport properties of one-dimensional normal metal-superconductor (NS)
junctions with topological superconductors across their topological transitions. Working within the Blonder-
Tinkham-Klapwijk (BTK) formalism generalized for topological NS junctions, we analytically calculate the
differential conductance for tunneling into two models of a topological superconductor: a spinless intrinsic
p-wave superconductor and a spin-orbit-coupled s-wave superconductor in a Zeeman field. In both cases we
verify that the zero-bias conductance is robustly quantized at 2e2/h in the topological regime, while it takes
nonuniversal values in the nontopological phase. The conductance spectra in the topological state develops a peak
at zero bias for certain parameter regimes, with the peak width controlled by the strength of spin-orbit coupling
and barrier transparency.
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I. INTRODUCTION

The search for topological superconductors in solid-state
systems is motivated by the possibility of realizing Majorana
zero-energy modes at their surfaces, which are of both
fundamental and technological importance [1–3]. In the
absence of intrinsic topological superconductors, much effort
has been put into engineering such systems from conventional
components [4–8]. In addition to the proposals involving
semiconductor-superconductor hybrid structures [4–8] as
hosts for Majorana modes, which have attracted considerable
experimental attention [9–15], there have been many
recent theoretical proposals for artificially engineering
effectively spinless low-dimensional p-wave topological
superconductors [16–29], which could localize zero-energy
Majorana modes at suitable defects such as vortex cores or
system boundaries. The subject has been extensively reviewed
in the recent literature [30–33].

It is particularly desirable to realize spinless p-wave
superconductors, as they support a single Majorana mode
at their boundaries [1,2]. The most promising of these
proposals involves proximity-inducing superconductivity in
a spin-orbit-coupled semiconducting nanowire in the presence
of a magnetic field [6–8], which has subsequently been the
subject of a number of experiments [9–15]. By varying the
magnetic field, the system is predicted to undergo a transition
from a nontopological to a topological phase. Such an external
magnetic-field-induced topological quantum phase transition
has the considerable advantage of tuning the existence (or
absence) of the Majorana mode in the experimental system
simply by changing the Zeeman field. A key signature of the
topologically nontrivial state is the quantized value 2e2/h

of the differential conductance for tunneling into the wire
at zero-bias voltage. This quantized conductance, associated
with perfect Andreev reflection, indicates the presence of a
single localized Majorana zero-energy mode at the wire end
[34–38]. For a sufficiently high tunnel barrier, the conductance
spectra will be peaked with this value at zero bias. While
experimental results clearly show the development of such a
peak upon tuning the system, at a finite magnetic field, into
the predicted topological regime, the value of the zero-bias

conductance peak is much less than the expected quantized
value. The reasons for this discrepancy are addressed in
Refs. [39,40], and alternative nontopological explanations
have been advanced [41–46]. The lack of quantization of
the experimental observations can be reconciled [5,39] with
the Majorana theory by including the finite temperature
and the finite length of the nanowire (thus allowing the
Majorana modes from the two ends to overlap), but this physics
is beyond the scope of our work where we restrict to zero
temperature and a single normal metal-superconductor (NS)
junction (assuming the other Majorana mode to be far away
from this junction).

The difficulty in interpreting the tunneling experiments has
prompted numerous theoretical studies on the conductance
of the nanowire device, using both numerical [39,45–52]
and analytical techniques [53–58]. Although the latter works
consider highly idealized models of the system, they are
nevertheless valuable as they give clear insight into the
parametric dependence of the transport physics as well as
its dependence on various physical properties of the exper-
imental setup, which can then be applied to understand the
more complicated numerical studies. An important question
concerns the change in the conductance as the system is
tuned from the topologically trivial to the nontrivial regimes
(e.g., by tuning the applied magnetic field in semiconductor-
superconductor hybrid structures). Remarkably, this aspect
of the physics has attracted relatively little attention using
these analytic methods [55]. The purpose of this paper is
to analytically address this aspect of Majorana physics in
topological nanowire junctions.

