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We study a 0-π dc superconducting quantum interference device (SQUID) with asymmetric inductances and
critical currents of the two Josephson junctions (JJs). By considering such a dc SQUID as a black box with two
terminals, we calculate its effective current-phase relation Is(ψ) and the Josephson energy U (ψ), where ψ is the
Josephson phase across the terminals. We show that there is a domain of parameters where the black box has the
properties of a ϕ JJ with degenerate ground state phases ψ = ±ϕ. The ϕ domain is rather large, so one can easily
construct a ϕ JJ experimentally. We derive the current phase relation and show that it can be tuned in situ by
applying an external magnetic flux resulting in a continuous transition between the systems with static solutions
ψ = ±ϕ, ψ = ϕ0 (ϕ0 �= 0,π ) and even ψ = ϕ0 ± ϕ. The dependence of ϕ0 on applied magnetic flux is not 2π

(one flux quantum) periodic.
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I. INTRODUCTION

One of the most important characteristics of a Josephson
junction (JJ) is its current-phase relation (CPR), i.e., the
relation between the supercurrent Is flowing through the
junction and the Josephson phase φ across it. The CPR, aka
the first Josephson relation, plays a fundamental role and is
responsible for almost all properties of the JJ. The CPR usually
depends on the microscopic physics of the Josephson barrier.
The CPR is usually a 2π periodic function of φ and, in the most
simple case, is given by Is = Ic sin φ. A review of different
types of CPRs can be found elsewhere [1].

The quantity directly related to the CPR is the Josephson
energy profile U (φ). It is defined so that Is(φ) = ∂U (φ)/∂φ .
For a sinusoidal CPR U (φ) = EJ (1 − cos φ), where
EJ = �0Ic/2π is the Josephson energy, and �0 ≈ 2.068 fWb
is the magnetic flux quantum. U (φ) is also a 2π periodic
function of φ.

The most interesting JJs both in terms of applications and
fundamental studies are those having a nontrivial Josephson
energy profile U (φ). For example, π JJs that received a
lot of attention [2–12] have negative critical current, which
results in the sign change of U (φ). As a result, the energy
minimum (and the ground state) corresponds to φ = π , where
the usual JJ (called 0 JJ in this context) has a maximum.
Further, there was a theoretical prediction [13,14] that one can
obtain the so-called ϕ0 JJ, i.e., the one having a single U (φ)
minimum (with each 2π period) situated at φ = ϕ0 �= 0,π .
More recently, ϕ JJs having a periodic double-well potential
U (φ) and, therefore, a degenerate ground state [two U (φ)
minima] with the phases φ = ±ϕ were investigated [15–18].
Upon application of magnetic field one can also obtain a U (φ)
without reflection symmetry.

Theoretically, it was predicted [19,20] that a JJ made
of d-wave superconductors in a specific range of parame-
ters (orientation angle, temperature, etc.) can possess a ϕ

ground state. A degenerate ground state was obtained from
measurements of the CPR of d-wave based nano JJs [21].
Later on, some other indications of a ϕ state, such as an
anomalous temperature dependence of the critical current,
were observed [22] also on nano JJs. The faceting along longer

grain-boundary JJs based on d-wave superconductors results
in an effective (facet-averaged) ϕ JJ [23]. In the latter case
one expects nonquantized splintered vortices [24,25], which
were observed [26] using superconducting quantum interfer-
ence device (SQUID) microscopy. However, in all cases no
state manipulation or readout were demonstrated, probably
because of high damping and poor control over JJ properties.

Recently, we have suggested [15] and successfully demon-
strated [16] a ϕ JJ based on conventional low-Tc superconduc-
tors with a tailored ferromagnetic barrier [27,28]. This junction
has a degenerate ground state phase ±ϕ, i.e. its Josephson
energy profile looks like a 2π -periodic double well potential
(in the absence of bias current). The two ground states can
be used to store information [17]. The unusual physics of ϕ

JJs was discussed in several works [25,29]. However, the ϕ

JJs constructed so far are rather large. Making them smaller
(shorter) requires very exact control on parameters such as
critical current densities and the lengths of the 0 and π regions.

