
PHYSICAL REVIEW B 91, 214424 (2015)

Phase diagram and optimal switching induced by spin Hall effect in a perpendicular
magnetic layer
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In a ferromagnet/heavy-metal bilayer device with strong spin Hall effect an in-plane current excites
magnetic dynamics through spin torque. We analyze bilayers with perpendicular magnetization and calculate
three-dimensional phase diagrams describing switching by external magnetic field at a fixed current. We then
concentrate on the case of a field applied in the plane formed by the film normal and the current direction.
Here we analytically study the evolution of both the conventional “up”/“down” magnetic equilibria and the
additional equilibria created by the spin torque. Expressions for the stability regions of all equilibria are
derived, and the nature of switching at each critical boundary is discussed. The qualitative picture obtained
this way predicts complex hysteresis patterns that should occur in bilayers. Analyzing the phase portraits of the
system we find regimes where switching between the up and down states proceeds through the current-induced
state as an intermediate. The first step of such two-step process is fast and resembles ballistic switching for
the reasons discussed in the paper. Using numeric simulations we analyze the switching time and compare
it to that of a conventional spin torque device with collinear magnetizations of the polarizer and the free
layer.
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I. INTRODUCTION

Recently a number of investigations focused on bilayer
structures consisting of a ferromagnetic (F) layer and a
nonmagnetic (N) layer with strong spin-orbit interaction made
of heavy metals such as Pt, Ta, or W [1–10]. It was theoretically
predicted and experimentally observed that when an in-plane
electric current is being applied, the itinerant electrons inside
the nonmagnetic layers become spin polarized due to the
strong spin-orbit coupling and exert a spin torque on the fer-
romagnetic layers. This additional torque contributes to the
magnetization dynamics described by the Landau-Lifshitz-
Gilbert (LLG) equation. Up to now two models have been
proposed to account for the effects. One of them [2,5]
treats the bilayer structure as a two-dimensional system with
strong interfacial Rashba spin-orbital coupling due to the
structural inversion symmetry breaking in the direction normal
to the interface [11]. This model leads to a fieldlike torque
directed along m̂ × (je × ẑ) [12–16], where m̂ = M/Ms is the
magnetization unit vector (Ms represents the constant absolute
value of the magnetization M), je is the in-plane electric
current density, and ẑ is a unit vector perpendicular to the
plane of the layers. The other model [1,4,6–9] is based on the
interfacial diffusion of the pure spin current that originates
in the heavy-metal layers due to the bulk spin Hall effect
(SHE) [17–20] and leads to spin-transfer torque dynamics
[21,22] in the magnetic layers. In the SHE model the torque
is directed along m̂ × [m̂ × (je × ẑ)] [23]. This type of torque
is called a Slonczewski, or dampinglike, or adiabatic torque in
the literature.

Several experiments showed that an in-plane electric
current flowing through the structure is able to switch the
magnetization of the ferromagnetic layer [5,7–9]. In those
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experiments the F layers were magnetized perpendicular to
the film plane. It is believed that the observed magnetic
reversal can only be induced by the dampinglike torque. The
reasons for this are (a) experimentally measured switching
phase diagrams are in accord with the macrospin model
calculations [7,24], and (b) due to its symmetry, a fieldlike
torque, if there is any, does not favor either the “up”
or “down” state of the perpendicular magnetization, and
therefore should not contribute to switching. These arguments
seem to favor the SHE-based model; however, subsequent
calculations [25–27] suggested that the model based on
Rashba coupling generates both fieldlike and dampinglike
torques, and thus is also capable of describing the switching
(Fig. 1).

Despite the fact that the underlying torque mechanism is
still not fully understood, a thorough study of the switching
behavior is of importance for analysis and prediction. In
this paper we perform such a study describing the magnetic
layer within the framework of a macrospin model. This is
a reasonably good approximation when the sample size is
small enough for the magnetization to be close to uniform.
In larger samples the situation may be different and recent
experiments have shown that domain nucleation [28] and
propagation [24,29,30] need to be taken into account in those
cases. With macrospin approximation in place, our goal will
be to describe magnetic switching induced by an externally
applied field H at a fixed in-plane electric current. It will be
further assumed that the magnetic anisotropy energy of the F
layer corresponds to an easy axis directed normal to the layers
(perpendicular anisotropy)

E(m) = −K(m̂ · ẑ)2. (1)

Magnetization is switched between the up and down states
at critical fields Hc that form a surface in three-dimensional H

space. Without electric current and for the magnetic anisotropy
given by (1) this surface is an axially symmetric figure of
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FIG. 1. Schematic diagram of the bilayer spin Hall effect device.
Electric current j flows along the y axis.

revolution with a cross section given by the astroid curve
[31]. The presence of the in-plane current je breaks the axial
symmetry through the damping and the fieldlike spin torques.
However, the fieldlike torque can be compensated by an
external field in the je × ẑ direction, thus, its presence simply
shifts the entire critical surface without changing its shape.
For the purpose of finding the shape of the current-modified
astroid we may consider the damping torque alone.

In this paper we calculate the three-dimensional (3D)
critical surface in H space using the method of Refs. [32,33].
Astroid modification in the same setting was previously
studied in Refs. [7,34–36]. Earlier analytic studies dealt with
the properties of equilibria that exist at zero current and are
modified when the spin torque is turned on. This paper provides
results on the novel equilibria that are produced by the current.
The evidence for their existence was previously obtained
numerically [37] but an in-depth study of their properties,
including their role in magnetic switching, was lacking.

The outline of the paper is as follows. In Sec. II, we review
the theoretical approach of Refs. [32,33]. In Sec. III, we find
the three-dimensional Hc at a given current magnitude and
give analytic formulas for this multisheet surface. However,
the surface itself does not provide all the details of switching.
To understand them one has to determine which equilibria
are destabilized on each of its sheets. In Sec. IV, we perform
such an analysis for a particular cross section of the critical
surface, the one with H confined to the plane formed by the
electric current je and the film normal ẑ. After resolving the
implicit 3D analytic expressions, we find the corresponding
two-dimensional (2D) cross section of Hc. We further observe,
in accord with the previous numeric investigations [37].
that sufficiently large currents produce an extra equilibrium
in addition to the existing up and down ones. Analytical
expressions are derived for the position and stability region
of this equilibrium. Knowing the equilibrium states of the
system, we provide the description of all possible switching
events and discuss the usage of the modified astroid in
various experimental situations. In Sec. V, we analyze the
phase portraits of the system and study its evolution after the
destabilization of a given equilibrium. Here we show that
the extra equilibrium plays an important role in the switching
process, influencing its speed and fashion.