In this paper we examine the conductance spectra of
one-dimensional NS junctions involving topological super-
conductors across their topological transition. We utilize the
Blonder-Tinkham-Klapwijk (BTK) formalism [59], which is
commonly employed to study junctions with unconventional
superconductors [60–63], to obtain analytic results for the
tunneling conductance of two models of a topological super-
conductor junction: a junction between a spinless normal metal
and a p-wave superconductor, and a junction between a spinful
normal metal and a spin-orbit-coupled s-wave superconductor
in a magnetic field. The former is the simplest model for
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tunneling into a topological superconductor [54,56,57], while
the latter is a minimum model [5] for the semiconductor
nanowire device where experimental signatures for Majorana
zero modes have been reported through the observation of
zero-bias tunneling conductance peaks at the NS junction.
We note that the spinless p-wave superconductor can be
regarded as an effective low-energy theory for the semicon-
ductor nanowire, but this is inadequate for understanding
the conductance spectroscopy of the device. Our analysis
is analytical, and in particular we give explicit expressions
for the zero-bias tunneling conductance at zero temperature,
which clearly shows an abrupt change at the topological
transition. Specifically, we find that in the topological regime,
the zero-temperature zero-bias conductance is quantized at
a value of 2e2/h independent of the barrier strength Z,
but the detailed structure (e.g., the width and the shape)
of the quantized zero-bias conductance peak is controlled
by the barrier transparency and the magnitude of spin-orbit
coupling. Our BTK theory for the topological NS junction
also shows that a finite barrier transparency could lead to
the experimentally observed soft gap which is ubiquitous in
semiconductor nanowire tunneling experiments [9,12–14].

The paper is organized as follows. In Sec. II, we warm
up by studying the conductance of a junction between a
spinless normal metal and a spinless p-wave superconductor
across the topological transition. We then generalize the theory
to consider the semiconductor nanowire device in Sec. III.
In particular, we obtain analytic results for the conductance
spectra in the limits of a strong Zeeman field and strong
spin-orbit coupling. Finally, the results are summarized in
Sec. IV with a conclusion.

II. JUNCTION WITH A SPINLESS p-WAVE
SUPERCONDUCTOR

We start by considering a one-dimensional junction be-
tween a spinless normal metal (NM) and a p-wave super-
conductor (pSC), which are located at x � 0 and x � 0,
respectively. Their interface at x = 0 is modeled by a δ-
function barrier of strength Z following the BTK prescription.
The parameter Z controls the barrier transparency at the NS
interface, and is the key parameter in the theory quantifying the
tunneling conductance properties at the junction: a low (high)
value of Z corresponds to a barrier with high (low) trans-
parency at the NS interface. A microscopic evaluation of Z is
typically difficult since the microscopic details of the junction
are generally unknown, and so Z is treated as a free fitting
parameter. The Hamiltonian in each region is written Hj (x) =
1
2

∫
dx �

†
j (x)Hj (x)�j (x), where �j (x) = (ψ†

j (x),ψj (x))T are

Nambu spinors and ψ
†
j (x) [ψj (x)] denotes the creation

(annihilation) field operator in region j = N (NM) and p

(pSC). Assuming that the mass m is uniform throughout the
system, the Bogoliubov–de Gennes (BdG) Hamiltonians are

HN (x) = (−�
2∂2

x /2m − μN

)
τz, (1a)

Hp(x) = (−�
2∂2

x /2m − μp

)
τz − i�p∂xτx, (1b)

where μN (μp) is the chemical potential of the NM (pSC),
�p � 0 is the p-wave pairing potential, and τμ are the Pauli
matrices acting on the particle-hole space.

FIG. 1. (Color online) Typical energy spectra of the spinless pSC
illustrating the nontopological (μp = −0.01), transition (μp = 0) and
topological regimes (μp = 0.01). In all curves we set �p = 0.05.

For notational simplicity, in the following we work with
units such that �, μN , and 2m are all equal to unity. The
energy spectra of the NM and pSC are then given by εN,±(k) =
±(k2 − 1) and εp,±(k) = ±√

(k2 − μp)2 + (�pk)2, respec-
tively. In Fig. 1 we plot the spectrum of the pSC for different
values of μp. Note that the spectrum becomes gapless at
μp = 0, which marks the topological transition [1] between
the BEC-like strong pairing phase (μp < 0) and the BCS-like
weak pairing phase (μp > 0). In the latter case, the positive
energy spectrum only develops the characteristic “double-
well” BCS structure for μp > �2

p/2, with minimum value

E1 = �p

√
μp − �2

p/4 at k = ±√
μp − �2

p/2, and a local
maximum value E2 = μp at k = 0.

We consider the scattering of an electron injected from
the NM into the pSC with energy E. The incident electron
can be normal reflected as an electron, Andreev reflected
as a hole, or transmitted into the pSC. The scattering wave
function is 	(x) = 	N (x)
(−x) + 	p(x)
(x), where 
(x)
is the Heaviside step function and

	N (x) =
(

1
a

)
eix +

(
b

0

)
e−ix , (2a)

	p(x) = c

(
γ−
1

)
eik−x + d

(
γ+
1

)
eik+x, (2b)

where a and b are the Andreev and normal reflection ampli-
tudes, respectively, c and d are the transmission coefficients

TABLE I. Various solutions of Eq. (4) for different values of
chemical potential μp and energy E, where E1 = �p

√
μp − �2

p/4
and E2 = |μp|. We denote propagating solutions by kR±, while
evanescent solutions are given by kI± and kC±. These are given
by kR± = [(μp − �2

p/2) ±
√

E2 − E2
1 ]1/2, kI± = i[(�2

p/2 − μp) ±√
E2 − E2

1 ]1/2, and kC± = ±[(μp − �2
p/2) ± i

√
E2

1 − E2]1/2.

