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Magnetic spheres in microwave cavities
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We apply Mie scattering theory to study the interaction of magnetic spheres with microwaves in cavities
beyond the magnetostatic and rotating wave approximations. We demonstrate that both strong and ultrastrong
coupling can be realized for stand alone magnetic spheres made from yttrium iron garnet (YIG), acting as an
efficient microwave antenna. The eigenmodes of YIG spheres with radii of the order mm display distinct higher
angular momentum character that has been observed in experiments.
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I. INTRODUCTION

Light-matter interaction in the strong-coupling regime
is an important subject in coherent quantum information
transfer [1–3]. Spin ensembles such as nitrogen-vacancy
centers may couple strongly to electromagnetic fields and
have the advantage of both long coherence times [4] and
fast manipulation [5]. The “magnon” refers to the collective
excitation of spin systems. In paramagnetic spin ensembles in
an applied magnetic field, the spins precess coherently in the
presence of microwave radiation, creating hybridized states
referred to as magnon-polaritons [6–8]. In the strong-coupling
regime coherent energy exchange exceeds the dissipative loss
of both subsystems. The coherent coupled systems is usually
described by the Tavis-Cummings (TC) model [9,10], which
defines a coupling constant g between the spin-ensemble and
the electromagnetic radiation that scales with the square root of
the number of spins. In ferro/ferrimagnets the net spin density
is exceptionally large and spontaneously ordered, which makes
those materials very attractive for strong-coupling studies.
The exchange coupling of spins in magnetic materials also
strongly modifies the excitation spectrum into a spectrum
or spin wave band structure. An ubiquitous experimental
technique to study ferromagnetism is ferromagnetic resonance
(FMR), i.e., the absorption, transmission, or reflection spectra
of microwaves. In the weak-coupling regime FMR gives direct
access to the elementary excitation spectrum of ferromagnets
[11], including the standing spin waves in confined systems
referred to spin wave resonance (SWR) [12]. The strong-
coupling regime is studied less frequently, however, because
the dissipative losses of the magnetization dynamics are
usually quite large.

An exceptional magnetic material is the manmade yttrium
iron garnets (YIG), a ferrimagnetic insulator. Commercially
produced high-quality spherical YIG samples serve in magnet-
ically tunable filters and resonators at microwave frequencies.
By suitable doping becomes a versatile class of materials with
low dissipation and unique microwave properties [13]. YIG has
spin density of 2×1022 cm−3 [14], and the Gilbert damping (re-
ciprocal quality) factor of the magnetization dynamics ranges
from 10−5 to 10−3 [15–17], which facilitates strong coupling
for smaller samples. Indeed, strongly coupled microwave
photons with magnons have been experimentally reported for
either YIG films with broadband coplanar waveguides (CPWs)
[18–20], or YIG spheres in 3D microwave cavities [21–23]. A

series of anticrossings were observed in thicker YIG films and
split rings [19,20]. The coupling of magnons in YIG spheres
with a superconducting qubit via a mircowave cavity mode in
the quantum limit has been reported [21]. An ultrahigh coop-
erativity C = g2/κγ > 105, where κ and γ are the loss rates
of the cavity and spin system, and multimode strong coupling
were found at room [22] as well as the low [23] temperatures.

From a theoretical point of view, the standard TC model
is too simple to describe the full range of coupling between
magnets and microwaves. Also the rotating-wave approxi-
mation (RWA) (usually but not necessarily assumed in the
TC model) is speaking applicable when the coupling ratio
g/ωc � 1, where ωc is the microwave cavity mode frequency.
We may define different coupling regimes [24,25], viz. (i)
strong coupling (SC) when 0.01 < g/ωc � 0.1, (ii) ultrastrong
coupling (USC) [26] when g/ωc � 0.1, (iii) or even deep
strong coupling (DSC) g/ωc ≈ 1 [27]. Cao et al. [8] adapted
the TC model to ferromagnets by formulating a first-principles
scattering theory of the coupled cavity-ferromagnet system
based on the Maxwell and the Landau-Lifshitz-Gilbert equa-
tion including the exchange interaction. A effectively one-
dimensional system of a thin film with in-plane magnetization
in a planar cavity was solved exactly in the linear regime,
exposing, for example, strong coupling to standing spin waves.
Maksymov et al. [28] carried out a numerical study of the
strong-coupling regime in all-dielectric magnetic multilayers
that resonantly enhance the microwave magnetic field. A
quantum theory of strong coupling for nanoscale magnetic
spheres in microwave resonators has been developed in the
macrospin approximation [29], but this regime has not yet
been reached in experiments.