In this paper, we propose an effective ϕ JJ based on an
asymmetric 0-π dc SQUID, i.e., a dc SQUID with one 0
and one π JJ, with finite inductance and asymmetric critical
currents of the 0 and π JJ. This not only has advantages
over the previous proposals [15,16,18] in terms of geometrical
dimensions, margins, and the size of the ϕ domain in parameter
space, but also shows other unique features. For example, it
can be operated not only as a ϕ JJ, but also as a ϕ0 JJ [13] or
as a combination of both, i.e., as a ϕ0 ± ϕ JJ. This goes much
beyond the trivial use of a dc SQUID as the substitution for a
single JJ with magnetic-field-tunable critical current.

The paper is organized as follows. In Sec. II we introduce
the considered model system and the equations describing
it. In Sec. III we present our numerical results. Section IV
summarizes our findings. In Appendix we consider the vicinity
of the 0 ↔ ϕ transition in parameter space and derive many
results analytically similar to the Ginzburg-Landau approach.

II. MODEL

The SQUID circuit is shown in the inset of Fig. 1. The
applied bias current I splits into two branches with inductances
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FIG. 1. (Color online) The energy U (ψ) of the system given by
Eq. (5) for different values of the asymmetry parameter α and for β1 =
β2 = 0.7 (αc ≈ −0.417). Inset shows the schematics of the circuit
considered.

L1 and L2 and Josephson junctions with critical currents Ic1

and Ic2.
For the sake of simplicity, we will derive everything in

normalized units. The current will be normalized to the largest
(by absolute value) critical current of the two JJs. Without loss
of generality we assume that Ic1 > 0 and |Ic2| � Ic1. Then
we define α = Ic2/Ic1 as the normalized critical current of the
second JJ, with |α| � 1. Thus, α > 0 corresponds to a 0-0
SQUID, while α < 0 to a 0-π SQUID. Although, our main
focus is on a 0-π SQUID (α < 0) the results for a 0-0 SQUID
will be included automatically as well. Further, we introduce
normalized inductances

β1 = 2πIc1L1

�0
, β2 = 2πIc1L2

�0
. (1)

Note that the definition of β2 uses Ic1, so that by changing β1

and β2 one can see the effect of inductances only, while chang-
ing α one can see the effect of critical current asymmetry only.
These definitions are related to the conventional [30] βL =
2Ic1L
/�0, as πβL = β1 + β2 = β
 , where L
 = L1 + L2.

The total phase ψ across the SQUID, see the inset of Fig. 1,
can be expressed in two ways

ψ = φ1 + β1 sin φ1 + r1φe; (2a)

ψ = φ2 + αβ2 sin φ2 − r2φe, (2b)

where r1 + r2 = 1, and r1 and r2 are the ratios, in which
the externally applied normalized flux/phase φe = 2πf =
2π�e/�0 (f is the normalized flux, aka frustration) is divided
between the two branches. If the external magnetic field is
applied by a coil, r1,2φe = 2πM1,2I0/�0, where I0 is the

current in the coil creating the magnetic field and M1,2 is the
mutual inductance between this coil and the left and the right
arms of the SQUID, respectively. For the sake of simplicity,
we neglect the mutual inductance between L1 and L2.

The sum of the currents in both branches is given by

γ = sin φ1 + α sin φ2, (3)

where γ = I/Ic1 is the normalized bias current. Since we are
interested in a geometrically small system which should not
have too many internal states, we focus on the case of small
but finite inductances, i.e., 0 � β1 � 1 and 0 � β2 � 1.

III. RESULTS

The easiest way to solve Eqs. (2) and (3) is to calculate φ1

and φ2 from Eqs. (2) for a given ψ . Note that for β1,β2,|α| � 1
each of Eqs. (2) has a unique solution φ1 or φ2 for given
ψ . It is convenient to define a universal function φ(v,p),
which is a solution φ of the equation v = φ + p sin(φ) for
given argument v and parameter |p| � 1. Then φ1(ψ) =
φ(ψ − r1φe,β1) and φ2(ψ) = φ(ψ + r2φe,αβ2). The function
φ(v,p) has an obvious, but useful, property:

φ(v + πn,p) = πn + φ[v,(−1)np], (4)

where n is an integer.