μp E k−,k+

μp � �2
p/4 0 � E � E2 kI−, kI+

E � E2 kI+, kR+
�2

p/4 � μp � �2
p/2 0 � E � E1 kC−, kC+

E1 � E � E2 kI−, kI+
E � E2 kI+, kR+

μp � �2
p/2 0 � E � E1 kC−, kC+

E1 � E � E2 kR−, kR+
E � E2 kI+, kR+
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into the pSC, and

γ± = E + k2
± − μp

�pk±
. (3)

Note that we approximate the wave vector of the electrons and
holes in the NM by the Fermi momentum kF = √

2mμN/�,
valid for E � 1. The momenta k± of the pSC wave function
are solutions of the equation

E2 = (k2 − μp)2 + (�pk)2. (4)

Depending on the energy E of the incoming electron and
the chemical potential μp, the pSC wave function can either

be evanescent with complex solutions of Eq. (4), or involve
propagating states corresponding to real solutions of Eq. (4)
with positive group velocity. We classify the different solutions
in Table I.

The wave functions satisfy the continuity equation
	p(x)|x=0+ = 	N (x)|x=0− and current conservation condition
Jp	p(x)|x=0+ − JN	N (x)|x=0− = −2iZτz	N (0), where the
current operators are given by

JN = −2i∂xτz, Jp = −2i∂xτz + �pτx. (5)

Solving the boundary conditions, we derive the Andreev and
normal reflection coefficients

a(E) = �p(γ+ − γ−) − 2(k+ − k−)

DE

, (6a)

b(E) = (2 − 2iZ − k+ − k− − �)(γ− − γ+) + �p

2 (k+ − k−)(γ+γ− + 1)

DE

, (6b)

respectively, where

� = 1 + (Z − ik−)(Z − ik+) − �2
p

4
, (7a)

and

DE = �(γ− − γ+) − �p

2
(k+ − k−)(γ+γ− + 1) − (k+ − k−)(γ− + γ+). (7b)

Within the BTK formalism [59] the zero-temperature
differential conductance is given by

Gp(E) = G0(1 + |a(E)|2 − |b(E)|2), (8)

where G0 = e2/h is the normal state conductance for a
quantum point contact. Although the general form of Gp(E)
is lengthy and unenlightening, relatively simple expressions
can be found for the physically interesting case of zero
bias, i.e., E = 0, which we provide in Table II for the
three different regimes of μp. In particular, we find that
the zero-bias conductance abruptly jumps from Gp(0) = 0 in
the trivial regime (μp < 0) to Gp(0) = 2 in the topological
regime (μp > 0). The quantized conductance is characteristic
of the topological state, and can be interpreted as indicating

TABLE II. Explicit expressions for the zero-bias Andreev re-
flection coefficient a(0), normal reflection coefficient b(0), and dif-
ferential conductance Gp(0) for the spinless NM-pSC junction. The
results are classified according to the three different regimes of μp: the
nontopological state (μp < 0), the topological phase transition point
(μp = 0), and the topological state (μp > 0). The quantity ϕ is de-

fined by sin ϕ = 2(Z +
√

�2
p/4 − μp)/[(Z +

√
�2

p/4 − μp)2+1].

μp < 0 μp = 0 μp > 0

a(0) 0 − i�p

(Z + �p/2)2 + 1 + �p

−i

b(0) −eiϕ − (Z + �p/2)2 + 1

(Z + �p/2)2 + 1 + �p

eiϕ 0

Gp(0)

G0
0 1 − [(Z + �p/2)2 + 1]2 − �2

p

[(Z + �p/2)2 + 1 + �p]2
2

perfect Andreev reflection [i.e., |a(0)|2 = 1, |b(0)|2 = 0] at
an interface supporting a Majorana mode [35,36,38]. It is
therefore independent of the barrier strength Z and p-wave
pairing potential �p. At the transition point (μp = 0) we find
Gp(0) � G0, with the exact value depending upon Z and �p.