Here we apply our classical method [8] to spherically
symmetric systems, i.e., a magnetic sphere in the center of
a spherical cavity. This is basically again a one-dimensional
problem that can be treated semianalytically and has other
advantages as well, such as a homogeneous dipolar field and
simple boundary conditions. The eigenmodes of magnetic
spheres have been studied in the “magnetostatic” approxi-
mation [30,31], in which the spins interact by the magnetic
dipolar field, disregarding exchange as well as propagation
effects, which may be done when λ � a, where a is the radius
of the sphere and λ the wavelength of the incident radiation.
Arias et al. [32] treated the interaction of magnetic spheres
with microwaves in the weak-coupling regime. In contrast, we
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address here the properties of the fully hybridized magnon-
polaritons beyond the magnetostatic approximation (but dis-
regard the exchange interaction), including the propagation
effects (reflection and transmission) of microwaves, thereby
extending the validity to λ < a. We are admittedly still one
step from the “exact” solution by disregarding the exchange
(as treated and discussed by Cao et al. [8]). Our calculated
microwave spectra are complex but help in understanding some
of the above-mentioned experiments.

This manuscript is organized as follows. In Sec. II, we
introduce the details of our model and derive the scattered
intensity and efficiency factors for a strongly coupled system
of a magnetic sphere and microwaves. In Sec. III, we present
and discuss our numerical results that demonstrate the effects
both due to the dielectric as well as magnetic effects on the scat-
tering properties and compare our results with experiments. In
Sec. IV, we conclude and summarize our findings.

II. MODEL AND FORMALISM

We model the coupling of the collective excitations of a
magnetic sphere to microwaves in a spherical cavity by the
coupled Landau-Lifshitz-Gilbert and Maxwell equations. We
employ Mie-type scattering theory, i.e., a rapidly converging
expansion into spherical harmonics [33–35]. We model the
incoming radiation as plane electromagnetic waves with
arbitrary polarization and wave vector that are scattered by
a cavity loaded by a magnetic sphere with gyromagnetic
permeability tensor ←→μ [36]. In order to understand the
experiments it is not necessary to precisely model the details
of the resonant cavity. Instead, we propose a generic model
cavity that is flexible enough to mimic any realistic situation
by adjusting the parameters. We consider a thin spherical shell
of a material with high dielectric constant εc/ε0 � 1, radius
R, and thickness δ that confines standing microwave modes
with adjustable interaction with the microwave source (see
Fig. 1). The spherical symmetry simplifies the mathematical
treatment, while the parameters R and δ allow us to freely tune
the frequencies and broadenings of the cavity modes.

The dynamics of the magnetization vector M is described
by the LLG equation,

∂tM = −γ M × Heff + α

Ms

M × ∂tM, (1)

with α and γ being the Gilbert damping constant and
gyromagnetic ratio, respectively. The effective magnetic field
Heff = Hext + Hx comprises the external and (collinear) easy
axis anisotropy fields Hext as well as the exchange field
Hx = J∇2M, with J being the exchange stiffness. Assuming
that perturbing microwave magnetic field and magnetization
precession angles are small,

M(r,t) = Ms + m(r,t), (2)

H(r,t) = Hext + h(r,t), (3)

where Ms is the saturated magnetization vector and m the
small-amplitude magnetization driven by the rf magnetic field
h, we linearize the LLG equation to

∂tm = −γ Ms ×
(

H(1)
eff − α

γMs

∂tm
)

− γ m × H(0)
eff , (4)

FIG. 1. (Color online) Plane wave with wave vector k0 coming
in at an arbitrary angle hits a large spherical cavity modeled by a
dielectric spherical shell of radius R, thickness δ, and permittivity
εc. The spherical cavity is loaded with a magnetic sphere of radius a

centered at the origin of the coordinate system.

where H(0)
eff = Hext and H(1)

eff = Hx + h. The response of fer-
romagnetic spheres is affected by exchange when their radii
approach the exchange length. Since the latter is typically a
few nm, we hereafter disregard the exchange interaction and
concentrate on the dipolar spin waves. In the frequency domain
and taking the z direction as the equilibrium direction for the
magnetization,

iωm = z × (ωMh − ωHm + iωαm), (5)

with ωM = γMs and ωH = γH0. We may recast Eq. (6) into
the form m = ←→χ · h. The magnetic susceptibility tensor ←→χ is

related to the magnetic permeability tensor by ←→μ = μ0(
←→
1 +←→χ ). We find

←→μ = μ0

⎛
⎝1 + χ −iκ 0

iκ 1 + χ 0
0 0 1

⎞
⎠, (6)

where χ and κ are given by

χ = (ωH − iαω)ωM

(ωH − iαω)2 − ω2
, (7)

κ = ωωM

(ωH − iαω)2 − ω2
. (8)

The permeability tensor appears in the Maxwell equations for
the propagation of the electromagnetic wave in a magnetic
medium.