II. GENERAL DESCRIPTION OF THE
THEORETICAL APPROACH

Magnetization dynamics of the ferromagnetic layer in the
macrospin approximation is governed by the LLG equation:

dM
dt

= −γμ0(M × Heff) + α

Ms

(
M × dM

dt

)
, (2)

where α is the Gilbert damping factor, γ is the gyromagnetic
ratio, and Heff is the total effective field. The standard LLG
equation can be transformed into

dm̂
dt

= −m̂ × heff − αm̂ × m̂ × heff, (3)

where the field is rescaled as heff = Heff/Hk using the char-
acteristic anisotropy field Hk = 2K/μ0Ms , and the time is
rescaled as t → t ′ = γμ0Hkt/(1 + α2). Hereafter, all the
field-related terms that are written in lowercase letters are
dimensionless (normalized by Hk).

The method used to find the critical surfaces [32,33] can
be summarized as follows. A stationary solution m̂0 of Eq. (3)
satisfies the equilibrium condition m̂ × heff = 0, which indi-
cates that the magnetization at equilibrium should be parallel to
the total effective field, i.e., heff = λm̂0 with arbitrary λ. Total
effective field is given by heff = h − ∇ε + hsp, where h is
the external field, ε = E/(μ0HkMs) is the rescaled anisotropy
energy, and hsp is the spin-torque effective field

hsp = αj [m × (ej × ẑ)], (4)

where ej is a unit vector in the electric current direction and αj

is a spin-torque strength parameter, proportional to the electric
current density. Equation heff = λm̂0 can be solved for the
external field as h = λm0 + ∇ε(m0) − hsp(m0). The meaning
of this formula is that for any given magnetization direction
there is a whole line of external fields, parametrized by λ,
which make it an equilibrium—stable or unstable. In spherical
coordinates with three orthogonal unit vectors defined as
m̂ = sin θ cos φx̂ + sin θ sin φŷ + cos θ ẑ, θ̂ = ∂m̂/∂θ , and
φ̂ = (1/ sin θ )∂m̂/∂φ, we get

h = λm̂0 + (
∂θε − hθ

sp

)
0θ̂0 +

(
1

sin θ
∂φε − hφ

sp

)
0

φ̂0 , (5)

where ∂θ stands for ∂/∂θ and the superscript θ indicates
the θ̂ component of a vector field (e.g., hθ

eff = heff · θ̂ ), etc.
Equation (5) maps the 3D space {λ,θ0,φ0} to the 3D field
space {hx,hy,hz}.

Next, stability of equilibrium states is analyzed. This is
done by expanding Eq. (3) in small deviations m̂ = m̂0 + δm̂
up to the linear terms. Such an expansion produces two coupled
linear differential equations(

δ̇θ

sin θ0 ˙δφ

)
= A(θ0,φ0)

(
δθ

sin θ0δφ

)
, (6)

with matrix A(θ0,φ0) given by

A =
[
∂θ

(
αhθ

eff + h
φ

eff

)
1

sin θ
∂φ

(
αhθ

eff + h
φ

eff

)
∂θ

(
αh

φ

eff − hθ
eff

)
1

sin θ
∂φ

(
αh

φ

eff − hθ
eff

)
]
. (7)

Stationary solutions can be classified as stable or unstable
using the eigenvalues of A. For a 2 × 2 matrix the two
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eigenvalues μ± are uniquely determined by its determinant,
detA, and trace, trA [38]. An equilibrium is stable when both
eigenvalues μ± are either complex numbers with negative real
parts, or negative real numbers, which leads to the stability
criterion

detA > 0 and trA < 0 . (8)

For a given direction (θ0,φ0) this criterion selects the parts
of the field line h(λ,θ0,φ0) (5) for which (θ0,φ0) is not just
an equilibrium but specifically a stable equilibrium. Those
stable parts are specified by the intervals of λ where conditions
(8) are satisfied. By evaluating expression (7) at external
field specified by Eq. (5) one obtains A(λ). We find that
for the arbitrary form of spin torque and arbitrary anisotropy
energy, trA(λ) is a linear function λ with a negative linear
coefficient, and detA(λ) is a quadratic function of λ with a
positive quadratic coefficient. To simplify the expressions, we
introduce a vector field f = −∇ε + hsp and its matrix gradient

∇f ≡
[
∂θf

θ ∂θf
φ

∂φf θ ∂φf φ

]
(9)

(see Appendix A for the explicit expressions). The roots of
equations trA(λ) = 0 and detA(λ) = 0 can be respectively
calculated as

λT(θ0,φ0) = 1

2

[
∂θf

θ + ∂φf φ + 1

α
(∂θf

φ − ∂φf θ )

]
, (10)

λ±(θ0,φ0) = ∂θf
θ + ∂φf φ

2

±
√(

∂θf θ − ∂φf φ

2

)2

+ ∂θf φ∂φf θ . (11)

In terms of the critical values λT and λ±, the stability criteria
become

λ > Max(λT,λ+) if λT � λ−

λT < λ < λ− or λ > λ+ if λT < λ−.
(12)

When λ± are complex, detA is always positive and criteria (12)
can be further simplified as λ > λT. The full classification is
given in Appendix B.

Substituting functions λ+, λ−, or λT for λ in Eq. (5) one
generates three surfaces in the field space, which are denoted
S+, S−, and ST, respectively. Their physical meaning is that at
least one equilibrium changes its stability when external field
crosses such a surface. It is either locally destabilized when
the ST surface is crossed, or merges with a saddle point when
the S± surfaces are crossed [39]. The entire critical surface S

is constructed from the parts of S+, S−, and ST as explained in
Ref. [33].