A. Current-phase relation and Josephson energy

To determine the CPR γ (ψ) we calculate φ1(ψ) and φ2(ψ)
as mentioned above and then use Eq. (3) to obtain γ . We do
not show γ (ψ) plots here, but show Josephson energy U (ψ)
plots instead.

The total energy of the system is given by

U (ψ) = UJ (ψ) + UL(ψ), (5)

where

UJ (ψ) = [1 − cos φ1(ψ)] + α[1 − cos φ2(ψ)] (6)

is the Josephson energy of both JJs, and

UL(ψ) = β1

2
sin2 φ1(ψ) + β2

2
α2 sin2 φ2(ψ) (7)

is the magnetic field energy stored in the inductors. By direct
substitution, one can see that U ′(ψ) ≡ γ (ψ) (here and below
the prime denotes ∂/∂ψ by default), as for any JJ.

Consider the case of zero applied magnetic flux φe = 0.
Several examples of U (ψ) are presented in Fig. 1. At positive
α (conventional 0-0 SQUID) the energy profile resembles the
usual Uconv(ψ) = 1 − cos(ψ) profile of a conventional single
JJ with the ground state at ψ = 0. Deviations from Uconv(ψ)
are due to finite inductances and make U (ψ) sharper than
Uconv(ψ) near the maxima and more shallow than Uconv(ψ)
near the minima. As α decreases down to 0, the height of U (ψ)
decreases as 2(1 + α) while the shape of U (ψ) almost does
not change. As α becomes negative (0-π SQUID) the U (ψ)
becomes more flat near ψ = 0. For α below some critical value
αc the energy profile develops two minima, as can be seen in
Fig. 1. The system has a degenerate ground state ψ = ±ϕ, i.e.,
forms a ϕ JJ [15,16,18–20,23,25,31].
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FIG. 2. (Color online) The domain of the ϕ state (pink/gray) as a
function of parameters α, β1, and β2.

The transition to the degenerate ground state takes place at
the value of α = αc, for which U ′′(0) = γ ′(0) = 0. This allows
us to calculate

αc = −1

1 + β1 + β2
= −1

1 + β


= −1

1 + πβL

. (8)

This is one of the central results of the paper.
The domain of the ϕ state is shown in Fig. 2. From the

sides it is limited by our choice of parameters 0 < β1,2 < 1
and from the bottom by α > −1. From the top it is limited by
the surface αc(β1,β2) given by Eq. (8). The ϕ domain has the
maximum size (height) along the α axis equal to −1 � α �
−1/3 for β1,2 = 1. For β1,2 → 0 the height of the ϕ domain
along the α axis vanishes linearly ∝ β
 . We also note that in
the case of β
 = 0, used by many authors because it is solvable
analytically, one never obtains a ϕ JJ.

An important practical difference between the 0-π
dc SQUID considered here and a 0-π JJ of finite
length [15,16,23,31] is that our system has a rather large ϕ

domain where the theory presented here works. Even in the
case of β
 → 0 the range of α = −1 . . . αc, corresponding
to the ϕ domain, shrinks as �α = αc − (−1) = β
 , i.e.,
linearly. Instead, for 0-π JJs the ϕ domain shrinks as [15,31]

δ ≈ 1
3L

3
, where δ = (L0 − Lπ )/2 is the deviation of the 0

and π facet length from the average length L = (L0 + Lπ )/2.
This imposes additional requirements on fabrication accuracy,
or one should move to a region of the phase diagram
where the theory works only qualitatively, as in the first
experiments [16,17]. In other papers [32,33] some alternative
techniques to enlarge ϕ domains were suggested. However,
the relative volume of the ϕ domains in parameter space is still
much smaller than in the present paper.