Characteristic plots of the conductance as a function of the
energy are shown in Figs. 2 and 3. In general, the tunneling
conductance Gp(E) decreases with the barrier strength Z,
although in the topological regime the zero-bias conductance is
unaffected by Z. Furthermore, it is interesting to note that in the
topological regime, the width of the zero-bias peak decreases
with Z but shows a nonmonotonic dependence with �p; the
width first increases as �p increases, however, beyond a certain
value of �p, the width decreases with �p. For μp � �2

p/2,
a singularity appears in the Gp(E) curve at the gap edge
E2 = |μp|. On the other hand, as shown in Fig. 3(a), two
singularities are visible in the conductance for μp > �2

p/2,

corresponding to the edge of the gap at E1 = �p

√
μp − �2

p/4
and the local maximum in the spectrum at E2 = μp.

III. JUNCTION WITH A SPIN-ORBIT-COUPLED
NANOWIRE

In its topological phase, the low-energy sector of the spin-
orbit-coupled nanowire proposal is formally equivalent to the
spinless p-wave superconductor studied above [6,7,9]. In order
to obtain the conductance spectrum and its variation across
the topological transition, however, we must examine the full
model including spin-orbit coupling and Zeeman splitting.
In this section we therefore consider a one-dimensional
junction between a spin-split spin-orbit-coupled supercon-
ducting wire (SOCSW) and a spinful normal metal (NM),
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FIG. 2. (Color online) Variation of the tunneling conductance
Gp(E) with pairing potential �p and chemical potential μp for the
spinless NM-pSC junction. The values of the pairing potential �p

are given in units of μN/kF , while the chemical potential μp and
energy E are expressed in units of μN . We show typical results for
the nontopological (μp < 0, left column), transition (μp = 0, middle
column), and topological (μp > 0, right column) regimes, and for
barrier strength Z = 0 (top row) and Z = 1 (bottom row).

which occupy the regions x � 0 and x � 0, respectively.
Similar to Sec. II, we model their interface at x = 0 by a δ-
potential barrier of strength Z. The Hamiltonian in each region

is written Hj (x) = 1
2

∫
dx �

†
j (x)Hj�j (x), where �j (x) =

(ψj↑(x),ψj↓(x),ψ†
j↓(x), − ψ

†
j↓(x))T and ψ

†
jσ (x) [ψjσ (x)] is

μp μp μp

Z = 0 Z = 1 Z = 2

0 0.01 0.02 0.03
0

1
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G
p
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2
(a)Δp = 0.07 (c)Δp = 2(b)Δp = 0.5

FIG. 3. (Color online) Variation of the tunneling conductance
Gp(E) with the barrier strength Z and the pairing potential �p for
the spinless NM-pSC junction in the topological regime. The values
of the pairing potential �p are given in units of μN/kF , while the
chemical potential μp and energy E are expressed in units of μN .
Note that the zero-bias conductance is constrained to be 2G0 by the
topological condition.

-0.03

-0.06

0

0.03

0.06

-0.4 -0.2 0 0.2 0.4

-0.03

-0.06

0

0.03

0.06

-0.4 -0.2 0 0.2 0.4

E
n
er

g
y
,
E

E
n
er

g
y
,
E

momentum, k momentum, k

(a) (b)

(c) (d)

VZ = 0 VZ < Δ0

VZ = Δ0 VZ > Δ0

FIG. 4. Energy spectrum of the SOCSW for different values
of Zeeman potentials: (a) VZ = 0 (nontopological), (b) VZ = 0.01
(nontopological), (c) VZ = 0.02 (transition), and (d) VZ = 0.03
(topological). In all plots, we set α = 0.3 and �0 = 0.02.

the creation (annihilation) field operator of an electron with
spin σ in region j = N (NM) or S (SOCSW). Using the same
unit convention as in the previous section, we write the BdG
Hamiltonians of the NM and SOCSW as

HN = (−∂2
x − 1

)
τz, (9a)

HS = −∂2
x τz − iα∂xτzσz + VZσx + �0τx, (9b)

where σμ (τμ) are the Pauli matrices in spin (particle-hole)
space, α is the strength of spin-orbit coupling (SOC), VZ is
the Zeeman field, and �0 � 0 is the proximity-induced s-
wave pairing potential which is assumed to be real. We set the
chemical potential of the SOCSW and Zeeman coupling in the
lead to be zero, and take uniform electron masses throughout
the system.

The positive branches of the BdG spectrum of the SOCSW
are given by

E± =
(

k4 + α2k2 + �2
0 + V 2

Z

± 2
√

k4
(
α2k2 + V 2

Z

) + �2
0V

2
Z

)1/2

. (10)

As shown in Fig. 4, the energy spectrum is gapped except for
VZ = �0. This value of VZ marks the topological quantum
phase transition between the topologically trivial (VZ < �0)
and nontrivial phases (VZ > �0) [4–7]. Although Eq. (10) can
be analytically solved for the momenta corresponding to a
given energy E, the general expression is unwieldy. In what
follows, therefore, we will instead work in the limits of a strong
Zeeman field and strong SOC, where more compact results can
be obtained.

