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We numerically investigate the mixed pairing symmetries in mesoscopic superconducting loops in the presence
of spin correlations by solving the Bogoliubov-de Gennes equations self-consistently. The spatial variations of
the superconducting order parameters and the spontaneous magnetization are determined by the band structure.
When the threaded magnetic flux turns on, the charge and spin currents both emerge and depict periodic evolution.
In the case of a mesoscopic loop with dominant triplet px ± ipy-wave symmetry, a slight change of the chemical
potential may lead to novel flux-dependent evolution patterns of the ground-state energy and the magnetization.
The spin-polarized currents show pronounced quantum oscillations with fractional periods due to the appearance
of energy jumps in flux, accompanied with a steplike feature of the enhanced spin current. Particularly, at
some appropriate flux, the peaks of the zero-energy local density of states clearly indicate the occurrence of
the odd-frequency pairing. In the case of a superconducting loop with dominant singlet dx2−y2 -wave symmetry,
the spatial profiles of the zero-energy local density of states and the magnetization show spin-dependent features
on different sample diagonals. Moreover, the evolution of the flux-induced spin current always exhibits an hc/e

periodicity.
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I. INTRODUCTION

Recently, the flux-dependent periodic evolution of super-
current in mesoscopic s- or d-wave superconducting loops has
drawn a lot of attention [1–11], which is a valuable probe
into the mechanism of superconductivity and is the basis
for many applications. For superconductors with spin-singlet
pairing, the doubling or breaking of well-known hc/2e-flux
periodicity has been predicted due to the lifted degeneracy
in energy and the offset of the transition between different
current-carrying states. Another system which may support
novel flux periodicity is the spin-triplet p-wave superconduc-
tor [12]. For Sr2RuO4, which is a prime candidate for the
topological superconductivity, it has been proposed that the
antiferromagnetic spin fluctuation may lead to the spin-triplet
superconducting pairing symmetry [13,14]. Recent cantilever
magnetometry measurements of annular mesoscopic samples
of Sr2RuO4 have revealed evidence for the existence of
half-quantum vortices in this material [15]. Furthermore,
unconventional quantum oscillations with distinct flux periods
have been reported in mesoscopic superconducting rings of
Sr2RuO4 [16].

Notice that, if the inversion symmetry is broken by the
space inhomogeneity of the order parameter, mixing of the
singlet and triplet states becomes possible in the supercon-
ducting system with lifted spin degeneracy [17,18]. It has
been predicted that an additional p-wave component can
be generated by the surface induced spin-orbit coupling in
the case of d-wave superconductors [19,20]. Additionally,
for a square lattice system with a nearest-neighbor attractive
interaction, superconducting states with various symmetries
can be found by changing the band structure (i.e., the shape
of the Fermi surface) [21,22]. Due to the proximity effect,
the mixed parity pairing and spontaneous spin current have
been observed near the interface between unconventional

superconductors and ferromagnets [23,24]. In particular, a
potential barrier modulating the electronic density near the
edge of the system can lead to a nonunitary superconducting
state close to the boundary where spin-singlet pairing coexists
with the dominant triplet order, and the spin polarization and
accumulation may appear in a system without the proximity
coupling to an exotic one [25]. These imply that interesting
phenomena related to the mixed pairing symmetries and the
periodic evolution of charge and spin currents may be produced
in mesoscopic superconducting loops.

In the present work, we provide a careful insight into
the mixed pairing states and corresponding flux periodic
evolution of current in mesoscopic superconducting loops. We
perform a microscopic self-consistent calculation by solving
the Bogoliubov-de Gennes (BdG) equations [26] in real space.
It has been known that the on-site repulsion interaction within
the mean-field approximation is essential to generate the spin
order in high-temperature superconductors due to competing
antiferromagnetism and d-wave superconductivity [27–30].
We will introduce the repulsive on-site interaction among the
electrons into the model Hamiltonian to generate the spin
correlation, which has not been considered in mesoscopic
loop systems yet. The effect of the band structure will be
applied to tune the stable spin-triplet (p-wave) and spin-singlet
(d- or s-wave) superconducting states as well as states with
their coexistence within the same type of interaction. For an
appropriate chemical potential, the mixed pairing symmetry
of order parameters can be realized in the same material. Our
numerical analysis focuses on two types of the square loop
with dominant (px ± ipy)-wave or dx2−y2 -wave symmetry. The
local magnetization and zero-energy local density of states
(LDOS) are demonstrated correspondingly. When a magnetic
flux is turned on, the charge and spin currents show up with
novel evolution patterns.
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The paper is organized as follows. In Sec. II we present our
theoretical formalism. In Secs. III and IV we discuss the results
obtained for the mixed pairing states and flux-dependent
current evolution in two cases of the superconductor with
dominant p- or d-wave symmetry. Our results are summarized
in Sec. V.