III. 3D PHASE DIAGRAM

In this section we construct the three-dimensional critical
surface using the method of Sec. II. The dimensionless
perpendicular anisotropy energy has the form ε = − cos2 θ/2.
We set the in-plane current to be along the +ŷ direction,
and the current-induced field is then hsp = αj m̂ × x̂ with αj

given by αj = θSHje/j0, where θSH is the spin Hall angle,
j0 = 2eMsdFHk/� is the characteristic current density, and dF

FIG. 2. (Color online) Illustrative example of critical values (a)
λT (red) and (b) λ+/− (blue/green) as functions of (θ,φ) for α = 0.1
and αj = 0.1. Zero current critical values (independent of φ) are
plotted for reference as additional lines at φ = −π/2 using the same
color convention. For consistency, the same parameters and color
convention are used in the remaining figures in this section.

is the thickness of the F layer. For brevity, we drop index “0”
for the equilibrium direction. The critical values of λ calculated
according to (10) and (11) specialize to

λT(θ,φ) = sin2 θ

2
− cos2 θ − αj

α
sin θ cos φ, (13)

λ±(θ,φ) = sin2 θ

2
− cos2 θ ± sin θ

√
sin2 θ

4
− α2

j cos2 φ.

(14)

Figure 2 shows three critical values as functions of equilibrium
angles at nonzero current with αj = 0.1 and α = 0.1.

For practical calculations we decompose Eq. (5) into
Cartesian coordinates

hx = (λ + cos2 θ ) sin θ cos φ, (15a)

hy = (λ + cos2 θ ) sin θ sin φ − αj cos θ, (15b)

hz = (λ − sin2 θ ) cos θ + αj sin θ sin φ. (15c)

For an arbitrary λ these equations represent the mapping
of the (λ,θ,φ) space to the (hx,hy,hz) space for the case
of uniaxial anisotropy and chosen electric current direction.
When functions λT(θ,φ) (13) or λ±(θ,φ) (14) are substituted
for λ, one obtains parametric expressions for the critical
surfaces ST and S± with parameters (θ,φ) running through
all possible values, 0 � θ � π and 0 � φ � 2π .

For each (θ,φ) one has to choose the relevant S surfaces
[33] that correspond to critical λ’s bracketing the stability
intervals (12). For example, for αj = 0 one finds λT to be in the
midpoint of the interval (λ−, λ+) for any direction (θ,φ), and
therefore only S+ is relevant and constitutes the entire critical
surface. For nonzero current λT may leave the interval (λ−,
λ+) for some values of (θ,φ). In those cases destabilization
boundaries should be selected for every direction individually.
The selection of relevant critical λ surfaces is illustrated in
Fig. 3.

By substituting the relevant critical λ values into Eq. (15),
we plot the critical surface S as shown in Fig. 4. Three types
of modifications due to spin torque can be observed. First, the
original astroid is distorted forming the blue region bounded by
the S+ surface. Second, part of the S+ surface, where λT > λ+
is satisfied, becomes irrelevant. A red region in the figure
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FIG. 3. (Color online) Selection of relevant λ surfaces: (a) 3D
view of the λT and λ± surfaces and (b) the cross section at θ = π/2.
The relevant surfaces separate stable and unstable values of λ, as
illustrated by solid lines in (b).

is formed this way. Third, extra equilibrium points appear
in the field space where λT < λ− is satisfied, forming the
green region. While the task of constructing S is achieved,
its interpretation requires more work. Critical surface can be
a complicated self-crossing manifold [33]. To understand it
one has to specify which equilibrium is destabilized at each
surface, and on which side of the surface is this equilibrium
stable. A corresponding study for one cross section of S is
given in the next section.

FIG. 4. (Color online) Critical surface S: (a) 3D view; (b) side
view along the x axis; (c) side view along the y axis. For reference
purposes the conventional Stoner-Wohlfarth (SW) astroid is plotted
in (b) and (c) using a dashed black line. The same color convention
and parameters as in Fig. 2 are adopted.

IV. PHASE DIAGRAM IN THE y-z PLANE

The 3D phase diagram is quite difficult to use due to
the complicated shape of the critical surface S. Moreover,
experiments are often performed with the field being confined
within the y-z plane [7,24]. Here we study in detail a section of
S corresponding to the external field h confined to such a plane.
This section is a line S̄ in the 2D space (hy,hz). Note that if a
fieldlike component spin torque is present in the system, it has
to be compensated by an appropriate constant hx component
of external field in order for our results to be applicable.

A field in the y-z plane satisfies a constraint hx = 0.
According to Eq. (15a) this implies a relationship between
θ , φ, and λ. On the one hand, this relationship allows one to
express the equilibrium angles (θ,φ) as functions of (hy,hz)
and study how the equilibria evolve as a function of applied
field. On the other hand, Eq. (15a) can be used to find the
section S̄. While the surface S is given by a parametric formula
with independently varying θ and φ as explained in Sec. III,
the line S̄ is found from the same formula with θ and φ being
related to each other by a requirement that Eq. (15a) holds
with λ = λT,+,−(θ,φ).

A. Evolution of equilibrium states

Equation (15a) has three types of solutions: (I) φ = ±π/2,
(II) λ = − cos2 θ , and (III) θ = 0,π . Since the value of φ at
θ = 0,π is immaterial, type III can be considered as a special
case of type I. Thus we focus on the first two cases. For
definiteness, assume αj > 0.

Solutions of type I have sin φ = ±1. They are located on
the meridian of the unit sphere lying in the y-z plane. We will
call them on-meridian states. Eliminating λ from Eqs. (15b)
and (15c) one finds a system of equations for their polar angles

φ = ±π/2,
(16)

hy cos θ ∓ hz sin θ = ± sin θ cos θ − αj .

Depending on hy , hz, and αj there can be four, two, or zero
equilibrium states of type I.

Solutions of type II have λ = − cos2 θ . Equations (15b) and
(15c) read

hy = −αj cos θ,

hx = − cos θ + αj sin θ sin φ.

Solving them one finds

cos θ = −hy

αj

,

(17)
sin φ = hz − hy/αj√

α2
j − h2

y

with associated requirements |hy | � αj and |(hz −
hy/αj )/

√
α2

j − h2
y | � 1 that define their domain of existence.