Let us now consider U (ψ) at finite applied magnetic flux
φe �= 0. First, we point out that Eqs. (2) and (3) have several
important symmetry properties, when the applied flux changes
by a half-integer number of flux-quanta �0

φnew
e = φe + nπ ; (9a)

ψnew = ψ + r1nπ ; (9b)

φnew
1 = φ1; (9c)

φnew
2 = φ2 + nπ ; (9d)

αnew = (−1)nα. (9e)

Upon such transformation the current does not change [34],
i.e.,

γ (ψ,α) = γ (ψnew,αnew), (10)

while the Josephson energy, which is still 2π periodic in ψ ,
can be expressed in terms of new variables as

U (ψ,α) = U (ψnew,αnew) + αnew[(−1)n − 1]. (11)

Thus, by applying a half-integer f we can turn a 0-0 SQUID
with α > |αc| (effective 0 JJ) into a 0-π SQUID (effective ϕ JJ)
with αnew = −α < αc and vice versa. An even more interesting
point is that ψ shifts by an amount r1nπ , which is, in general,
not a multiple of 2π . Since after transformation (9) the value
of γ does not change [it depends only on (φ1,φ2) mod 2π ], the
CPR γ (ψ) shifts along the ψ axis by the amount r1nπ . This
is another central result of the paper.

Examples of U (ψ) calculated for different values of applied
magnetic flux are shown in Fig. 3. For α > |αc|, see Fig. 3(a),
U (ψ) at f = 0 has a single minimum at ψ = 0. At f = 0.5 it
transforms into a double well potential. It is the same potential
as one gets for α = −0.7 and f = 0, but shifted by (centered
at) ψ = r1π = 0.4π and lifted by 2α = −2αnew = 1.4, see
Eqs. (9) and (11). In essence, at this f one obtains a ϕ0 ± ϕ

JJ. For f = 1 the energy U (ψ) transforms again to the same
profile as at f = 0, but shifted by (centered at) ψ = r12π =
0.8π , see Eqs. (9) and (11). For 0 < α < |αc|, see Fig. 3(b),
we again start at f = 0 from having a single minimum of
U (ψ) at ψ = 0. At f = 0.5 we again obtain the U (ψ) profile

FIG. 3. (Color online) Josephson energy U (ψ) for β1 = 0.4,
β2 = 0.6, r1 = 0.4 and different f = 0 . . . 1 specified next to each
curve. (a) α = 0.7 > |αc| = 0.5; (b) α = 0.4 < |αc| = 0.5.
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as the 0-π SQUID with αnew = −α, but at f = 0, shifted by
ψ = r1π . However, in this case it is not a double well as
−α �< αc. Thus, we obtain an effective ϕ0 JJ. At f = 1 we
obtain the original profile (as for f = 0), but shifted by r12π ,
see Eqs. (9) and (11).

B. Ground state phase

The ground state (f = 0, γ = 0) phase ϕ in the ϕ domain
α < αc can be calculated numerically from γ (ϕ) = 0. To
simplify and accelerate this computation we use the following
procedure. Since for γ = 0 the phases φ1 and φ2 (but not ψ)
depend only [35] on β
 , for calculation of φ1 and φ2, without
loosing generality, we assume that β1 = β
 and β2 = 0. Then
Eqs. (2) collapse to

φ2 = φ1 + β
 sin(φ1). (12)

Substituting this into Eq. (3) with γ = 0 we arrive at a rather
simple transcendental equation,

sin(φ1) + α sin[φ1 + β
 sin(φ1)] = 0,

which we solve to find φ1. Then the value of φ2, if necessary,
can be calculated from Eq. (12). The ground state phase
ϕ is obtained using one of the Eqs. (2), with β1 and β2

corresponding to the real circuit.
An example of ϕ(α) at fixed β1,2 is shown in Fig. 4. In

essence this is ϕ along a vertical line crossing a ϕ domain in
Fig. 2. The ground state phase is zero as α decreases from 1
down to the bifurcation point αc. After the bifurcation point
(α < αc) the zero solution becomes unstable, as indicated by
the dashed line. Instead two degenerate stable solutions appear.

The phase ϕ corresponding to the degenerate state departs
from zero as described by Eq. (A11). At α → −1 the ground
state phase tends to its maximum value ϕmax, which is given by

ϕmax = π

2
+ y

β1 − β2

β1 + β2
, (13)

where y is a solution of the equation

2y = β
 cos(y). (14)

The possible range of y is from y = 0 for β1 = β2 = 0
to y = y�, where y� ≈ 0.739 is a solution of the equation

FIG. 4. (Color online) The ground state phase ±ϕ(α). The hor-
izontal dashed line shows the unstable static solution ψ = 0 in the
region α < αc. Thin line shows the approximation given by Eq. (A11).

y� = cos(y�). The corresponding range of ϕmax is then from
π/2 − y� (reached for β1 → 0, β2 → 1) to π/2 + y� (reached
for β1 → 1 and β2 → 0). Note that since y is a function of β


only, it follows from Eq. (13) that the phase ϕmax is antisymmet-
ric with respect to the diagonal direction β1 = β2. In particular,
ϕmax = π

2 at β1 = β2 (symmetric system). It is interesting that
even for a π JJ, which is weaker than the 0 JJ, one can obtain a
ground state phase |ϕ| > π—a situation which is not possible
in a continuous 0-π JJ studied earlier [15,16].