II. THEORETICAL APPROACH

To investigate the flux periodicity in a mesoscopic super-
conducting loop whose edges are oriented parallel to the [100]
and [010] directions, we start with the pairing Hamiltonian by
assuming nearest-neighbor attraction V for superconducting
pairing:

Ĥ = −
∑
〈ij〉,σ

tij exp(iϕij)c
†
iσ cjσ +

∑
i,σ

(U 〈niσ̄ 〉 − μ)c†iσ ciσ

+V
∑
〈ij〉

(�ijc
†
i↑c

†
j↓ + �∗

ijcj↓ci↑), (1)

where tij = t are the nearest-neighbor hopping integrals. ciσ

(c†iσ ) are destruction (creation) operators for the electron of spin
σ (σ=↑ or ↓). U represents the on-site repulsion interaction.
niσ = c

†
iσ ciσ is the number operator, and μ is the chemical

potential determining the averaged electron density n̄. The
Peierls phase factor is given by ϕij = 2π/�0

∫ rj

ri
A(r) · dr

with the flux quantum �0 = hc/e. We choose a vector
potential of the form A(r) = (y, − x,0)�/[2π (x2 + y2)],
yielding a flux threading the hole with no magnetic
field penetrating the superconductor, where φ = (e/hc)�
measures the flux in units of hc/e. Here we have introduced
the pairing amplitude on a bond �ij = 〈ci↑cj↓〉. Using the
Bogoliubov transformation, ciσ = ∑

n[un
iσ γnσ − σvn∗

iσ γ
†
nσ̄ ],

the Hamiltonian in Eq. (1) can be diagonalized by solving the
resulting BdG equations self-consistently:

N∑
j

(
Hijσ �ij

�
†
ij −H∗

ijσ̄

) (
un

jσ

vn
jσ̄

)
= En

(
un

iσ

vn
iσ̄

)
, (2)

where Hijσ = −tijexp(iϕij) + [U 〈niσ̄ 〉 − μ]δij. With the open
boundary conditions (for which the wave function vanishes
on the inner and outer boundaries of the loop) we can
get the eigenvalues {En} with eigenvectors {un

i ,v
n
i }. The

self-consistent conditions are

〈ni↑〉 =
2N∑
n=1

∣∣un
i

∣∣2
f (En), (3)

〈ni↓〉 =
2N∑
n=1

∣∣vn
i

∣∣2
[1 − f (En)], (4)

�ij =
2N∑
n=1

un
i v

n∗
j [1 − f (En)], (5)

where f (En) = (eEn/kBT + 1)−1 is the Fermi-Dirac
distribution function. From the order parameter �ij, it
is possible to build the spin-singlet (S) and spin-triplet (T)
pairing amplitudes, given by [22–25]

�S
ij = (�ij + �ji)/2, (6)

�T
ij = (�ij − �ji)/2. (7)

Then the extended s-, dx2−y2 -, px-, and py-wave symmetry
can be defined, respectively, at site i as

�s(i) = (
�S

i+ex,i + �S
i−ex,i + �S

i,i+ey
+ �S

i,i−ey

)
/4, (8)

�d (i) = (
�S

i+ex,i + �S
i−ex,i − �S

i,i+ey
− �S

i,i−ey

)
/4, (9)

�px
(i) = (

�T
i+ex,i − �T

i−ex,i

)
/2, (10)

�py
(i) = (

�T
i,i+ey

− �T
i,i−ey

)
/2, (11)

where ex(y) denotes the unit vector along the x(y) direction. As
regards the spin-triplet pairing, we only choose the case with
Sz = 0 for simplicity. The bond current densities Jijσ from
lattice site i to j carried by spin-up and spin-down electrons
are given by

Jij↑ = −4
et

�c

∑
n

Im
[
un

j u
n∗
i f (En)exp(iϕij)

]
, (12)