Having φ �= ±π/2, type II solutions are away from the y-z
plane and will be called off-meridian states. They exist as a
pair with the same polar angle θ and azimuthal angles φ and
π − φ.

Equilibrium states can be visualized as points on the unit
sphere that change their positions when the experimental
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x
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h

S2
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OM1

OM2

Mup

Mdown

X

FIG. 5. Equilibrium states shown as points on the unit sphere
for small current αj > 0 and field h. Solid arrows show equilibria
displacements as h is increased at fixed αj . Dashed empty arrows
show equilibria displacements as αj is increased at fixed h. For
example, increasing field at fixed current causes an eventual merging
of points OM1, OM2, and S2 that produces point X.

parameters h and αj are varied (Fig. 5). In the absence of
current and external field the uniaxial magnet exhibits two
stable equilibria θ = 0,π : the up and down states. Due to the
axial symmetry of the system the entire equator of the unit
sphere forms a circle of unstable equilibrium states.

At nonzero current spin torque breaks the axial symmetry
of the problem even in the absence of magnetic field. For
αj �= 0, h = 0 the continuous set of unstable equilibria along
the sphere’s equator is reduced to four isolated equilibrium
points. Two of them are off-meridian states (OM1,2 in Fig. 5)
for which Eq. (17) gives θ = π/2 and φ = 0,π , i.e., the ±x̂

directions. The other two are on-meridian states S1,2 given by
Eq. (16). It will be shown below that they are saddle points.
For small αj the system has six equilibria: slightly displaced
up (Mup) and down (Mdown) on-meridian states, on-meridian
states S1,2 that are slightly displaced from the equator of the
sphere, and the ±x̂ states OM1,2 (Fig. 5).

The following useful rules apply to the on-meridian equilib-
ria described by Eq. (16): (1) Increasing current shifts points
Mup/down clockwise and points S1,2 counterclockwise along
the meridian (solid arrows in Fig. 5); as αj is increased, the
states S1 and S2 approach the up and down states, respectively.
At a critical current they merge pairwise and disappear. (2)
Increasing magnetic field shifts points Mup/down along the
meridian towards the field directions and points S1,2 away
from the field direction (dashed, empty arrows in Fig. 5).

Consider now the situation with a small fixed current and
a variable external field. For the discussion we will assume a
fixed direction of h between +ŷ and +ẑ directions (see Fig. 5).
Equations (17) show that as the field magnitude h is increased,
the off-meridian states approach the meridian and reach it at a
critical field magnitude. Since the two off-meridian states are
mirror symmetric with respect to the y-z plane, they reach the
meridian simultaneously and merge. Moreover, using Eq. (17)

one can show that the merging point also satisfies Eq. (16), so
actually a merging of two off-meridian and one on-meridian
equilibrium takes place. This triequilibrium merging is not
accidental. As discussed in Ref. [39], merging of equilibria has
to conserve the winding number and it would be impossible for
the two off-meridian equilibria with equal winding numbers to
merge without the participation of a third equilibrium with the
opposite winding number.

As h is increased further, the new equilibrium X, resulting
from the merging of S2, OM1, and OM2, remains on-meridian.
Analysis in the next section shows that it is an unstable focus,
analogous to the maximum energy point equilibrium of a
conventional (no spin torque) uniaxial magnet subjected to the
external field. In general, above the critical field the evolution
of the four on-meridian equilibria Mup, Mdown, S1, and X is
qualitatively similar to that found at αj = 0. We may conclude
that our system has two regimes: one at low magnetic field
where spin torque dominates, and another one at high field
where magnetic torque dominates. The spin-torque-dominated
regime is characterized by the presence of two OM equilibria
produced by current. In the field-dominated regime the current-
induced equilibria are gone.

These results are quite natural. The SHE system is equiva-
lent to a conventional spin-transfer device with spin polarizer p
directed along +x̂ [40]. Spin torque attracts the magnetization
to p and repels from −p. At very large currents spin torque
dominates all other torques, so, only two equilibrium points—
one close to p and another close to −p should remain. In our
system we find that it is enough for the spin torque to dominate
the magnetic field torque in order to produce these equilibria.
This happens because p is directed into a point on the equator
that is already an equilibrium, albeit unstable, of the system at
zero current.

B. Stability of equilibria analysis and switching phase diagram

In this section we are going to find the critical line S̄ of
equilibrium destabilization. It will be composed from parts
produced by type I and type II solutions.

1. On-meridian equilibria

Equations (13) and (14) show that for the on-meridian
states λT is the midpoint of λ± interval for any current value.
Therefore only λ+ is needed to calculate the critical surface.
By substituting λ = λ+(θ,φ) and sin φ = ±1 into Eqs. (15b)
and (15c), we get an exact parametric form of S̄M , the line
of on-meridian equilibria destabilization. It turns out to be
the same as the one found before [34] using an approximate
method.

hy = ± sin3 θ − αj cos θ,
(18)

hz = − cos3 θ ± αj sin θ.

By evaluating det A and trA for each on-meridian equilibrium
it is possible to conclude that the up and down equilibria are
stable foci, while the S1,2 equilibria are unstable saddle points.
The S̄M curve for various spin-torque strengths are shown in
Fig. 6.

When magnetic field h crosses S̄M , one of the stable
equilibria Mup/down merges with one of the saddles S1,2 and
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FIG. 6. (Color online) Modified astroid composed of S̄M (black)
and S̄OM [red (gray)] lines. Spin-torque strengths are (a) αj = 0, (b)
αj = 0.3, (c) αj = 0.5, and (d) αj = 0.7.

disappears. In fact, S̄M represents the SW astroid boundary
modified by the current [34]: The original astroid shape is
squeezed along one of the diagonal directions. The segments of
S̄M connecting the corner points of the astroid become unequal:
two of them grow with increasing αj , and the other two shrink.
The details of merging depend on whether the long or the
short segment is crossed by the field. On the short segment the
sign of the mz component of the disappearing equilibrium
is always opposite to the sign of the field component hz.
This property was satisfied everywhere on the conventional
SW astroid boundary, and we denote the short segment of
S̄M as S̄Mc with index “c” meaning “conventional.” On the
long segment the sign of mz is not determined by the sign of
hz. Indeed, points Mup and S1 merging on this segment have
mz > 0, and at the same time it can be crossed by a field with
hz > 0, if h is directed at a small enough angle to the y axis.
We denote the long segment as S̄Mu with index “u” meaning
“unconventional.”