Inside a spatially homogeneous medium a monochromatic
wave with frequency ω,

∇ × E = iωb, ∇ × h = −iωD, (9)

∇ · D = 0, ∇ · b = 0. (10)

The constitutive relation between the magnetic induction b,
electric displacement D, magnetic field h, and the electric
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field E inside this medium are

b = ←→μ · h, D = εspE, (11)

where εsp is the scalar permittivity of the medium. It follows
from Eqs. (10) and (11) that the magnetic induction b satisfies
the wave equation,

∇ × ∇ × (μ0
←→μ −1 · b) − k2

spb = 0, (12)

with k2
sp = ω2εspμ0.

The surrounding (nonmagnetic) medium is homogeneous
and isotropic with scalar magnetic permeability μ0, diver-
genceless magnetic field, and simplified wave equation ∇2b +
k2

spb = 0. Due to the spherical symmetry it is advantageous to
expand the magnetic field h into vector spherical harmonics as
[34,35,37,38]

h =
∑
nm

η̄nm

[
pnmM(1)

nm(k,r) + qnmN(1)
nm(k,r)

]
, (13)

where n runs from 1 to ∞, and m = −n, . . . ,n with prefactors
η̄nm = ηnmk0/(ωμ0),

ηnm = inE0

[
2n + 1

n(n + 1)

(n − m)!

(n + m)!

]1/2

. (14)

E0 is the electric field amplitude of the incident wave. The
vector spherical harmonics read [34,35,37,38]

M(j )
nm(k,r) = z(j )

n (kr)Xnm(r̂),

kN(j )
nm(k,r) = ∇ × M(j )

nm(k,r). (15)

z
(j )
n (kr) are spherical Bessel functions, Xnm(r̂) = LYnm(r̂)/√
n(n + 1) spherical harmonics, and L = −ir × ∇r the an-

gular momentum operator with ∇r the gradient opera-
tor. The electric field distribution is obtained by E =
(i/ωc)∇ × h. By invoking the vector spherical wave
function expansion for b and ←→μ −1 · b in the wave
equation Eq. (12) leads to the dispersion relation
for k(ω).

We match the field distributions inside and outside the
cavity to obtain the scattering solution for incident plane
microwaves. The field inside the spherical shell must be
regular, while the scattered component has to satisfy the
scattering wave boundary conditions at infinity. These con-
ditions are fulfilled by adopting the first kind of spher-
ical Bessel function jn(x) as the radial part for the in-
ternal distribution and the first kind of spherical Hankel
function h(1)

n (x) for the scattered component outside the
cavity

hs =
∑
nm

η̄nm

[
cnmN(3)

nm(k0,r) + dnmM(3)
nm(k0,r)

]
. (16)

The unknown scattering coefficients cnm and dnm are deter-
mined by the boundary conditions at the interface. We consider
here the situation in which the magnetic sphere is illuminated
by a plane wave with arbitrary direction of propagation and
polarization as indicated in Fig. 1. The incident field can be
expanded as

hinc = −
∑
nm

η̄nm

[
unmN(1)

nm(k0,r) + vnmM(1)
nm(k0,r)

]
. (17)

The expansion coefficients umn and vmn,

unm = [pθ τ̃nm(cos θk) − ipφπ̃nm(cos θk)]e−imφk , (18)

vnm = [pθ π̃nm(cos θk) − ipφτ̃nm(cos θk)]e−imφk , (19)

contain all information about the polarization vector and
direction of propagation, where p̂ = (pθ θ̂k + pφφ̂k) is the
normalized complex polarization vector, with |p̂| = 1 and
θk(φk) is the polar (azimuthal) angle of k0. Two auxiliary
functions are defined by