Jij↓ = −4
et

�c

∑
n

Im
[
vn∗

j vn
i (1 − f (En))exp(iϕij)

]
. (13)

The current Ji is defined as the average of the neighboring
bond currents. We can determine the local charge and
spin current [23,25] Jc(i) = Ji↑ + Ji↓ and Js(i) = Ji↑ − Ji↓,
respectively. The total energy F of the system is given by [31]

F = 〈Ĥ 〉 = KE +
∑

i

[
2Uni↓ni↑ − μni −

∑
j

|�ij|2
V

]
,

(14)

where KE is the kinetic energy of the system:

KE = −1

2

∑
ij,n

tijexp(iϕij)
(
vn

i vn∗
j − un

j u
n∗
i

)
tanh

(
En

2kBT

)
.

(15)

The LDOS can be written as

ρiσ (E) =
∑
n,σ

[∣∣un
iσ

∣∣2
δ(En − E) + ∣∣vn

iσ

∣∣2
δ(En + E)

]
, (16)

where the Dirac delta function δ(x) is taken as �/π (x2 + �2)
with the quasiparticle damping � = 0.01. The LDOS is
proportional to the local differential tunneling conductance
which could be measured in a low-temperature scanning
tunneling microscopic (STM) experiment.

Throughout this work, the distance is measured in units of
the lattice constant a, the energy in units of t , the magnetic flux
in units of �0 = hc/e, and the current density in units of J0 =
et/�c. In the numerical calculations, we take kB = a = t = 1
for simplicity. In what follows, we focus on the mesoscopic
superconducting square loop with an outer size Nx×Ny =
40×40 and an arm width w = 14, which is threaded by a
magnetic field � in the hole. For an appropriate initial set
of parameters niσ and �ij, the Hamiltonian is numerically
diagonalized and the electron wave functions obtained are
used to calculate the new parameters for the next iteration
step. The calculations are repeated until the difference in the
order parameters between two consecutive iterations is less
than 10−6. A ground state has the lowest total energy among
those of stable states evaluated from different possible initial
parameters.
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As known, the studies on the extended Hubbard model
[21,22] have shown that a dx2−y2 -wave superconducting state
is stabilized near half-filling μ ∼ 0, while the extended s-wave
state is favored near the filling |μ| ∼ 2.5t . In the region
between d- and s-wave states, the spin-triplet px ± ipy-
wave superconducting state appears. In the present work,
we use this result to choose the parameters to realize the
dominant px ± ipy- or dx2−y2 -wave pairing. Near the boundary
between different pairing symmetries, the states where the
spin-singlet and the spin-triplet order parameters coexist may
be found.

III. MESOSCOPIC LOOP WITH DOMINANT
p-WAVE SYMMETRY

In this section, we investigate the mesoscopic supercon-
ducting loop with a dominant spin-triplet px ± ipy-wave
symmetry at zero temperature. Here we choose μ = −1.6,
which is in the window of stability for the p-wave order. The
interaction strengths are set as V = 2.5 and U = 1.5. In the
mesoscopic size case, we find that the spin-singlet d- and
s-wave components of the order parameter can appear at the
same time, i.e., the mixed pairing symmetries are allowed
here. The underlying physics can be qualitatively explained as
follows. In the present finite system, translational symmetry
is broken, and parity of the Cooper pair is no longer a good
quantum number. Then, the mixed parity state can be realized.
On the other hand, the spin rotational symmetry is broken due
to the presence of the spin correlation, and spin-singlet and
spin-triplet parings are mixed with each other. Note that the
d-wave superconductivity does not emerge when μ� − 1.8.
Further decreasing the electron density, the p-wave pairing
gradually disappears and only an s-wave order can exist in
our mesoscopic system. Figure 1 shows the spatial profiles of
order parameters for px-wave (a), py-wave (b), d-wave (c),
and extended s-wave (d) pairings in the square loop when the
threaded magnetic flux � = 0. It is seen that the px (py) order
only appears in arms of the loop along the x(y) direction. �px

(�py
) almost takes on the constant magnitude inside the sample

and is suppressed near the inner and outer boundaries as well
as on the sample diagonals. The subdominant s-wave order is
mainly localized at the inner and outer corners. The induced �d

component is much smaller than the case of dominant p-wave
state, and the d-wave superconducting order is enhanced
near the sample edge. Inside the sample, the spin-singlet
orders both show oscillatory behaviors due to the finite-size
effect.