2. Off-meridian equilibria

Next, we analyze the stability of the off-meridian equilibria.
Recall that for them λ = − cos2 θ and according to Eq. (14)
λ � λ− is automatically satisfied when λ± are real. Thus,
according to criteria (12), only the S̄T critical line is relevant
whether λ± are real or complex, and the stability condition for
these states is given by

λ − λT =
(

αj

α
cos φ − 1

2
sin θ

)
sin θ > 0. (19)

This inequality can be satisfied only for cos φ > 0, which
means that the OM2 equilibrium characterized by π/2 �
φ � 3π/2 is always unstable. The off-meridian equilibrium
with −π/2 < φ < π/2 can be stable. The critical line λ = λT

gives a destabilization boundary S̄OM for this equilibrium. Its

0.5 0 0.5

1

0

1

0.5 0 0.5

1

0

1

hy

h z

FIG. 7. (Color online) S̄OM boundaries for various damping fac-
tors with spin-torque strength set to αj = 0.5. To make lines
distinguishable, we adopt large damping parameters, with α/αj set to
be 0.8, 1.5, 1.9, and 2.1 (going from the outermost to the innermost
curves). At low damping regime S̄OM is very close to the boundary
of existence of the OM points [red (gray) dashed line].

analytic form is obtained from Eqs. (15b) and (15c) as

hz = hy

αj

±
√

αj
2 − hy

2

√
1 − α2

4αj
2

(
1 − hy

2

αj
2

)
. (20)

The S̄OM curve for various damping parameters at a fixed spin-
torque strength is shown in Fig. 7. From det A and trA analysis
it is possible to extract more detailed information about the
nature of the OM1,2 equilibria. We find that inside the domain
bounded by the S̄OM line OM2 is always an unstable node
(two real positive eigenvalues), and the OM1 equilibrium is a
stable focus (complex conjugate eigenvalues with negative real
parts)—see Appendix C for a complete analysis. As the field
increases and moves out of this domain, OM1 is destabilized
but not destroyed. It continues to exist, first as an unstable
focus, and then as an unstable node, until it finally merges
with the points OM2 and S2, as discussed in Sec. IV A. More
details of the OM1 state evolution are provided in Appendix C.

C. Current-field diagrams

Switching phase diagrams Figs. 6 and 7 describe exper-
iments performed at fixed current with magnetic field of a
fixed direction increased until switching happens at a critical
value hc. In a different type of experiment one can measure
how the hc threshold depends on the current magnitude. Such
experiments were indeed recently performed by Yu et al.
[24] (also numerically modeled earlier [35]). The hc(αj )
dependencies were measured for different field directions and,
quite surprisingly, it was found that for fields making a finite
angle with the y axis multiple switchings may occur. This fact
finds a natural explanation in the framework of our theory.
In terms of Fig. 6 the critical fields are determined by the
intersections of a straight line representing the field direction
with the lines S̄M and S̄OM . If the direction of the field is
defined by the angle θh with respect to the z axis, the former
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1.0 0.5 0.0 0.5 1.0
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Α j

h

FIG. 8. (Color online) Tilted current-field phase diagram at α =
0. The black and red (gray) lines correspond to hcM and hcOM ,
respectively. The solid lines represent the diagrams with a tilting
angle of the field set to be 15◦ with respect to the ŷ direction. The
dashed lines represent the diagram with h||ŷ. Opposite tilting happens
when the angle is negative.

intersection point hcM (αj ) can be found by solving Eq. (18)
with hy = hc sin θh, hz = hc cos θh. For the latter intersection
point hcOM (αj ) Eq. (20) should be used. The results are shown
in Fig. 8. One can see that for the field directed along the
y axis (θh = π/2) the dependence hcM (αj ) exhibits a sharp
peak at αj = 0. As the field is tilted away from the y axis,
the position of the peak moves and its initially symmetric
shape deforms. Eventually the deformation grows so big that
the function hcM (αj ) becomes multivalued, in accord with
experimental findings. Comparing the current-field diagram
with the experimental diagram (Fig. 3 of Ref. [24]) one can
see a good qualitative correspondence.

Here we show how the shape of hcM (αj ) can be understood
from the evolution of the modified astroid S̄M . As the current
is increased with αj > 0, the astroid is squeezed in the (1,−1)
direction and expanded in the (1,1) direction. The S̄Mu lines
approach the origin in the h space and the S̄Mc lines move
away from it. When the field is directed along the y axis, its
line intersects the S̄Mu boundary. Since this boundary moves
towards the origin with increasing αj , the function hcM (αj ) is
decreasing. However, when the field is directed at an angle to
the y axis, its line may initially cross the S̄Mc boundary. Since
S̄Mc moves away from the origin, the function hcM (αj ) would
increase. At a threshold value of current the field line goes
exactly through the corner point between the S̄Mc and S̄Mu.
At this point hcM (αj ) exhibits a cusp. For currents above the
threshold, the field line crosses S̄Mu and, just like in the h||ŷ
case, hcM (αj ) becomes a decreasing function. For some angles
θh there may be situations when the field line crosses both S̄Mc

and S̄Mu lines. This is when hcM (αj ) becomes multivalued and
complicated hysteresis patterns are realized.

The form of the other critical field line, hcOM (αj ) (red
curves in Fig. 8), is related to the evolution of the S̄OM line.
Since this line moves away from the origin in all directions,
hcOM (αj ) turns out to be an increasing function.

D. Discussion of the phase diagram

The S̄M and S̄OM lines together give the complete switching
phase diagram in the y-z field plane. For small values of αj the
critical line S̄M is qualitatively equivalent to the conventional
SW astroid, and the equilibrium merging process is similar:
There are four on-meridian equilibria for h inside the astroid,
and as the field crosses its boundary two of them merge and
disappear. Above the critical current αj = 1/2, the S̄M critical
line becomes self-crossing (Fig. 6). At the critical current
the S̄Mu lines touch each other at h = 0, so, the threshold
can be found from Eq. (18) with hy = hz = 0. Inside the
region of self-crossing there are no on-meridian equilibria, as
already observed in Ref. [34] and the Supplemental Material of
Ref. [7]. However, the Poincaré-Hopf theorem is not violated
due to the presence of the off-meridian equilibria.