π̃nm = tnm

m

sin θ
P m

n (cos θ ), τ̃nm = tnm

d

dθ
P m

n (cos θ ), (20)

with tnm = i−nηnm/E0 and P m
n (x) the first kind associated

Legendre function.
In order to solve the full scattering problem including

the cavity we match the fields outside the cavity caused
by the incoming plane microwave and the spacer region
separating the magnetic particle and cavity. In the latter,
spherical Bessel functions of both the first and second kind
have to be included into the expansion. At the surface of
the magnetic sphere (r = a) we adopt the standard boundary
conditions

hi × er = hmid × er, (21)

Ei × er = Emid × er, (22)

while at the surface of the cavity, assuming that its thickness
is much smaller than the wavelength, [39,40]

[hmid − hout] × er = −ξ [er × Eout] × er, (23)

Emid × er = Eout × er. (24)

The indexes mid and out indicate the regions within and outside
of the cavity, respectively. The unit vector er is the outward
normal to the surfaces and ξ = iω(εc − ε0)δ with permittivity
of the cavity shell εc. By matching the field distributions in the
different regions the scattering coefficients are determined,
from which we calculate the observables.

At distances sufficiently far from the cavity, i.e., in the far
field zone, the intensity of the two polarization components I1

and I2 are

I1 ∼ E2
0

k2
0r

2
|S1(θ,φ)|2, (25)

I2 ∼ E2
0

k2
0r

2
|S2(θ,φ)|2, (26)

where θ (φ) is the polar (azimuthal) angle of the observer at
distance r . The scattering amplitude functions are

S1(θ,φ) =
∑
nm

[dnmτ̃nm(cos θ ) + cnmπ̃nm(cos θ )]eimφ, (27)

S2(θ,φ) =
∑
nm

[dnmπ̃nm(cos θ ) + cnmτ̃nm(cos θ )]eimφ, (28)

where the coefficients cnm and dnm characterize the scattered
component of the fields outside the cavity. We may now
compute the scattering and extinction cross sections as well
as their (dimensionless) efficiencies Qsca and Qext, which are
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the cross sections normalized by πR2, the geometrical cross
section of the cavity:

Qsca = 4

k2
0R

2

∑
nm

(|cnm|2 + |dnm|2), (29)

Qext = 4

k2
0R

2

∑
nm

Re(u∗
nmdnm + v∗

nmcnm). (30)

The extinction cross section represents the ratio of (angle-
integrated) emitted to incident intensity, i.e., with and without
the scattering cavity/particle between source and detector.
This factor measures the energy loss of the incident beam by
absorption and scattering. The series expansion in Eqs. (27)–
(30) is uniformly convergent and can be truncated at some point
in numerical calculations depending on the desired accuracy.
In the next section we present our results with emphasis on
the dielectric and magnetic contributions to the microwave
scattering.

III. RESULTS

Here we present numerical results on the coupling of
microwaves with a ferro- or ferrimagnet in a cavity based on
our treatment of Mie scattering of the electromagnetic waves
as exposed in the preceding section. It applies to a dielec-
tric/magnetic sphere centered in a (larger) spherical cavity, but
both may be of arbitrary diameter otherwise. We are mainly
interested in the coherent coupling between the magnons and
microwave photons in the strong or even ultrastrong coupling
regimes that can be achieved by generating spectrally sharp
cavity modes, by increasing the filling factor of the cavity,
or simply by increasing the size of the sphere. The RWA,
however, tends to break down as the coupling increases.

This has led to different coupling regimes beyond the weak
coupling, TC region, i.e., strong (SC) and ultrastrong (USC)
coupling regimes. In the SC region coupling strength has to
be comparable or larger than all decoherence rates, while in
the USC it has to be comparable or larger than appreciable
fractions of the mode frequency, g/ωc � 0.1.

We adopt the forward scattered intensities I1 ∼ |S1(θ =
π/2,φ = π )|2 and scattering efficiency factors as convenient
and observable measures of the microwave scattering by
a spherical target. In order to compare results with recent
experiments, we chose parameters for YIG with gyromagnetic
ratio γ /(2π ) = 28 GHz/T, saturation magnetization [41]
μ0Ms = 175 mT, Gilbert damping constant [15–17] α =
3 × 10−4, and relative permittivity [42] ε/ε0 = 15. Without
loss of generality we consider microwaves incident from the
positive x direction (θk = π/2 and φk = 0) and polarization
(pθ ,pφ) = (1,0), so its electric/magnetic components are in
the −z/y directions (static magnetic field and magnetization
H0‖z). Forward scattering is monitored by setting θ = π/2
and φ = π in Eq. (27). We also explore the dependence of the
observables on the scattering angles. We can remove the cavity
simply by setting ξ = 0.

