
PHYSICAL REVIEW B 91, 214311 (2015)

Improved method of calculating ab initio high-temperature thermodynamic
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Thermodynamic properties of ZrC are calculated up to the melting point (T melt ≈ 3700 K), using density
functional theory (DFT) to obtain the fully anharmonic vibrational contribution, and including electronic
excitations. A significant improvement is found in comparison to results calculated within the quasiharmonic
approximation. The calculated thermal expansion is in better agreement with experiment and the heat capacity
reproduces rather closely a CALPHAD estimate. The calculations are presented as an application of a development
of the upsampled thermodynamic integration using Langevin dynamics (UP-TILD) approach. This development,
referred to here as two-stage upsampled thermodynamic integration using Langevin dynamics (TU-TILD), is
the inclusion of tailored interatomic potentials to characterize an intermediate reference state of anharmonic
vibrations on a two-stage path of thermodynamic integration between the original DFT quasiharmonic free
energy and the fully anharmonic DFT free energy. This approach greatly accelerates the convergence of the
calculation, giving a factor of improvement in efficiency of ∼50 in the present case compared to the original
UP-TILD approach, and it can be applied to a wide range of materials.

DOI: 10.1103/PhysRevB.91.214311 PACS number(s): 63.20.Ry, 65.40.Ba, 81.05.Je

I. INTRODUCTION

Zirconium carbide (ZrC) belongs to the class of ultrahigh-
temperature ceramics (UHTCs), which have a desirable
combination of metallic and ceramic properties, namely high
thermal and electrical conductivities, high toughness, and good
corrosion/oxidation resistance [1]. Given this combination of
properties, applications in extreme environments, such as those
encountered by materials within nuclear reactors and on shuttle
reentry and ultrasonic vehicles, are being actively investigated.

Despite their wide use, however, the thermodynamic prop-
erties and phase stabilities of UHTCs are poorly characterized,
due to the large experimental errors associated with measuring
the onset of melting at such high temperatures. This also
affects the phase characterization of ternary compounds such
as the Mn+1AXn (MAX) phases [2], since many binary UHTCs
constitute the end members of the ternary systems containing
these MAX phases.

In order to learn more about the phase stabilities of UHTCs
it would be desirable to perform ab initio calculations of
their thermodynamic properties up to the melting point. Such
results, along with the available experimental data, could
then be used in subsequent work to perform CALPHAD
reassessments of UHTC phase diagrams. However, accurate
finite-temperature ab initio calculations on UHTCs pose a
significant challenge due to the strongly anharmonic lattice
vibrations expected for such materials. The standard approach
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to calculating the vibrational contribution to free energy with
density functional theory (DFT) is the so-called quasihar-
monic approximation. This is a harmonic model of the normal
modes of the crystal, in which the harmonic frequencies are
renormalized simply by calculating them at fixed volumes
covering the range of thermal expansion. At any given volume
these frequencies enter the standard model for the harmonic
free energy as a function of temperature and, together with
the contribution due to electronic excitations, this free energy
can be minimized as a function of volume for any desired
temperature, yielding a prediction of the free energy versus
temperature from which all other thermophysical properties
can be derived. However, it has long been realized that at
temperatures higher than about half the melting point, a truly
anharmonic contribution should be included. This was first
attempted with DFT calculations in the SCAILD method
(self-consistent ab initio lattice dynamics) [3]. However, the
accuracy of the approximation of renormalized harmonic
frequencies in this approach is hard to evaluate [4]. A fully
anharmonic correction with DFT and classical lattice dynam-
ics was introduced by Grabowski and coworkers [5]. This
is the upsampled thermodynamic integration using Langevin
dynamics (UP-TILD) approach, on which the research re-
ported here is based. Another promising recent approach by
Montserrat et al. [6] uses a quantum mechanical perturbation
theory to include the effect of phonon-phonon interactions
to second order beyond a mean-field theory. This has the
advantage of including the quantum dynamics of the vibrations
also in the anharmonic contribution, and the associated ability
to evaluate expectation values of many quantum mechanical
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operators, whereas we can only include quantized vibrations
at the harmonic level. However, whereas our anharmonic
correction is based on purely classical dynamics, it is nonper-
turbative, and with the enhancement of the UP-TILD method
to be described here, its computational requirements are
modest.

Our chosen approach, which operates within the frame-
work of DFT, makes the calculation of ab initio fully
anharmonic properties tractable by (i) using thermodynamic
integration (TI) to calculate the anharmonic free energy
employing DFT quasiharmonic calculations as a reference, and
(ii) applying upsampling techniques to enable more efficient
calculation of DFT energies. Even within this computation-
ally more amenable framework, however, the calculation
of thermal properties for UHTCs still remains a significant
challenge due to the strong anharmonicity present in these
materials.