A. Strong Zeeman splitting

In the limit of strong Zeeman splitting (VZ � α, �0), the
quasiparticle excitation spectrum of the SOCSW is split into
two spin bands as shown in Fig. 5(a). In the normal state
(�0 = 0) the spectrum is approximately given by ε±(k) ≈
k2 ± VZ . The system is then a half-metal, with only one
spin-polarized band [ε−(k)] occupied. Projecting the full
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FIG. 5. Energy spectrum of the SOCSW in the limits of (a) strong
Zeeman field and (b) strong SOC. For clarity, only the positive energy
branches of the spectrum are shown. In panel (b), the spectrum about
the minima at k = 0 constitute the “interior” branches, while the
spectrum about the minima at k = ±α are the “exterior” branches.
Note the different effective gaps for these branches, and the states
contributing to the slowly varying left- and right-moving fields, Lσ (x)
and Rσ (x), respectively.

Hamiltonian into this band gives the effective Hamiltonian
[5,6,8]

H ′
S(k) =

∑
k

{ε−(k)ψ†
S−(k)ψS−(k)

+ [�̃−(k)ψ†
S−(k)ψ†

S−(−k) + H.c.]}, (11)

where �̃−(k) ≈ αk�0/VZ is a p-wave pairing potential and
ψS−(ψ†

S−) is the annihilation (creation) field operator for ε−(k)
band. The projected Hamiltonian is equivalent to the spinless
pSC Hamiltonian Hp(k) [Eq. (1)], with the identifications
μp = VZ and �p = α�0/VZ . If the Zeeman field is applied
on both sides of the junction such that the NM is also fully
spin polarized, then the low-energy sector is identical to
the spinless NM-pSC junction studied in Sec. II, and the
results obtained above for the differential conductance directly
apply.

B. Strong spin-orbit coupling

In the case of strong SOC (α � VZ,�0), the BdG spec-
trum of the SOCSW has the characteristic form shown
in Fig. 5(b). In particular, we note that both the + and
− spectra [Eq. (10)] have minima at k = 0 (the so-called
interior branches), while the − spectrum also has min-
ima at k = ±α (the exterior branches). For small energies
E � �0, VZ , we can linearize the Hamiltonian about these
minima by introducing the ansatz for the field operators
[64–66]

ψS↑(x) ≈ R↑(x) + L↑(x)e−iαx, (12a)

ψS↓(x) ≈ L↓(x) + R↓(x)eiαx, (12b)

where Rσ (x) and Lσ (x) represent slowly varying right- and
left-moving fields, respectively; see Fig. 5(b). Inserting this
ansatz into the Hamiltonian [Eq. (9b)] and neglecting all
“fast oscillating” terms (involving terms with phase factors
e±iαx), we obtain effective Hamiltonians valid for the states
near the interior and exterior branches. Specifically, we
write

H̃
(l)
S = 1

2

∫
dx �̃

(l)
S (x)†H̃(l)

S �̃
(l)
S (x), (13)

where l = e, i denotes the exterior and interior branches,
respectively, and the BdG Hamiltonians are written

H̃(e)
S = −iατzσz∂x + �0τx, (14a)

H̃(i)
S = −iατzσz∂x + VZσx + �0τx. (14b)

The spinors for the interior and exterior branches
are defined in terms of the slowly varying field
as �̃

(e)
S (x) = (L↑(x),R↓(x),R†

↓(x), − L
†
↑(x))T and �̃

(i)
S (x) =

(R↑(x),L↓(x),L†
↓(x), − R

†
↑(x))T.

We consider an electron with energy E and spin σ injected
into the SOCSW from the NM. The wave function in the NM
is given by

	Nσ (x) =

⎛⎜⎝δσ↑
δσ↓
0
0

⎞⎟⎠eix +

⎛⎜⎝bσ↑
bσ↓
0
0

⎞⎟⎠e−ix +

⎛⎜⎝ 0
0

aσ↓
aσ↑

⎞⎟⎠eix, (15)

where δσσ ′ is the Kronecker symbol. The coefficients aσσ ′ and
bσσ ′ are the amplitudes for Andreev and normal reflection,
respectively. Note that due to the SOC in the SOCSW, both
spin-flip and spin-preserving reflection processes are allowed.
The wave function in the SOCSW is a superposition of
solutions on the exterior and interior branches

	Sσ (x)

= c
(i)
σ1

⎛⎜⎝ −u−
sgn(�−)v−

− sgn(�−)v−
u−

⎞⎟⎠eik
(i)
− x + c

(i)
σ2

⎛⎜⎝u+
v+
v+
u+

⎞⎟⎠eik
(i)
+ x

+ c
(e)
σ1

⎛⎜⎝v0

0
u0

0

⎞⎟⎠ei(k(e)
0 −α)x + c

(e)
σ2

⎛⎜⎝ 0
u0

0
v0

⎞⎟⎠ei(k(e)
0 +α)x, (16)

where the first line on the right-hand side gives contributions
from the interior branches, while the second line originates
from the exterior branches. Note that the coefficients c

(i)
σ (1,2)

and c
(e)
σ (1,2) are the transmission coefficients into the SOCSW.