To further characterize the coexisting states in this meso-
scopic system, we analysis the spontaneous magnetic moment
and the corresponding LDOS at zero threaded flux. It has been
predicted that the emergency of the mixed parity phase may
be accompanied by the appearance of the finite spin polariza-
tion [25]. Also, the STM experiment with atomic-scale reso-
lution is well suited for probing surfaces and inhomogeneous
systems. In Fig. 2, we depict the two-dimensional contour
plots of the zero-energy LDOS ρ↑(E = 0) (a), ρ↓(E = 0)
(b), and ρ↑↓(E = 0) (c) for the cases of spin-up, spin-down,
and total spin, respectively. The profile of the magnetization
mi = (ni↑ − ni↓)/2 is given in Fig. 2(d). We can see that the
zero-energy modes for spin-up and spin-down electrons are

(a) p
x

(b) p
y

(c) d (d) s0 0.01 0.02 0 0.02 0.04

0 0.045 0.090 0.045 0.09

FIG. 1. (Color online) Contour plots of px-wave (a), py-wave
(b), d-wave (c), and extended s-wave (d) pairings for a square 40×40
loop with an arm width w = 14 at zero flux. The calculation is
performed with V = 2.5, U = 1.5, μ = −1.6, and the temperature
T = 0.

slightly different and the zero-energy peaks mainly emerge in
the diagonal directions in Figs. 2(a) and 2(b). The zero-bias
peak conductance, together with the weak oscillation inside the
sample, may reflect the appearance of a subdominant extended
s-wave component in our system, analogous to the order
parameter profile in Fig. 1(d). Simultaneously, a spontaneous
magnetic moment appears near the corners of the sample with
a nonunitary superconducting state [see Fig. 2(d)], similar to
the case of a slab geometry with a finite surface barrier in the
absence of a proximity effect due to the modulated electronic
density [25].

It is important to note that the presence of the zero-
energy peaks on the sample diagonals in the LDOS map
may also imply interesting pairing symmetry with respect
to the frequency in our mesoscopic system with strong spin
correlations. In accordance with the Fermi-Dirac statistics,
there exist two possibilities of odd-frequency pairing, i.e., spin-
singlet odd-parity and spin-triplet even-parity pairings [32],
due to the breakdown of the translational and spin-rotational
invariances. It has been shown that odd-frequency spin-triplet
even-parity (OTE) pairing highly influences the density of
states of quasiparticles, accompanied with a zero-energy peak
structure [33]. The appearance of odd-frequency pairing in
the present system can be clearly demonstrated in the slightly
decreased |μ| case, which will be discussed in a subsequent
part of this section.

When the threaded magnetic flux turns on, there are
persistent flows of both spin-up and spin-down electrons.
Normally, this gives rise to well-known persistent charge
current, and its flux periodic evolution has been widely
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0 0.0045 0.009 0 0.0045 0.009

0 0.009 0.018 −0.02 0 0.02

(b) ρ
↓
(E=0)

(d) m
i

(a) ρ
↑
(E=0)

(c) ρ
↑↓

(E=0)

FIG. 2. (Color online) Contour plots of zero-energy local density
of states ρ↑(E = 0) (a), ρ↓(E = 0) (b), ρ↑↓(E = 0) (c), and magne-
tization mi = (ni↑ − ni↓)/2 (d) for a square 40×40 loop with w = 14
at �/�0 = 0 when μ = −1.6.

discussed. Once the persistent charge current is spin polarized,
a nonzero persistent spin current can be generated. Next, we
would like to discuss the flux-dependent evolution of the
charge and spin currents in our studied system with mixed
pairing. Figure 3 shows the total energy (a) and the persistent
spin current Js (the solid curve) as well as the spin-polarized
currents J↑ (the dashed curve) and J↓ (the dash-dotted curve)

FIG. 3. (Color online) Total energy (a) and spin current Js (right-
hand scale) and spin-polarized currents J↑ and J↓ (the left-hand
scale) (b) for a square 40×40 loop with w = 14 as a function of
magnetic flux � when μ = −1.6. q is the winding number of the
order parameter.