To address this challenge, a further development is pre-
sented in the present article in which the TI is performed
in two stages, starting from the quasiharmonic reference
state. The first stage switches the system into one executing
anharmonic vibrations described by an empirical interatomic
potential. In a second stage the empirical interatomic potential
is switched to the DFT energy in a constant-temperature
molecular dynamics (MD) simulation (similar to the approach
used by Alfè et al. in calculating the melting curve of iron
[7]). By fitting the potential directly to the full DFT internal
energy during a Langevin molecular dynamics (LD) run, a
better anharmonic starting point for the second stage of the
TI is provided, and a sizable gain in efficiency is achieved
compared to the original UP-TILD formulation. The second
stage of the TI is far more expensive computationally than
the first, since for the first stage of TI a number of static
DFT calculations are done beforehand, for the purpose of
obtaining the quasiharmonic dynamical matrix, and no further
DFT calculations are required during this stage. Only during
the second stage are time-consuming DFT MD runs required,
but now the phase space sampled by the classical potentials
is closer to the DFT sampling, and the convergence of the
TI is much faster. This efficiency gain makes the ab initio,
fully anharmonic calculations of the thermal properties of
ZrC (T melt ≈ 3700 K) [8] feasible, and will enable similar
calculations for other UHTC compounds to be performed with
a modest computer budget. It is worth emphasizing at this
point that the particular interatomic potentials used in these
calculations may affect the rate of convergence but will have no
effect on the converged results, because they are used purely to
provide intermediate reference states from which to reach the
final results more efficiently. We have tested both embedded
atom method (EAM) and modified embedded atom method
(MEAM) potentials.

The structure of the paper is as follows: In Sec. II the
theoretical background to the work is presented, including
a discussion of both the original UP-TILD formulation and
a description of our approach. In Sec. III, the interatomic
potential formalism and a sample parametrization is presented.
The fully anharmonic thermal properties for ZrC are reported
in Sec. IV, along with a discussion of the improvement in
efficiency provided by our approach. Concluding remarks are
given in Sec. V.

II. THEORETICAL BACKGROUND

A. The free energy

The starting point for determining thermal properties at
finite temperature is the Helmholtz free energy F (V,T ), where
V and T represent volume and temperature, respectively. Once
this has been calculated for the relevant range of V and T , the
thermal expansion Veq(T ) and the heat capacity CP (T ) can be
derived using

∂F (V,T )

∂V

∣∣∣∣
Veq(T )

= 0, CP (T ) = −T
∂2F (V,T )

∂T 2

∣∣∣∣
Veq(T )

.

(1)

In the present work, F (V,T ) is calculated from first
principles, within the framework of density functional theory
(DFT). To perform the calculations, it is necessary to express
the total free energy as the following separate parts:

F (V,T ) = Etot(V ) + F el(V,T ) + F qh(V,T ) + F ah(V,T ),

(2)

where Etot(V ) is the total energy at T = 0 K, F el(V,T ) is the
finite-temperature electronic free energy, F qh(V,T ) is the free
energy due to atomic vibrations, computed within the quasi-
harmonic approximation, and F ah(V,T ) is the anharmonic
free energy, which combined with the quasiharmonic free
energy provides the full vibrational free energy: F vib(V,T ) =
F qh(V,T ) + F ah(V,T ). The first three contributions can be
calculated straightforwardly [9–11] and do not represent a
challenge computationally. In particular, the basis for ob-
taining the electronic contribution is the finite-temperature
extension of DFT by Mermin [12] which provides a mapping
of the interacting electronic thermodynamic ground state at a
certain temperature to the electronic density. In combination
with the Kohn-Sham approach [13], finite-temperature DFT
allows the calculation of the electronic entropy within an
effective single-electron approach limited only by the accu-
racy of the exchange-correlation functional. Specifically, the
finite-temperature charge density is obtained as ρ(�r,T ) =∑

i fi(T )|ψi(�r)|2 with fi(T ) the Fermi-Dirac occupation
numbers and ψi the one-particle Kohn-Sham eigenfunctions
obtained using the above charge density and the appropriate
exchange-correlation functional. Thus, the electronic density
of states is not a ground state property but becomes temperature
dependent.

Calculating the anharmonic free energy, and thus the full
vibrational free energy, represents a considerable challenge,
however, and is addressed in the present work within a
reformulated version of the UP-TILD approach. A brief
summary of the original UP-TILD approach is presented in the
following section, followed by a description of our approach.

B. UP-TILD approach

Within the original UP-TILD formulation [5], thermody-
namic integration (TI) is used to calculate the anharmonic free
energy for a particular V and T using the quasiharmonic free
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energy as a reference state:

F ah =
∫ 1

0
dλ

[〈
EDFT

low − Eqh
〉
λ
+ 〈�E〉UP

λ

]
, (3)

where EDFT
low and Eqh are full DFT and DFT quasiharmonic

energies, respectively, the latter being generated from the
dynamical matrix, as required for every configuration of
the atoms during the LD run. The angular braces denote
a canonical ensemble average taken over a set of atomic
configurations generated from LD runs, using either quasihar-
monic atomic forces (λ = 0), full DFT atomic forces (λ = 1),
or a linear combination of the two (0 < λ < 1). The DFT
calculations used to compute 〈EDFT

low − Eqh〉
λ

use “reduced”
DFT parameters (energy cutoff and k-points sampling) which,
while sufficiently well converged to provide accurate atomic
forces, result in energies which have an almost configuration-
independent offset with respect to the fully converged energies.
This offset is corrected for by the second term,