It is also interesting to plot the ground state phase on the
(β1,β2) plane for fixed α, i.e., in essence, in the horizontal
plane crossing the ϕ domain in Fig. 2 at fixed α. In such a
plane, with the help of Eq. (8), the ϕ domain is given by

β2 >
−1

α
− 1 − β1 for α < 0. (15)

Thus, the boundary is just a straight line, see Fig. 5. Below
this line the ground state phase is ψ = 0, while in the filled
area above this line the ground state phase is ψ = ±ϕ. Note
that the boundary given by Eq. (15) shifts towards the origin
as α decreases. At α = −1 the domain of a 0 state vanishes
completely. At α < −1 (a case not considered here) a small
ϕ = π domain will appear close to the origin and will grow as
α decreases further.

C. Persistent current

If the ground state of the system (f = γ = 0) is the ±ϕ

state, one has a persistent current circulating clockwise or
counterclockwise around the SQUID. From Eq. (3), its value
is given by

Icirc = sin[φ1(±ϕ)] = α sin[φ2(±ϕ)]. (16)

Since in the ground state the phases φ1 and φ2 depend
only [35] on β
 , so does Icirc. This means that the value ϕ

of the ground state phase, which depends on β1 − β2 and β
 ,
can be chosen independently from the value of the persistent
current Icirc, which depends only on β
 .

For fixed β
 the value of persistent current grows ∝√
αc − α near αc and reaches the maximum value at α = −1,

see Fig. 6. This maximum value is equal to sin φ2, where φ2 is
a solution of the following transcendental equation

2φ2 − β
 sin φ2 = π. (17)

In the limit β
 → 0, from Eq. (17) φ2 → π/2 and circulating
current → 1.

Another interesting question is: Does the value of circulat-
ing current ever equal to the maximum possible value |α|, the
critical current of the weaker JJ? It turns out that for fixed β


this happens for α = αmax
circ , which is a solution of the following

transcendental equation:

αβ
 + arcsin(α) + π

2
= 0, (18)

see also Fig. 6. To proof this we take the state with φ2 = π/2,
then sin φ2 = 1. From Eq. (3) sin φ1 = −α > 0, and therefore
φ1 = arcsin(−α) (exactly this root). By substituting this into
Eqs. (2) and, without loosing generality assuming β1 = 0,
β2 = β
 , we arrive at Eq. (18).
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FIG. 5. (Color online) The phase diagram of 0-π dc SQUID [ground state phase ϕ(β1,β2)] for (a) α = −0.6 and (b) α = −0.8. The dashed
line shows the boundary between trivial ψ = 0 and ψ = ±ϕ ground states given by expression (15). Continuous lines are the lines of the
constant ground state phase ϕ. Its value is given next to each line.

D. Self-generated flux

The self-generated flux in the loop (not including external
flux φe) is given by

2π
�

�0
= β1 sin φ1(ψ) − αβ2 sin φ2(ψ)

= φ2(ψ) − φ1(ψ) − φe. (19)

Similar to the circulating current, the value of spontaneous
flux in the absence of the bias (γ = 0) depends only [35] on
β
 , which is not obvious at all from the first part of Eq. (19),
but is apparent from its last part. This allows us to write

2π
�

�0
= β
 sin φ1 = −αβ
 sin φ2 = β
Icirc. (20)

FIG. 6. (Color online) Circulating current as a function of α.
Tilted dashed line shows the value of the critical current of the
α junction. The horizontal dashed-dotted line shows the maximum
value of persistent current reached at α = −1 and calculated using
Eq. (17). Vertical dashed-dotted line shows the value αmax

circ calculated
using Eq. (18).