In the absence of current the system in constant external
field h resides in one of the two stable M equilibria. As
αj is increased, the oval-shaped region of stability of the
OM1 state grows, and the area inside the modified astroid
S̄M shrinks. Moreover, the self-crossing region of S̄M , where
no on-meridian equilibria exist, also grows. Thus both Mup

and Mdown states eventually become unstable at some critical
currents α

Mup

j (αMdown
j ) and m switches to the OM1 state. What

happens if the current is subsequently decreased? The answer
to this question can be read from the hc(αj ) dependence
shown in Fig. 8. At a given h the off-meridian state remains
stable down to the current αOM

j obtained from the equation
h = hcOM (αj ). If αOM

j < αM
j , one would observe hysteretic

behavior of the system in the current interval between αOM
j and

αM
j . At the higher end of this interval the system switches from

an M state to the OM1 state. At the lower end it switches back
to an M state. As seen from Fig. 8, the length of the bistable
interval becomes larger for smaller h. At h = 0 using Eq. (20)
one finds αOM

j |h=0 = α/2. The value of αM
j at h = 0 was

already discussed—it corresponds to the first self-crossing of
S̄M , thus αM

j |h=0 = 1/2. For typical values of Gilbert damping
α ∼ 0.01 the hysteresis range is very large. It requires an initial
pulse of current of the order αj ∼ 1 to get to the OM state, but
after that the current can be reduced to αj ∼ α, and the OM

state can be comfortably studied at low currents. Experiments
with SHE devices [5,7] are already performed in the regime
αj ∼ 1, so the discussed hysteresis should be observable.

When magnetic field is set inside the domain of existence of
OM states but outside of their domain of stability, the system
has two unstable OM equilibria. It is possible to arrange
parameters so that there no M equilibria either (this happens
in the high damping, high current regime). In this case the
system has no choice but to follow some precession cycle, the
analysis of which is beyond the scope of the present paper.

V. DYNAMIC PROPERTIES

In this section we discuss what happens after the stability
boundaries are crossed and equilibria are destabilized.

A. Switching to the off-meridian state

Existence of a stable OM state within the area given by
Eq. (20) raises a question: When an M state is destabilized at
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(c)

FIG. 9. Sketches of the phase portraits on the stereographic plane describing the evolution of the system in a constant field h = +hŷ with
increasing current. The north and south poles are projected to the circle center and to infinity, respectively; the dashed circle is the projection
of the equator. (a) Field-dominated regime. Two basins of attraction exist for the Mup and Mdown equilibria. (b) Current-dominated regime with
the additional OM1,2 equilibria. The basins of attraction of Mup and Mdown are separated by the basin of attraction of OM1. Spin torques had
shifted Mdown through the south pole and it shows up in a different place on the stereographic plane. (c) Further increase of current results in the
merging of Mup and S1. The magnetization finds itself in the basin of attraction of OM1 and switches to the off-meridian state. A set of phase
portraits that represents the three cases above can be obtained with parameters (a) hy < 1, αj = 0; (b) hy = 0.05, αj = 0.3; and (c) hy = 0.15,
αj = 0.45.

the S̄M boundary, will the system switch to the other M state,
or to a stable OM state? To answer this question we plot the
flow diagrams (phase portraits) of the system. The results of
simulations are presented in the form of qualitative sketches
that emphasize the structure of the flow (Fig. 9).

In the field-dominated regime the flow is qualitatively
similar to that in the absence of the current. There are two
basins of attraction of stable points Mup and Mdown [white
and gray areas in Fig.9(a)]. The separatrix between the two
basins winds around the unstable focus X making an infinite
number of turns. As a result, near X the basins are finely
intermixed and a small change in initial conditions may change
the equilibrium where the system ends up. When the modified
astroid boundary is crossed, one of M points is destroyed. A
system initially residing in this point will switch to the other
M point.

Simulations in the current-dominated regime show three
basins of attraction. The one of the OM1 point [darkest area
in Fig. 9(b)] separates those of Mup (white area) and Mdown

(gray area). The white and gray areas touch at the point of
unstable equilibrium OM2. The important difference from
the field-dominated regime is that OM2 is an unstable node,
and not a focus. Thus, there is no winding of the separating
line around it and, consequently, no area of fine intermixing.
Figure 9(c) shows what happens when the current is increased
further so that Mup and S1 merge at the modified astroid
boundary. The phase portrait in the upper part of the unit
sphere qualitatively changes: The basins of attraction of Mup

and OM1 merge, forming a larger basin of attraction of OM1.
This transformation of the phase portrait does not affect the
qualitative picture in the lower part of the unit sphere and
the boundary between the basin of OM1 and Mdown. The end
result is that a system initially residing in Mup will switch to the
OM1 state with certainty. The latter statement, of course, only
applies to the case of slow, quasistatic change of parameters,
in which case one can be sure that m follows the stable point
with great accuracy. If parameters are changed at a finite speed,

there will be a lag between m and the equilibrium point, and a
more careful investigation is necessary.

B. Two-stage switching through the off-meridian equilibrium

Magnetization reversal is one of the most important
processes in magnetism that is linked to the magnetic data
storage process, such as in hard disk drives. Switching speed
and reliability are two crucial factors to the design of such
systems. In conventional spin-transfer torque switching spin
polarizer is directed along the easy axis of the free layer. Then
the magnetization moves towards the new equilibrium along a
spiral trajectory in a reliable but fairly slow manner [22,41–45].
Much faster reversals, which are often called precessional
switchings, have been designed. Some have magnetic field
applied orthogonally to the easy axis. Others use spin polarizer
perpendicular to the easy plane of the free layer (“magnetic
fan” geometry) [46–48]. In both cases the reversal process
is fast but requires the current or field pulse length to be
carefully adjusted. This is experimentally hard to achieve, and
consequently such methods may lead to greater error rates.