(b) as a function of magnetic flux � in the mesoscopic square
loop. In order to demonstrate clearly the flux evolution of
the spin current, the magnitude of Js is always given by the
right-hand scale. For the chosen parameter values, the total
energy reaches local minima at � = n�0/2 (here, n denotes
an integer) and exhibits exactly a �0/2 periodic evolution.
Correspondingly, the phase transitions between the states with
even and odd winding numbers q of the order parameter with
respect to � = (2n + 1)�0/4 render that the spin-polarized
currents develop fully the �0/2-flux periodicity. In general,
the spin-polarized currents and then the spin current show
saw-tooth-like patterns in flux. Between the flux values where
the current jumps, the currents with standard linear behavior
for spin-up and spin-down electrons are almost overlap in the
present case, resulting in weak spin currents at finite flux.
When the flux is enlarged from zero, Js first appears and
then keeps increasing. At the transiting point � = �0/4, the
spin current changes sign and flows oppositely. In order to
understand better the spin current distribution, Fig. 4 depicts
the spatial variations of the spin-polarized currents J↑ (a) and
J↓ (b) as well as the charge current Jc (c) and spin current Js (d)
at �/�0 = 0.25 in the q = 0 sector. One can clearly see that
the profiles of J↑ and J↓ are nearly the same at the arm center,
while remaining different in the diagonal directions. It is noted
that the origin of the spin polarization is in the appearance of
the regime of local magnetization. As a consequence, the spin
current shows pronounced oscillations near the loop diagonals
[see Fig. 4(d)].

Notice that the spatial profiles of the magnetization and the
zero-energy LDOS almost keep the same as the zero flux case
in Fig. 2 with increasing � for μ = −1.6. Meanwhile, the total

(a) J
↑

(b) J
↓

(c) J
c

(d) J
s

0 0.006 0.012 0 0.006 0.012

0 0.01 0.02 −0.008 0 0.008

FIG. 4. (Color online) Contour plots of spin-polarized currents
J↑ (a) and J↓ (b) as well as the charge current Jc (c) and spin current
Js (d) for a square 40×40 loop with w = 14 at �/�0 = 0.25 in the
q = 0 sector when μ = −1.6.
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FIG. 5. (Color online) Total energy (a) and spin current Js (right-
hand scale) and spin-polarized currents J↑ and J↓ (the left-hand scale)
(b) for a square 40×40 loop with w = 14 as a function of �. The
calculation is performed with V = 2.5, U = 1.5, μ = −1.5, and the
temperature T = 0.

energy shows a standard parabolic behavior with flux in every
q sector. However, this shape does not remain at finite flux for
a reduced |μ| due to a stronger effect of the band structure
on the symmetry of superconducting states. Thus, more
novel phenomena related to flux periodic evolution may be
present.

As a representative example, Fig. 5 displays the flux
evolution of the total energy (a) and currents J↑, J↓, and
Js (b) for a slightly changed μ = −1.5. One can easily see
that, as compared to the case in Fig. 3, the energy and the
circulating current still oscillate periodically as a function of
flux, while the evolution patterns behave more complicated.
In Fig. 5(a), the ground-state energy forms parabolas with a
global minimum at integer and half-integer values of �, which
is identical to the previous case with a large |μ|. Interestingly,
there appear additional energy parabolas in F (�) between
these flux values, and the energy increases or decreases
stepwise between different parabolas. As a consequence, the
spin-polarized currents J↑(↓)(�) in Fig. 5(b) are discontinuous
at the flux values where the energy jumps [see the dashed
and dash-dotted curves], which may support the appearance
of unconventional quantum oscillations with fractional flux
periodicity [16]. Notice that the flux regimes belonging to
different energy parabolas are not distributed equally and then
peculiar sawtooth patterns of flux-dependent charge current
show up. Remarkably, there exists a pronounced difference
between J↑ and J↓, giving rise to stronger spin currents in
contrast to the case in Fig. 3(b). As shown by the black
solid curve in Fig. 5(b), Js emerges when the flux is threaded
and increases monotonously at small �. Between the flux
values where the energy jumps, J↑ and J↓ show standard
linear behavior and changes synchronously. Therefore, the
magnitude of Js almost takes a constant value, i.e., the step
feature of the spin current appears at large flux. As a result, the

0 0.05 0 0.05 0 0.05

−0.017 0 0.017 −0.017 0 0.017 −0.005 0 0.005

(a) ρ↑↓(E=0)

(f) mi(e) mi

(b) ρ↑↓(E=0) (c) ρ↑↓(E=0)

(d) mi

Φ/Φ
0
=0.15 Φ/Φ

0
=0.25Φ/Φ

0
=0.1

FIG. 6. (Color online) Contour plots of zero-energy local density
of states ρ↑↓(E = 0) (a–c) and magnetization mi (d, e) for a square
40×40 loop with w = 14 at �/�0 = 0.1 (left panels), �/�0 = 0.15
(middle panels), and �/�0 = 0.25 (right panels) when μ = −1.5.

persistent spin current exhibits two flux-dependent features in
the periodic oscillation.