The elements of the wave function are given by

u2
ν =

{(
E + √

E2 − �2
ν

)
/2E for E � |�ν |,(

E + i
√

�2
ν − E2

)
/2|�ν | for 0 � E < |�ν |

(17)

and

v2
ν + u2

ν =
{

1 for E � |�ν |,
E/|�ν | for 0 � E < |�ν |, (18)

where ν = ±, 0, and �± = �0 ± VZ . The wave vectors
appearing in Eq. (16) are k

(i)
± =

√
E2 − �2

±/α for the interior

branches, and k
(e)
0 =

√
E2 − �2

0/α for the exterior branches.
The wave functions satisfy the continuity and current

conservation boundary conditions

	Sσ (x)|x=0+ = 	Nσ (x)|x=0− , (19a)

JS	Sσ (x)|x=0+ − JN	Nσ (x)|x=0− = −2iZτz	Nσ (0), (19b)

where the current operators are given by

JN = −2i∂xτz, JS = −2i∂xτz + ατzσz. (20)

214513-5



SETIAWAN, BRYDON, SAU, AND DAS SARMA PHYSICAL REVIEW B 91, 214513 (2015)

TABLE III. Zero-bias values of the Andreev reflection coefficients aσσ ′ (0), normal reflection coefficients bσσ ′ (0), and differential
conductance GS(0) in the strong SOC limit of the NM-SOCSW junction. The three columns give the values in the nontopological (VZ < �0),
transition (VZ = �0), and topological (VZ > �0) regimes. The terms D1,2 are given by D1 = 2[1 + Z2 + (α/2)2] and D2 = Z2 + (1 + α/2)2.

VZ < �0 VZ = �0 VZ > �0

a↑↑(0) 0 α[1+(Z+iα/2)2]
D1D2

1+(Z+iα/2)2

D1

a↑↓(0) − 2iα

D1
− iα

D1

i

2 − iα

D1

a↓↑(0) − 2iα

D1
−iα( 1

D1
+ 1

D2
) − i

2 − iα

D1

a↓↓(0) 0 α[1+(Z−iα/2)2]
D1D2

1+(Z−iα/2)2

D1

b↑↑(0) 2[(i+Z)2+(α/2)2]
D1

2[(i+Z)2+(α/2)2][D2−α/2]
D1D2

(i+Z)2+(α/2)2

D1

b↑↓(0) 0 −iα(1−iZ+α/2)2

D1D2

−i(1−iZ+α/2)2

D1

b↓↑(0) 0 iα(−1+iZ+α/2)2

D1D2

i(−1+iZ+α/2)2

D1

b↓↓(0) 2[(i+Z)2+(α/2)2]
D1

2[(i+Z)2+(α/2)2][D2−α/2]
D1D2

(i+Z)2+(α/2)2

D1

GS (0)
G0

16α2

D2
1

2α( 4
D1

− 1
D2

) 2

In the limit of strong SOC (α � VZ,�0), we ignore terms
proportional to k

(i)
− , k

(i)
+ , k

(e)
0 � 1 in the current conservation

equation. Expressions for the Andreev and normal reflection
coefficients found from solving these equations are given in
the Appendix.

The zero-temperature differential tunneling conductance
GS(E) is obtained from the BTK formula

GS(E) = G0

⎛⎝2 +
∑

σ,ξ=↑,↓
{|aσξ (E)|2 − |bσξ (E)|2}

⎞⎠. (21)

Although the general expression is complicated, compact
forms for the reflection coefficients and the conductance at
zero bias are presented in Table III. As in the spinless NM-pSC
junction studied above, the zero-bias conductance GS(0) is
discontinuous across the topological phase transition. In the
topological regime (Vz > �0) the zero-bias conductance takes
the quantized value GS(0) = 2. This implies that the Andreev
reflection coefficients in Eq. (21) exactly cancel the normal
reflection coefficients; moreover, from Table III it can be
verified that

∑
σ,ξ |aσξ (0)|2 = ∑

σ,ξ |bσξ (0)|2 = 1. This can be
understood in terms of the existence of a single Majorana mode
at the interface which couples to one of the two channels in
the normal region [35,38]. While there is perfect Andreev
reflection in this channel, in the other channel we have perfect
normal reflection. In the nontopological regime, on the other
hand, GS(0) takes on nonuniversal values and is dependent
upon Z and α. In particular, the zero-bias conductance in the
nontopological phase can strongly exceed the quantized value
in the topological state: for the gapped nontopological state
(Vz < �0) and at the topological transition point (Vz = �0),
we find the maximum values GS(0) = 4 and GS(0) = 3,
respectively, which are realized for Z = 0 and α = 2.