It was numerically found [35,37] that switching from an
M state to the OM1 state happens fast, without precession or
“ringing.” A recent micromagnetic simulation [49] confirmed
that this result is not an artifact of the macrospin approxi-
mation. Figure 10 shows the process of switching from the
Mup to the OM1 state. It is seen that the switching time is
of the order of ferromagnetic resonance period T (T = 2π

in dimensionless unit used in Fig. 10). In the framework of
our theory the absence of precession is explained as follows.
Switching is initiated by the destruction of an M equilibrium
due to its merging with an S point. Since in the current-
dominated regime there is no fine intermixing of the basins
of attractions, the flow lines originating from the merging
point do not exhibit a winding pattern, and consequently there
are no oscillations in the beginning of the switching process.
Oscillations at the end of the switching process, when m
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FIG. 10. (Color online) Evolution of the three components of the
magnetization in a two-stage switching process by direct numerical
integration of the LLG equation. The parameters are hy = 0.15, αj =
0.45, and α = 0.05. The field-current pulse is turned on at t = 0 and
off at t = 20.

approaches the focus OM1, are suppressed for another reason.
In order to cause a merging of M and S spin torque has to be
large with αj ∼ 1. But a large spin torque strongly increases
the effective damping, especially since the damping action
achieves its maximum at the position of OM1 [39]. This is
why, while strictly speaking OM1 is a focus, oscillations are
almost absent in practice.

Is it possible to utilize the fast nature of the Mup → OM1

switching to achieve a useful and fast procedure for transitions
between the zero-current states Mup and Mdown? We will
consider one possible Mup → Mdown switching scenario with
an intermediate stop in the OM1 state. Consider a system
that is initially in the Mup state. Magnetic field h is set in
the negative z direction during the whole switching procedure
with its magnitude satisfying h < 1, so that the Mup = +ẑ

state remains stable. First, we apply a short pulse of strong
current αj ∼ 1. The rise and fall times of the pulse are
assumed to be negligible. During the pulse time Mup does
not exist and m switches to OM1. The pulse length tp is
selected to be large enough for the switching process to be
accomplished. Importantly, this requirement sets only a low
bound for tp—there will be no harm in keeping the current
switched on for a longer time. According to Eq. (20) for hy = 0
the state OM1 has θ = π/2 and sits on the equator of the unit
sphere. After the end of the pulse the current is switched off
and the second stage of switching begins. Now the states Mup

to Mdown are stable again and m should go to one of them.
With field pointing down and αj = 0, the boundary between
the basins of attraction of Mup and Mdown is a parallel circle,
located above the equator of the unit sphere. Thus the second
stage starts with m residing in the basin of attraction of Mdown,
to which m eventually relaxes in a precessional manner. The
whole process is characterized by a fast first stage with strong
current and a slow second stage, during which the system is
not driven externally. While the total switching time is of the
same order of magnitude as in the conventional switching, the
“active” stage requires much shorter time, comparable to that
of precessional switching, making the procedure potentially
useful for special applications. An important drawback of this

switching scenario is that for a given direction of h it can be
performed only in one direction, e.g., in the discussion above
from Mup to Mdown. To switch back one would have to reverse
the direction of h.

It is interesting to note that the SHE device switching
between Mup and Mdown in a two-stage manner described above
can be alternatively viewed as a realization of a controlled-NOT

gate with hz being the control parameter.
Finally, we want to compare the duration of the fast stage of

SHE switching with the switching time of a conventional spin-
torque device, where the magnetic polarizer and the external
field are both pointing along the easy axis of the free layer.
Assuming the conventional spin torque to be described by a
constant spin-transfer efficiency factor g(θ ) = ḡ, we get hsp =
αj [m × ẑ] with αj = ḡj/j0 for its effective field. In this fully
axially symmetric case the switching time can be computed
analytically [50] as

ts = 1

2α(1 − h′)
ln

(
1 − mz0

1 − mz0/h′

)
, (21)

with h′ = h + αj/α and mz0 being the initial value of the
magnetization component along the easy axis. In the small-
damping (α � 1), large-current (αj/α � h ∼ 1) regime this
simplifies to ts ≈ − ln(1 − mz0)/(2αj ). Spin-torque switching
in collinear geometry requires some initial deviation of m from
equilibrium. This deviation is usually thought to come from
thermal fluctuations and can be evaluated by using Maxwell
equilibrium distribution for mz0,

ρ(mz0) = κ

√
1 − m2

z0e
−E(m)/kbT , (22)

where κ is the normalizing constant. To compare the switching
times we adopt a typical expected value at room temperature of
mz0 ≈ 0.99 (θ0 ≈ 0.5◦) [51]. For the purpose of switching time
comparison it is important to remember that conventional and
SHE devices differ in two aspects. On the theoretical level,
in conventional devices switching occurs at αj ∼ α, while
αj ∼ 1 is required for SHE switching. On a practical level,
conventional devices can bear smaller currents due to heating
problems. Thus achieving αj ∼ 1 in them is problematic. In
view of that, we perform two comparisons. First, we compare
the SHE and conventional switching times for αj = 0.5 and
h = 0. Here we get tp ≈ 14 and ts ≈ 5. Given the same
normalized spin-torque strength, a conventional device is faster
than the SHE one. Second, we compare the two devices
operating at their critical switching current with a small field,
say h = 0.02, pointing toward the −z direction. For the SHE
device we again use αj = 0.5 and the resulting switching
time does not change much, tp ≈ 13.5. For a conventional
device we use αj = α, then ts ≈ 29/α. In this sense the SHE
switching turns out to be much faster. In addition, since the
initial condition is a statistical average, the switching time
estimated in this fashion may cause a non-negligible error in
experiments.

VI. SUMMARY

We considered magnetic switching in a bilayer F/N struc-
ture with strong spin-orbit interaction using a macrospin
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TABLE I. Classification of stability.