Notably, novel flux evolution of the magnetization may take
place when the energy jumps between different parabolas in
the ground state. In Fig. 6, we depict the zero-energy LDOS
(the upper panels) ρ↑↓(E = 0) and the magnetization mi (the
bottom panels) for the square loop at the flux values �/�0 =
0.1 (left panels), �/�0 = 0.15 (middle panels), and �/�0 =
0.25 (right panels) belonging to different energy parabolas.
We only show the LDOS for the total spin. At zero flux, the
system has almost the same spatial distribution of mi as the
case in Fig. 2(d). This profile remains with increasing flux
until �/�0 � 0.09 where the energy first jumps. As seen in
Fig. 6(d) for �/�0 = 0.1, there is a distinct suppression of
magnetization on the left-down diagonal of the sample. Further
increasing �, two other patterns of the magnetization shown in
Figs. 6(e) and 6(f) can be found in different energy parabolas.
At the transition point �/�0 = 0.25 from the q = 0 state to
the q = 1 state, we can clearly see that the magnetization is
suppressed on all diagonals in Fig. 6(f).

Interestingly, the disappearance of the magnetization is
accompanied by an enhancement of the zero-energy peaks
of LDOS [see Figs. 6(a)–6(c)]. We may attribute this to
the generation of odd-frequency pairing. Figure 7 shows the
order-parameter distribution for px-wave (a), py-wave (b),
d-wave (c), and extended s-wave (d) pairings at �/�0 = 0.25
in the q = 0 sector. Compared with the zero flux case in Fig. 1,
the s-wave component is highly suppressed and mainly located
near the center of the loop edges. In contrast, the d-wave
component is enhanced and may become the subdominant one
of the order parameter. Particularly, the spin-singlet s- and
d-wave pairings both vanish in the diagonal directions, that is,
spin-triplet even-parity pairing may be induced there by the
spin rotational symmetry breaking. We checked the present
system when �/�0 = 0.25 and found that the spin-triplet s-
and d-wave components both exist at the sample diagonals,
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0 0.05 0.1

0 0.01 0.02 0 0.008 0.017

0 0.05 0.1(a) p
x

(b) p
y

(c) d (d) s

FIG. 7. (Color online) Contour plots of px-wave (a), py-wave
(b), d-wave (c), and extended s-wave (d) pairings for a square 40×40
loop with an arm width w = 14 at �/�0 = 0.25 in the q = 0 sector
when μ = −1.5.

especially at the corners. As a result, the LDOS feature at
zero bias in Fig. 6 can be used to establish the odd-frequency
pairing in the STM measurement.

In order to examine the spin current distribution related to
the magnetization seen in Fig. 6(f), Fig. 8 gives the spatial
profiles of J↑ (a) and J↓ (b) as well as Jc (c) and Js (d) at
�/�0 = 0.25. Obviously, the spin-up and spin-down currents
both show peaks at the outer corners, while their distributions
near the inner corners behave differently. Notice that the
persistent charge currents circulate with opposite directions in
the current channels of the sample. In contrast to the currents
flowing in one direction in Fig. 4(c), the charge currents with
an opposite sign mainly appear near the inner edge of the
sample, as clearly seen in Fig. 8(c). Moreover, in Fig. 8(d), we
find that the oscillating feature on the diagonals in Fig. 4(d)
is suppressed, especially near the outer corners. At the same
time, the spin currents are enhanced inside the sample arms.
This spatial variation of the spin current is identical to the
evolution of the magnetization.