Therefore, spontaneous flux behaves similar to the circulating
current. The maximum value of the flux is also reached at
α → −1.

It is instructive to replot Icirc and � as a function of β
 at
fixed α, see Fig. 7. One can see that at small inductance β
 <

(1 + α)/(−α) [inverted Eq. (8)] the system is in the zero state.
At larger inductances the system enters into ±ϕ state and the
spontaneous flux and current increase. However, �(β
) grows
monotonously, reaching ∼�0/5 at β
 = 2, while the Icirc(β
)
exhibit a maximum where Icirc = |α|—the maximum possible
value in our SQUID. It happens at β
 = (2 arcsin(α) +
π )/(−2α), which was obtained by inverting Eq. (18).

E. Critical currents at zero applied flux

In general, our system has four critical currents in the ϕ

domain and two critical currents outside of it. These critical
currents correspond to the escape of the phase from the left
(−ϕ) or the right (+ϕ) wells of the double-well potential, see
Fig. 1, for different directions of the bias current γ . The critical
current corresponds to the maximum of the CPR γ (ψ).

FIG. 7. (Color online) The amplitudes of the spontaneous circu-
lating current Icirc(β
) and spontaneous flux �(β
)/�0 for fixed
α = −0.7.
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FIG. 8. (Color online) Numerically calculated dependencies
γc±(α) for (a) β1 = β2 = 0.7 and (b) β1 = 0.1 and β2 = 0.9.

The numerically calculated dependence of γc(α) for given
β1 and β2 is shown in Fig. 8. One can see several key points on
the γc±(α) dependence. First, γc+(0) ≡ 1. Second, for β1 = β2,
γc−(−1) = γc+(−1), i.e., the two dependencies converge at
α = −1, see Fig. 8(a). In the case of β1 < β2, see Fig. 8(b),
the dependencies cross at some −1 < αx < αc.

F. Critical current as a function of applied flux

The presence of the degenerate ground state and two critical
currents also manifests itself in the dependence of the maxi-
mum supercurrent on magnetic field γc(f ). In the general case
this dependence can be calculated only numerically. Several
examples of γc(f ) dependencies are presented in Fig. 9.
For the parameters in the ϕ domain (α < αc) one sees the
domains corresponding to the different flux states overlapping
in the vicinity of integer f . In this overlapping region one
observes in total four critical currents corresponding to the
escape of the phase from different energy minima (wells) of
the Josephson potential in two different directions. Note the
striking similarity of these curves with those for ϕ JJs based
on continuous 0-π JJs [15].

As α increases and approaches αc, see Fig. 9, the bistability
region is shrinking. Exactly at α = αc the overlap near integer
f disappears, which corresponds to the disappearance of two
distinct ground states ψ = ±ϕ. However, for a small range of
α > αc, one observes a small triangularlike bistability region
where the branches meet, see Fig. 9(d). Further investigation

Γ
Γ

Γ
Γ

FIG. 9. (Color online) The dependence of the critical current γc

of the device on the normalized applied magnetic field (frustration)
f for β1 = β2 = 0.7 (πβL = 1.4, αc ≈ −0.417) and different α.

of this small domain is outside the scope of this paper. We
note that the intersecting domains, similar to those shown in
Fig. 9, were calculated long ago [36,37]. At that time, however,
π junctions were unknown, so only a 0-0 SQUID, where
the domains intersect near half-integer f , was considered.
However some key results can be adopted to our case easily.

In particular, we can find the positions of key points ±A

and ±X where ∂γc(f )/∂f = 0. We note [36,37] that the phases
φ1 = ±π/2 and φ2 = ±π/2 (in any combination) satisfy the
equation γ ′ = 0 for any asymmetry and applied flux. It turns
out [36] that each of these four combinations corresponds to
an extremum of the γc(f ) dependence, i.e., to points ±A and
±X in Fig. 9. To find the values of the external flux 2πf ≡ φe,
corresponding to these points, we substitute the above phases
into Eq. (2) and obtain

φe = ±
[
π

2
+ β1

]
∓

[
π

2
+ αβ2

]
. (21)
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The corresponding values of the critical current are obtained
from Eq. (3):

γ extr
c = ±1 ± α. (22)

In Eqs. (21) and (22) both ± signs are independent, providing
four combinations in total. The trivial consequence of Eq. (22)
is that for a SQUID with symmetric critical currents (|α| = 1)
the points ±X are situated at the horizontal axis (γc = 0).