In Fig. 2 the scattered intensity |S1(θ,π )|2 is depicted as a
function of frequency ω/2π and scattering angle θ focusing
first on a nonmagnetic sphere with radius a = 1.25 mm. The
angular dependence of the scattering with and without a
cavity (with R = 1.6 mm) is plotted in panels (a) and (b),
respectively. The eigenmodes of the dielectric sphere show
s-, p-, and d-wave characters in Fig. 2(a). s-wave scattering
dominates as long as the wavelength (reduced by εsp) does
not fit twice into the sphere, i.e., λ � a

√
εsp/ε0. The spherical

cavity, on the other hand, limits the isotropic scattering regime
to λ � R

√
εsp/ε0.
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FIG. 2. (Color online) Scattering intensity |S1|2 as function of scattering angle θ and frequency ω/2π is shown for (a) a dielectric sphere
of radius a = 1.25 mm and relative permittivity ε/ε0 = 15 and for (b) the same sphere in a cavity of radius R = 1.6 mm. In (c) the scattering
intensity is plotted for the same cavity as function of frequency and loading rate a/R. The dashed lines are guides for the eye.
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FIG. 3. (Color online) Panel (a) shows the scattering efficiency
factor Qsca as function of normalized magnetic field H0/Ms and
frequency ω/2π for a YIG sphere of radius a = 2 mm and relative
permittivity ε/ε0 = 15. Panel (b) shows results for a nonmagnetic
dielectric sphere. The character of the microwave modes sufficiently
far from the anticrossing with the spin waves is labeled by the
spherical harmonic indices (n,m).

In Fig. 2(c) we plot the forward scattered intensities I1 as
function of the load of the cavity by a dielectric sphere. The
eigenfrequencies of the cavity remain constant, while those
confined to the sphere shift to lower frequencies as ∼a−2. At
high loading rate the cavity modes are strongly mixed with
the modes in the sphere and all of them bend towards lower
frequencies.

Magnetism of the spheres can affect the microwave scat-
tering properties strongly, but the issue of hybridization of
cavity and sphere resonant microwave modes is still present.
A sufficiently large YIG sphere alone can therefore provide
strong-coupling conditions to the magnetization even without
an external resonator. To this end, the linear dimension of the
YIG sphere must be of a size that allows the internal resonances
of the sphere to come into play in the microwave frequency
range, i.e., when ka � π

√
ε0/εsp or λ � 2a

√
εsp/ε0. We

therefore have a (narrow) regime a
√

εsp/ε0 � λ � 2a
√

εsp/ε0

or 7.75 mm � λ � 15.49 mm (for Fig. 3) in which strong
coupling and s-wave scattering can be realized simultaneously
without a cavity. YIG spheres can typically be fabricated with
high precision for radii in the range [43] a = 0.9–2.5 mm.
In Fig. 3 for a a = 2 mm YIG sphere we observe a strong
anticrossing between the linear spin wave modes and the
sphere-confined standing microwaves. The YIG sphere is
therefore an efficient microwave antenna that achieves strong
and ultrastrong coupling without a cavity. It should be noted
that previous works [44–48], which have revealed the possi-
bility to use all-dielectric as well as all-magneto-dielectric
resonators without external resonator, were not considered
strong coupling.

Our results help to interpret recent experimental results on
YIG spheres in microwave cavities with reported coupling
strength that are comparable with the magnon frequency [22],
i.e., in the ultrastrong-coupling regime. In Fig. 4 the scattering
efficiency factor is shown as a function of H0/Ms and ω/2π .
Panel (a) addresses a YIG sphere of radii a = 1.25 mm in
a spherical microwave cavity of radii R = 1.6 mm, chosen
to be close to the leading dimensions of the cavity in the
experiments. Panel (b) holds for the same YIG sphere but
without cavity. The obvious anticrossing in Fig. 4(a) is a
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FIG. 4. (Color online) Scattering efficiency factor Qsca plotted as
function of normalized magnetic field H0/Ms and frequency ω/2π

for a YIG sphere of radius a = 1.25 mm and relative permittivity
ε/ε0 = 15 (a) in the center of a spherical cavity of radius R = 1.6 mm
and (b) without cavity.