IV. MESOSCOPIC LOOP WITH DOMINANT
d-WAVE PAIRING

In this section, we would like to discuss the spontaneous
magnetic moment and spin currents for a mesoscopic super-
conducting loop with dominant spin-singlet dx2−y2 -wave sym-
metry in the same spirit of the analysis performed in the pre-
vious section for the triplet case. In order to realize the mixed
parity pairing in the system at zero temperature, the parameters
are chosen to be V = 1.8, U = 1.5, and μ = −0.6. The lower
absolute values of the attractive interaction and chemical

−0.01 0 0.01

−0.02 0.02 0.06−0.02 0 .02 0.06

−0.04 0.04 0.12

(a) J
↑ (b) J

↓

(c) J
c

(d) J
s

FIG. 8. (Color online) Contour plots of spin-polarized currents
J↑ (a) and J↓ (b) as well as the charge current Jc (c) and spin current
Js (d) for a square 40×40 loop with w = 14 at �/�0 = 0.25 in the
q = 0 sector when μ = −1.5.

potential, compared with the previous triplet case, can lead
to a higher total electron density. In this case the subdominant
component of the order parameter develops in the spin-triplet
p-wave channel, and the bulk s-wave component cannot
emerge because of very low |μ|.

In Fig. 9 we show the spatial profiles of order parameters for
d-wave (a), extended s-wave (b), px-wave (c), and py-wave (d)
pairings in the square loop at zero threaded magnetic flux. For
the dominant d-wave superconducting order, we observe slight
oscillations in the order-parameter profile. The d-wave order
parameter is suppressed at the sample surface, thus inducing
an extended s-wave component only near the inner and outer
edges. For the chosen band structure, the subdominant p-wave
component arises with a similar shape to the triplet case in
Fig. 1. Thus, the coexistence of the singlet and triplet order
parameters can be obtained again. It is noted that the p-wave
order gradually disappears with decreasing |μ|, and only d-
wave pairing can be observed when μ∼0.

The mixed pairing symmetries indicate the appearance
of spontaneous magnetization due to the unequal densities
of spin-up and spin-down electrons. Figure 10 displays the
spatial variations of the zero-energy LDOS ρ↑(E = 0) (a),
ρ↓(E = 0) (b), ρ↑↓(E = 0) (c), and the magnetization mi
(d) at zero flux. We can also observe the zero-energy peaks
of LDOS on the sample’s diagonal, resembling the triplet
case in Fig. 2. That is, the OTE pairing may occur where
the LDOS is peaked. However, in this case, the zero-bias
conductance spectra for the spin-up and spin-down electrons
are clearly distinct from one another, i.e., the zero-energy peaks
in different diagonal directions are dominated by different
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0 0.035 0.07 0 0.008 0.017

0 0.02 0.05 0 0.02 0.05(d) p
y(c) p

x

(b) s(a) d

FIG. 9. (Color online) Contour plots of d-wave (a), extended
s-wave (b), px-wave (c), and py-wave (d) pairings for a square
40×40 loop with an arm width w = 14 at zero flux. The calculation
is performed with V = 1.8, U = 1.5, μ = −0.6, and T = 0.

spin channels [see Figs. 10(a) and 10(b)]. As a consequence,
the induced local magnetic moment, which is determined
by the balance between spin-up and spin-down channels,
shows a spin-dependent feature on the sample diagonals
[see Fig. 10(d)].

0 0.01 0.02 0 0.01 0.02

0 0.014 0.03 −0.01 0 0.01(c) ρ↑↓(E=0) (d) m
i

(b) ρ↓(E=0)(a) ρ↑(E=0)

FIG. 10. (Color online) Contour plots of ρ↑(E = 0) (a), ρ↓(E =
0) (b), ρ↑↓(E = 0) (c), and mi (d) for a square 40×40 loop with
w = 14 at �/�0 = 0.

FIG. 11. (Color online) Total energy (a) and spin current Js

(right-hand scale) and spin-polarized currents J↑ and J↓ (the left-hand
scale) (b) for a square 40×40 loop with w = 14 as a function of �.

Next, we investigate the evolution of the total energy and the
persistent charge and spin currents in the presence of a threaded
magnetic flux. As discussed in Sec. III, besides the circulating
charge current, the spin current can be induced by flux because
of the broken equality of the spin-up and spin-down current
components. For a mesoscopic loop with dominant d-wave
pairing, the corresponding evolution of the total energy (a) and
the charge and spin currents (b) with flux is plotted in Fig.11.
Note that Js is right-hand scaled in Fig. 11(b). We find that
the system exhibits a slight deviation from the �0/2-periodic
behavior, which is similar to previous studies in pure d-wave
loops with weak pairing potential [1,8]. The energy parabolas
in Fig. 11(a) reach a local minimum at �/�0 = 0 and a
global one at � = �0/2. Simultaneously, the flux value of
the q→q + 1 jump tends to shift from �0/4 toward a smaller
one. Notice that this small deviation would disappear and the
conventional hc/2e-periodic behavior of charge currents can
be restored entirely for an enlarged attractive interaction V .