Stability type Equilibrium type Eigenvalue equivalent trA-detA equivalent λ equivalent

Stable focus Complex Re[μ±] < 0 λ > Max(λT,λ+) if λT � λ−Sink trA < 0, detA > 0
Stable node Real μ− < μ+ < 0 λT < λ < λ− if λT < λ−
Unstable focus Complex Re[μ±] > 0 λ < Min(λT,λ−) if λT � λ+Source trA > 0, detA > 0
Unstable node Real 0 < μ− < μ+ λ+ < λ < λT if λT > λ+

Saddle Saddle point Real μ− < 0 < μ+ detA < 0 λ− < λ < λ+

approximation that is applicable to sufficiently small, single
domain devices. The method of Refs. [32,33] provides a
framework that can be applied to find the critical switching
surfaces for any magnetic single domain system with arbitrary
anisotropy and spin torque in an exact fashion. In this paper
we calculated the three-dimensional critical surface for a SHE
bilayer system with perpendicular anisotropy and in-plane
current using single domain approximation. For external fields
in the y-z plane, the SHE-induced spin torque not only
shifts the existing equilibria, but also generates two new,
current-induced equilibria.

First, we derive an analytic formula for the stability
boundary for the current-induced equilibria—in previous
numeric research this boundary was not distinguished from
the boundary of its existence. Second, in contrast to the other
authors we discuss the switching phase diagrams in the field
space at a constant current, and plot the modified astroid and
the oval-shaped stability region of the off-meridian state. We
then show how our qualitative description of the evolution
of the constant current switching boundaries can explain the
results of the other authors obtained for variable currents.
Third, we discuss in detail the evolution of equilibrium points
and the character of their destabilization on the switching
boundaries. This allows us to put forward a qualitative
understanding of the complicated hysteresis processes that
are found in SHE devices. Fourth, we point out that while a
large current is required to set magnetization into the current-
induced state, it remains in this state when current is decreased
to values that are α times smaller. Thus the spin-torque-induced
state can be studied at low currents. Fifth, we show that
in the current-dominated regime switching between up and
down equilibria can deterministically proceed through the
current-induced state. The first stage of this switching is very
fast, without ringing effects in the beginning or at the end,
and an explanation to this fact is provided. An example of
two-stage switching is considered and the switching time is
compared to that of a conventional collinear spin-torque device
with magnetic polarizer. Here it is found that, depending on
the limitations on current magnitude imposed by the factors
not related to spin-torque physics, either of the two devices
can operate faster.
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APPENDIX A

The explicit expression of each component in Eq. (9) can
be derived as

∂θf
θ = −∂θθ ε + ∂θh

θ
sp, (A1a)

∂θf
φ = −∂θ

(
1

sin θ
∂φε

)
+ ∂θh

φ
sp, (A1b)

∂φf θ = cos θ

sin θ

(
1

sin θ
∂φε − hφ

sp

)
− 1

sin θ

(
∂2
θφε − ∂φhθ

sp

)
,

(A1c)

∂φf φ = −cos θ

sin θ

(
∂θε − hθ

sp

) − 1

sin2 θ
∂2
φφε + 1

sin θ
∂φhφ

sp.

(A1d)

APPENDIX B

For a planar linear system of the form Ẋ = AX, the
eigenvalues of the 2 × 2 coefficient matrix A can be calculated
in terms of its trace and determinant as [38]

μ± = 1
2 (trA ±

√
(trA)2 − 4 detA). (B1)

Therefore knowing trA and detA tells us virtually everything
about the geometry of its solutions.

Besides stability, the types of an equilibrium is also
of importance in understanding the switching process. An
equilibrium of the same stability (except saddle point) can
be a node or a focus, depending on whether the eigenvalues
(B1) are real or complex. Therefore the differentiation of the
focus set and the node set requires another pair of critical
values λc± which satisfies

(trA)2 − 4 detA = 0. (B2)

It can be demonstrated that the relationships λc+ � λ+ and
λc− � λ− are always satisfied.

TABLE II. Classification of focus and node.

Equilibrium type Eigenvalues trA-detA equivalent λ equivalent

Node Real (trA)2 − 4detA > 0, detA > 0a λc− < λ < λ− or λ+ < λ < λc+
Focus Complex (trA)2 − 4detA < 0a λ < λc− or λ > λc+

aNote that (trA)2 − 4detA < 0 guarantees detA > 0.
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FIG. 11. The S̄OM , S̄c, and the equilibrium merging boundary are
plotted with solid, dashed, and dotted lines, respectively. The unstable
node, unstable focus, and stable focus regions are marked in different
gray scales. For illustrative purposes, we adopt αj = 0.6 and α = 1
to make the unstable regions large enough to be seen.

The classification of stability and equilibrium type in terms
of the eigenvalues and λ are summarized in Tables I and II,
respectively. The complete dynamic analysis of an equilibrium
needs to take into account the two factors together.

APPENDIX C

We mentioned the equilibrium types of the two off-meridian
equilibrium states and their evolution in Secs. IV A and IVB2.

To quantitatively understand the evolution of these two states,
we also need to find the critical λ which separates nodes and
foci, i.e., to solve Eq. (B2). Its solution in the off-meridian
case is given by

λc± = sin2 θ

2
− cos2 θ ± 1

2
sin2 θ

√
1 + α2

+αjα sin θ cos φ. (C1)

The two critical values λc± give another two surfaces in the
parameter space: one above λ+ and the other below λ−. Since
both the off-meridian equilibria have λ ≡ − cos2 θ < λ−, we
only need λc− to determine the equilibrium type.

The two off-meridian equilibria have different equilib-
rium types. For the one with π/2 < φ < 3π/2, we have
λ− � λ � λc−, therefore it is always an unstable node. The
other one which satisfies −π/2 < φ < π/2 may change the
equilibrium type as field changes. we can find two critical
curves by equating λ to λ− and λc−, respectively. The
former gives the destabilization boundary S̄OM , and the latter
corresponds to the type of transition boundary S̄c of the analytic
form

hz = hy

αj

±
√

α2
j − h2

y

√√√√1 − (
√

α2 + 1 − 1)2

4α2α2
j

(
1 − h2

y

α2
j

)
.

(C2)

The transition boundary S̄c touches S̄OM but never crosses it. It
separates the unstable region of the off-meridian equilibrium
into node and focus regions, as shown in Fig. 11.
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