signature of the emergence of the hybrid excitation that we
refer to as magnon-polariton. The anticrossing modes are
labeled by the mode numbers (n,m). For given n there are
two m = ±n anticrossing modes with coupling strengths
gn,n > gn,−n, where gn,m is the effective coupling strength of
the magnon mode (n,m) to the cavity. Figure 4(a) indicates that
the ultrastrong-coupling strength is indeed approached since
a splitting of g/2π = 2.5 GHz is achieved at a resonance
frequency of ω/2π  37.5 GHz. Beside the main anticrossing
with the (2,2) and (2, − 2) cavity modes, we observe tails from
other anticrossings with the (3,3) and (3,−3) modes at higher
frequencies, as well as the (1,1) and (1,−1) modes at lower
frequencies, which are standing electromagnetic resonance
modes confined by the YIG sphere. We may interpret these
as nearly pure spin wave modes that acquire some oscillator
strengths by mixing from far away resonances due to the
ultrastrong coupling with standing microwaves. This can be
verified by checking the scattering efficiency factor in
the absence of the cavity as in Fig. 4(b), which emphasizes
the antenna action of the YIG sphere.

Zhang et al. [22] indeed report additional, weakly coupled
“higher modes,” but without explaining their nature. They
report ultrastrong coupling between magnons and the cavity
photons only in the frequency range of 35–40 GHz, but data at
lower frequencies are not given. In Fig. 5 we extend the plots in
Fig. 4 to a larger frequency interval. We observe that the main
anticrossing in the frequency range of 35–40 GHz is caused
by the n = 2 modes, while hybridized modes originating
from the n = 1 resonance exist at the lower frequencies. The
unperturbed modes between the anticrossing gaps are therefore
not only due to the higher modes, but lower modes with n = 1
also contribute by the ultrastrong coupling. Two significant
curves in the left and right side of the higher unperturbed
modes originate from the anticrossing modes n = 1 (the left
one) and n = 2 (the right one) of the YIG sphere itself, as is
more clear in Fig. 5(b) (the computed lines are broader because
we use a relatively large κ for computational convenience). We
thereby find again that the strong-coupling magnon-polariton
may form also without cavity.

We concentrated on the dipolar spin wave excitations
driven by magnetic fields that are strongly inhomogeneous
due to a large dielectric constant. We disregard here exchange
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FIG. 5. (Color online) Scattering efficiency factor Qsca as func-
tion of normalized magnetic field H0/Ms and frequency ω/2π

for a YIG sphere of radius a = 1.25 mm and relative permittivity
ε/ε0 = 15 (a) in the center of a spherical cavity of radius R = 1.6 mm
and (b) in the absence of the cavity. Dashed lines indicate the
frequency range in Fig. 4.

interactions, thereby limiting the validity of the treatment to
YIG spheres much larger than the so-called exchange length
that for YIG is only a few nanometers. In other words, we
cannot properly describe all spin waves with relatively large
wave number or frequencies relatively much higher relative
to the FMR frequency. Indeed, in the planar configuration
spin wave resonances are observable for rather thick films [8].
Exchange-induced whispering gallery modes on the surface of
the YIG might therefore be observable even in thicker spheres,
but their treatment is tedious and beyond the scope of the
present paper.

IV. CONCLUSION

In this paper we implement Mie scattering theory to study
the interaction of dielectric as well as magnetic spheres with

microwaves in cavities by the coupled LLG and Maxwell
equations, disregarding only the exchange interaction. We
are mainly interested in the coherent coupling between the
magnons and microwave cavity modes in the strong- or
even ultrastrong-coupling regimes characterized by the mode-
dependent coupling strengths gn,m. We reveal that while in
the presence of a spherical cavity both strong and ultrastrong
coupling can be realized by tuning the cavity modes and
by increasing the filling factor of the cavity. Surprisingly,
these regimes can also be achieved by removing the external
resonator, due to the strong confinement of electromagnetic
waves in sufficiently large YIG spheres. In this regime, higher
angular momentum eigenmodes of the dielectric sphere partic-
ipate and the scattering shows s- as well as p-wave character.
We thereby transcend studies that focus on dipolar spin
waves in a magnetostatic framework [30,31] by considering
propagation effects via the full Maxwell equation. Our study
might be useful in designing optimal conditions to design
cavities in which YIG spheres are coherently coupled to, e.g.,
superconducting qubits, in microwave cavities for coherent
quantum information transfer [21].
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