Interestingly, differently from the charge current, we always
observe an hc/e-flux periodicity in the spin current even if the
pairing strength is increased. As displayed by the solid curve in
Fig. 11(b), the spin current Js is nearly continuous and does not
show jumps with flux at the phase transition points between
flux regimes belonging to different q states. Notably, at the
flux values with current jumps J↑(↓) flows oppositely, while Js

does not change its sign due to the relative magnitude for J↑
and J↓ switching in different flux regimes. This phenomenon
does not show up for the previous triplet case when the current
jumps between the sectors with even and odd winding numbers
[see Figs. 1(b) and 5(b)]. Moreover, Fig. 12 gives the spatial
profiles of J↑ (a), J↓ (b), Jc (c), and Js (d) at �/�0 = 0.2.
We can find the deviation from the symmetric pattern of Jc

for the spin-polarized current J↑ and J↓. As a result, the spin
current occurs. Corresponding to the magnetization profile in
Fig. 10(d), the spin-up and spin-down electrons contribute
respectively to the peaks of Js on different sample diagonals.
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FIG. 12. (Color online) Contour plots of J↑ (a), J↓ (b), Jc (c),
and Js (d) for a square 40×40 loop with w = 14 at �/�0 = 0.2 in
the q = 0 sector.

V. CONCLUSIONS

We have investigated the mixed pairing symmetry of
order parameters and flux-induced spin current in mesoscopic
superconducting loops by numerically solving the BdG equa-
tions self-consistently. It was found that the spin-triplet and
spin-singlet superconducting states can coexist as the band
structure is changed. Two types of samples with dominant
px ± ipy-wave and dx2−y2 -wave symmetry were separately
studied. A spontaneous magnetization can occur for both cases
with mixed parity pairing due to the unequal densities of
spin-up and spin-down electrons. The corresponding zero-
bias conductance spectra were given. When the threaded
magnetic flux turns on, the flux-dependent charge current
depicts periodic evolution. Interestingly, the spin current can
also emerge because of the broken equality of the spin-up and
spin-down current components. In the case of a mesoscopic
loop with dominant triplet p-wave symmetry, we demonstrated

that a slight change of the chemical potential may give rise to
novel flux-dependent evolution of the ground-state energy and
the magnetization. The pronounced saw-tooth-like patterns of
the spin-polarized currents, corresponding to fractional flux
periodicity, were induced due to the appearance of energy
jumps in flux, accompanied with a steplike feature of the
enhanced spin current. In particular, the odd-frequency pairing
may appear on the sample diagonals at appropriate flux,
which can be distinguished by the zero-energy LDOS in STM
experiments. Simultaneously, the spin-polarized currents may
flow with opposite directions near the inner and outer edges
of the sample. Finally, in the case of a square loop with
dominant singlet d-wave symmetry, we found that the spatial
variations of the magnetization and the spin current display
spin-dependent features on different sample diagonals. At the
flux values where the current jumps between the sectors with
even and odd winding numbers, we did not observe the sign
changing of the spin current. Consequently, the flux-dependent
evolution of the spin current always shows an hc/e periodicity,
differently from the triplet case. We expect that our predictions
may provide useful guidance for futuristic applications in
superconducting electronics and spintronics. Also, using the
tight-binding model allows us to take certain aspects of the real
band structure into account. Our theoretical calculations may
be useful for some other systems, such as the noncentrosym-
metric superconductors in which the singlet and the triplet
components are intrinsically mixed [34]. For Sr2RuO4 with
three electronic bands, one can restrict to one band only since
one of the three bands, such as the two-dimensional γ band,
may dominate the superconducting properties [35–38]. For
the superconductor-ferromagnet heterostructures, the ground-
state phase diagram within the mean-field approximation was
examined by Hirsch [39] in the uniform case with U > 0 and
V = 0 (i.e., the repulsive Hubbard model). One can use this
result to choose the parameters to realize the ferromagnetic
state in the ferromagnet layer [23,24].
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