The bistability region around integer f can be used to
store one bit of information in the ±ϕ states as demonstrated
recently [17]. In some sense it is similar to the earlier
proposals [38,39] to use n = 0 and n = 1 states of the SQUID
biased to f ≈ 1/2. However in our case, the flux bias is not
needed. Asymmetry also provides different critical currents at
f = 0, which simplifies readout.

Finally, the practical question is: Can one detect ±ϕ, ϕ0,
and ϕ0 ± ϕ states in experiment by measuring the γc(f )
dependence? For the ±ϕ state the answer is given in Fig. 9. One
should observe the intersection of branches and four critical
currents. For the ϕ0 ± ϕ state the situation is similar. However,
since this state appears at half-integer f the whole γc(f ) curve
is shifted so that the bistability regions are situated around
half-integer f . Finally, in the ϕ0 state, which in our system
appears at finite field only, one has only two critical currents
and the junction looks just like a conventional one, although the
γc(f ) dependence is unusual (periodic), but never multistate.
To prove the ϕ0 state one has to do a phase sensitive experiment,
e.g., putting our black box in a superconducting loop.

IV. SUMMARY

We have shown that an asymmetric 0-π SQUID can be used
as an effective ϕ JJ with magnetic field tunable current-phase
relation γ (ψ) and, accordingly, a Josephson energy U (ψ). The
critical value αc of the critical current asymmetry parameter α

required to obtain the degenerate ±ϕ ground state depends on
the sum L1 + L2 of inductances in two branches of the SQUID.
Upon applying an integer number of flux quanta f = n, the
phase ψ across the structure advances by an amount r1 · 2πn,
where r1 is the fraction of external flux induced in the left
branch of the SQUID. Since, in general, r1 is an arbitrary
number depending on design, the phase shift r1 · 2πn is not
a multiple of 2π . By applying a half-integer number of flux
quanta f = n + 1/2 to a 0-0 SQUID with α < |αc|, one can
turn the effective 0-JJ into a ϕ0 = r1πn JJ. If α > |αc|, then
one can turn the effective 0-JJ into a JJ with ground states
ϕ0 ± ϕ. The dependence of the critical current on magnetic
flux clearly shows bistability regions typical for ϕ JJ [15,16].

In terms of designing a practical device (bistable ϕ JJ)
the target parameters can be, e.g., β1 = β2 = 0.4 . . . 0.7 and
α ≈ −0.7 . . . − 0.8 to stay well inside the ϕ domain in Fig. 2.
This will provide very large operation margins. Note that a
finite inductance is essential to obtain a ϕ domain of finite
size. In the limit β
 → 0 the ϕ domain shrinks to a point.

For example, having in mind the present SIFS 0-π JJ
technology [16], one can design the ϕ-bit [17] using 0-π
SQUID as follows. Currently, the record value of the critical
current density for SIFS π JJ is jc2 ∼ −50 A/cm2. Since
the 0 JJ should be a bit stronger, we take as a reference
jc1 = 60 A/cm2. The SQUID consists of two squared JJs of

the area w × w, e.g., 5 × 5 μm2, connected by the strip line
of length L and width w. The inductance of such a strip line
is L
 = L� · L/w, where L� ∼ 0.6 pH is the inductance per
square for typical Nb film thicknesses. Since technologically
it is difficult to hit the right value of jc2, let us assume that
we can make it with an accuracy of 10%. Then the target
value of α = −0.9 will keep the SQUID within ϕ domain if
αc = −0.8. To have αc = −0.8, according to Eq. (8), we need
β
 = 0.25. Such β
 is reached when L
 = 5.4 pH (for Ic1 =
jc1w

2 = 15 μA), see Eq. (1). Then the length of the stripline
between the JJs must be L = L
 · w/L� ≈ 45 μm. The total
area of the memory cell is then Acell ≈ Lw ≈ 225 μm2 and it
is independent on w. To make the Acell N times smaller one
has to increase the critical current density jc2 in the π state N

times. Similar calculations can be performed for other types
of 0-π SQUIDs demonstrated experimentally using different
technologies [40–43].
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APPENDIX: SOLUTIONS CLOSE TO THE
BIFURCATION POINT α ≈ αc

The ϕ JJ proposed here can also be used as a qubit at f = 0,
when the barrier separating the −ϕ and +ϕ states is small. This
is the case when α is only slightly smaller than αc. In this limit
the expressions for many important quantities can be obtained
analytically. We are especially interested in the situation near
the bottom of the energy profile U (ψ), i.e., for small values of
ψ since the important physics (formation of ±ϕ state, escape,
macroscopic quantum tunneling) takes place there.