We plot the calculated conductance as a function of energy
in Figs. 6 and 7. In the former we show examples of the
conductance spectra in the nontopological, transition, and
topological regimes, while the latter explores more fully
the variation of the conductance spectra in the topological
state away from zero bias. The conductance spectra show a

much more complicated structure than those in the spinless
NM-pSC junction, reflecting the presence of three distinct
gaps (�+, |�−|, �0) in the strong SOC limit of the SOCSW.
Indeed, at the energy corresponding to each gap we observe
a nonanalyticity in the conductance spectrum. Although there
is considerable variation in the conductance spectrum as a

0

1

2

3

4

0 1 2 3
0

1

2

0 1 2 3 0 1 2 3

G
S
(E

)/
G

0
G

S
(E

)/
G

0

E/Δ0 E/Δ0 E/Δ0

α = 12α = 0.5 α = 2 α = 4

VZ = 0.5Δ0

|Δ−| Δ0 Δ+ Δ0

VZ = 1.5Δ0

|Δ−|Δ0 Δ+

VZ = Δ0

Δ+

Z = 0 Z = 0 Z = 0

Z = 2 Z = 2 Z = 2

FIG. 6. (Color online) Variation of the tunneling conductance
GS(E) with SOC strength α and Zeeman field VZ in the strong SOC
limit of the NM-SOCSW junction. We present typical results for the
nontopological (VZ < �0, left column), transition (VZ = 0, middle
column), and topological (VZ > �0, right column) regimes, and for
barrier strength Z = 0 (top row) and Z = 2 (bottom row). In all plots
we set �0 = 0.001. The values of �0 and VZ are given in units of
μN , while the values of α are expressed in units of μN/kF .
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0

1

2

3

0 1 2 30 1 2 3

|Δ−| Δ0 Δ+ |Δ−| Δ0 Δ+ |Δ−| Δ0 Δ+

α = 0.5 α = 2 α = 4

0
E/Δ0 E/Δ0 E/Δ0

Z = 1 Z = 2Z = 0

G
S
(E

)/
G

0

FIG. 7. (Color online) Variation of the tunneling conductance
GS(E) with interface barrier strength Z and spin-orbit coupling
strength α for the strong SOC limit of the NM-SOCSW junction
in the topological regime. We set �0 = 0.001 and VZ = 1.5�0. The
values of �0 and VZ are given in units of μN , while the values of α

are expressed in units of μN/kF . Note that in all cases the zero-bias
conductance is equal to 2G0, consistent with the topological state.

function of energy, a number of trends can be discerned:
increasing Z tends to suppress the conductance, the energy
variation of the conductance is nonmonotonic in general
with cusplike structures at specific energies, and the energy
variation of the conductance is stronger near zero energy
for larger values of Z. While the conductance at first tends
to be enhanced by increasing the SOC, the conductance
eventually goes through a maximum before monotonically
decreasing. Similarly, the SOC increases the width of the
zero-bias peak in the topological regime, but beyond a certain
SOC strength it decreases again. The basic finding is that, other
than the universal quantized Majorana peak at zero energy,
the tunneling conductance shows interesting and nontrivial
dependence on Z and E in the topological phase. In particular,
an interesting conclusion of our theory is that the zero-bias
conductance could be quantized in the topological phase for
small values of Z without developing a peak in the tunneling
conductance at all.

Note that the above discussion holds true also for the
case where the Zeeman coupling in the lead or the chemical
potential μS of the SOCSW are nonzero. For the case where
|�−| < �0, the zero-bias peak formed in the topological
regime is within an energy range of |�−|. Since the topological
gap |�−| = |

√
�2

0 + μ2
S − VZ| decreases with the absolute

value of the chemical potential |μS |, the width of the zero-bias
peak decreases with |μS |.