For α = αc − ε (0 � ε � 1) the Josephson energy of the
system can be expanded like in the Ginzburg-Landau theory
as

UGL(ψ) ≈ aψ2 + bψ4, |ψ | � 1, (A1)

where the coefficients a(α) and b(α) have to be determined
from our model given by Eqs. (2) and (3), namely, from

U ′′(0) = γ ′(0) = 2a; (A2)

U ′′′′(0) = γ ′′′(0) = 24b. (A3)

From Eq. (3)

γ ′(ψ) = cos(φ1)φ′
1 + α cos(φ2)φ′

2. (A4)

The derivatives φ′
1,2 can be calculated by differentiating

Eqs. (2) with respect to ψ :

φ′
1 = 1

1 + β1 cos(φ1)
, φ′

2 = 1

1 + β2α cos(φ2)
. (A5)

By substituting φ′
1,2 from Eq. (A5) into Eq. (A4) we obtain

γ ′(ψ) = cos(φ1)

1 + β1 cos(φ1)
+ α cos(φ2)

1 + β2α cos(φ2)
. (A6)
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According to Eqs. (2), ψ = 0 corresponds to φ1 = φ2 = 0, so
from Eqs. (A2) and (A6) we obtain the explicit expression for
a(α):

a(α) = 1

2

[
1

1 + β1
+ α

1 + αβ2

]
, (A7)

which is negative for α < αc. Near αc the leading term is

a(ε) = −1

2

1

α2
c (1 + β1)2

ε = a1ε. (A8)

Similarly, differentiating γ ′(ψ) in Eq. (A6) two additional
times and using Eq. (A5) after each differentiation, we obtain
at ψ = φ1 = φ2 = 0 from Eq. (A3)

b(α) = −1

24

[
1

(1 + β1)4
+ α

(1 + αβ2)4

]
. (A9)

Near αc the main term of b(α) is a constant

b(αc) = 1

24

β


(
β2


 + 3β
 + 3
)

(1 + β1)4

= 1

24

α3
c + 1

(−αc)3(1 + β1)4
= b0. (A10)

Now we can readily calculate various quantities. The value
ϕ of the ground state phase is determined from γGL(ψ) =
U ′

GL(ψ) = 0, i.e.,

ϕGL =
√−a

2b
≈

√−a1

2b0

√
ε. (A11)

The self-generated flux in the ground state is given by Eq. (19)
and for α → αc can be approximated by

2π
�GL

�0
≈ β


1 + β1
ϕGL = β


1 + β1

√−a1

2b0

√
ε, (A12)

where we took into account that for small ψ , according to
Eq. (2), φ1 ≈ ψ/(1 + β1) and φ2 ≈ ψ/(1 + αβ2).

The barrier between two wells is given by

UGL(0) − UGL(ϕ) = a2

2b
≈ a2

1

2b0
ε2. (A13)

The depinning current γc− can be found as an extremum of
γ (ψ). The extremum is reached at ψ = ψdep satisfying the
equation γ ′(ψdep) = 2a + 12bψ2

dep = 0. Thus,

ψdep =
√−a

6b
= ϕGL√

3
≈

√−a1

6b0

√
ε. (A14)

The value of γc− = γ (ψdep) is

γ− = ψdep
4

3
a = 4

√
−a3

1

6b0
ε

3
2 . (A15)

The value of γc+ cannot be calculated in the framework of
our GL approximation as γc+ corresponds to a large depinning
phase. The eigenfrequency in each of the ±ϕ wells can be
calculated as

ω0 = U ′′(ϕ) = γ ′(ϕ) = −4a ≈ −4a1ε. (A16)
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