IV. SUMMARY

Using the BTK formalism we have analytically studied
the zero-temperature tunneling conductance spectra of NS
junctions involving topological superconductors. Finite tem-
perature effects within this formalism simply lead to thermal
broadening of the zero-temperature conductance and can
be included in the theory numerically by introducing an
integration over the Fermi function [67]. As in the BTK
paper [59], the finite-voltage conductances are found to depend
on the strength of the barrier at the interface, which is

parametrized by the dimensionless parameter Z. Specifically,
we have examined a spinless NM-pSC junction and a spinful
NM-SOCSW junction, paying particular attention to the
change in the zero-bias conductance across the topological
phase transition. We explicitly demonstrate that the zero-
temperature zero-bias conductance is quantized at a value of
2e2/h in the topological regime, in agreement with effective
models of these systems based on a single Majorana mode
coupled to a normal channel. Despite this quantization at
zero voltage, the zero-bias conductance only develops a peak
(or a local maximum) as a function of voltage for barriers
with sufficiently large Z parameter, or for small and large
SOC strength. These parameters also control the width of this
peak. In the nontopological regime, on the other hand, the
conductance takes nonuniversal values depending upon the
details of the system. In both cases the conductance spectrum
away from zero bias shows considerable variation with the
details of the junction. Our calculated BTK conductance also
shows that the conductance is finite inside the superconducting
gap region because of the finite barrier transparency, providing
a possible mechanism for the observed “soft gap” feature in
the experimental studies [9,11–14]. This effect is qualitatively
similar to the “inverse proximity effect” at the NS interface
arising from the finite barrier at the interface as discussed
in the recent literature [50], although other possible physical
mechanisms for the soft gap behavior have also been pro-
posed [68]. We mention finally that our theory is for a single
NS junction which effectively assumes the existence of only
a single Majorana mode at the NS interface (with the other
Majorana being located infinitely far away) and thus Majorana
splitting [45,69–71] due to the wave function overlap between
two Majorana modes is not germane to our theory (but can be
included if necessary in a future generalization).

Finally, we emphasize that one of the most salient features
of our theoretical work is that it is completely analytical within
a continuum model in contrast to most theoretical works on
Majorana nanowires which focus on numerical simulations
within a tight-binding lattice model. All the microscopic de-
tails of the complex normal-superconductor tunneling process
are simply subsumed in a single phenomenological parameter
Z (“the interface barrier strength” of the BTK formalism)
allowing our theory a great deal of flexibility for actual
modeling of the Majorana nanowire experimental results,
since the realistic microscopic details of the NS interface are
rarely known in the actual experimental nanowire setups. It
is gratifying that our analytical model captures the essential
features of the Majorana nanowire experiments through our
finding of the Majorana zero-bias conductance quantization
and soft gap feature, with the interesting prediction that for
strong metallic junction (i.e., for very low interface barrier
or a small value of Z) the Majorana zero-bias conductance
may not necessarily be a peak in the tunneling conductance,
although it would still be quantized since the Majorana zero
mode necessarily implies perfect Andreev reflection.
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APPENDIX: ANDREEV AND NORMAL REFLECTION COEFFICIENTS FOR THE NM-SOCSW JUNCTION

Solving the boundary equations, we obtain the Andreev (normal) reflection coefficients aσσ ′ (bσσ ′) as

a↑↑(E) = −αu0v0[u−v+ − sgn(�−)u+v−]
[
1 + (

Z + i α
2

)2]
D(1)

E D(2)
E

, (A1)

a↑↓(E) = αu0

[
v+
D(1)

E

+ sgn(�−)
v−
D(2)

E

]
, (A2)

a↓↑(E) = αv0

(
u+
D(1)

E

+ u−
D(2)

E

)
, (A3)

a↓↓(E) = −αu0v0[u−v+ − sgn(�−)u+v−]
[
1 + (

Z − i α
2

)2]
D(1)

E D(2)
E

, (A4)

b↑↑(E) = b↓↓(E) = −
[

(i + Z)2 +
(α

2

)2
]

×
{

sgn(�−)v2
0v−v+

[
Z2 + (

α
2 − 1

)2] − u0v0[u−v+ + sgn(�−)u+v−]
[
1 + Z2 + (

α
2

)2] + u2
0u−u+

[
Z2 + (

1 + α
2

)2]
D(1)

E D(2)
E

}
,

(A5)

b↑↓(E) = αu2
0[u−v+ − sgn(�−)u+v−]

(
1 − iZ + α

2

)2

D(1)
E D(2)

E

, (A6)

b↓↑(E) = αv2
0[u−v+ − sgn(�−)u+v−]

( − 1 + iZ + α
2

)2

D(1)
E D(2)

E

, (A7)

where D(1)
E = u0u+[Z2 + (α/2 + 1)2] − v0v+[Z2 + (α/2 − 1)2] and D(2)

E = u0u−[Z2 + (α/2 + 1)2] − sgn(�−)v0v−[Z2 +
(α/2 − 1)2].
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