〈�E〉UP
λ = 1

N

N∑
i

(
EDFT

high − EDFT
low

)
, (4)

where EDFT
high is the DFT energy evaluated using fully con-

verged DFT parameters, and where only a small number of
configurations (N ≈ 5) are required to evaluate this term. In
the above, all the energies EDFT

low , EDFT
high , and Eqh are referenced

with respect to their corresponding values at T = 0 K.
The use of reduced parameters in calculating

〈EDFT
low − Eqh〉

λ
, combined with the use of TI, provides

a scheme for calculating the anharmonic free energy which
is four orders of magnitude more efficient than a direct, MD
evaluation of the full vibrational free energy [5].

C. TU-TILD approach

The two-stage upsampled thermodynamic integration using
Langevin dynamics (TU-TILD) approach described here em-
ploys interatomic potentials to create an intermediate reference
state, making an efficient bridge from the quasiharmonic
reference state to the full anharmonic vibrational free energy
of Eq. (3). These classical potentials are generated by fitting
to the DFT energies EDFT

low of a DFT-LD run for a particular V

and T . The full anharmonic contribution to the free energy is
then calculated in the following two stages:

F ah =
∫ 1

0
dλ1[〈Epot − Eqh〉λ1 ]

+
∫ 1

0
dλ2

[〈
EDFT

low − Epot〉
λ2

+ 〈�E〉UP
λ2

]
, (5)

where the first term now provides the difference between the
free energies described by the DFT quasiharmonic dynamical
matrix and by the classical potential. Here, Epot is the energy
calculated using the potential, which as with the other energies
is referenced with respect to the T = 0 K energy. For the first
term, the forces used to generate the atomic configurations
vary linearly as a function of λ1 from quasiharmonic forces
(λ1 = 0) to potential forces (λ1 = 1). Since this term does
not involve any explicit DFT calculations it can be calculated
with minimal computational expense. For the second ensemble

average 〈EDFT
low − Epot〉

λ2
the forces vary linearly from potential

forces (λ2 = 0) to full DFT forces (λ2 = 1).
Since the number of terms required to evaluate

〈EDFT
low − Epot〉

λ2
to a given precision is proportional to

the variance σ (EDFT
low − Epot)2, deriving a potential which

minimizes this variance should allow for the calculation
of 〈EDFT

low − Epot〉
λ2

using significantly fewer configurations,
providing a more efficient scheme for the calculation of the
anharmonic free energy.

III. INTERATOMIC POTENTIALS

A. Modified embedded atom method

The potentials optimized within this work have been
derived within the modified embedded atom method (MEAM)
formalism [14–16], which is based on the embedded atom
method (EAM) [17] but with the additional inclusion of
angular forces. MEAM potentials have been derived and
applied to various elements and alloys encompassing a wide
range of bonding characteristics [18,19]. In the present work,
the reference-free formulation of the MEAM [20] is used as
it removes the need to specify a reference structure, which
otherwise restricts the form that the pair potentials can take.
This enables greater variational freedom in the fitting of
energies and atomic forces.

Within the reference-free MEAM formalism, the total
energy of a system of N atoms is expressed as

E =
N∑

i=1

Eemb
αi

(ρi) + 1

2

N∑
i �=j

φαi ,αj
(rij ), (6)

Eemb
α (ρ) = aαρ

1
2 + bαρ2 + cαρ3, (7)

ρi = 2ρ
(0)
i

1 + e−τi
, (8)

τi =
3∑

l=1

t
(l)
i

(
ρ

(l)
i

ρ
(0)
i

)2

, (9)

where φαi,αj
(rij ) is the pair potential between atoms i and j

with separation rij , Eemb
α (ρi) is the embedding energy function,

ρi is the background density at site i, ρ(0)
i is the sum over partial

densities as encountered in typical EAM potentials,

ρ
(0)
i =

N∑
j �=i

f (0)
αj

(rij ), (10)

and where ρ
(l>0)
i are angular contributions to the background

density specific to the MEAM approach (setting these to zero
recovers the standard EAM formalism). The latter introduces
bond angles (θjik) into the formalism:

(
ρ

(l)
i

)2 =
N∑

j,k(�=i)

f (l)
αj

(rij )f (l)
αk

(rik)P (l)(cos θjik), (11)

where f (l>0)
αi

are termed the partial background density
contributions and P (l) (l = 0, . . . ,3) are Legendre polyno-
mials: P (0)(x) = 1, P (1)(x) = x, P (2)(x) = (3x2 − 1)/2, and
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P (3)(x) = (5x5 − 3x)/2. Although these functions are conven-
tionally referred to as “electron” densities, we do not suppose
they have any relation to the real electron density, and regard
them purely as empirical fitting functions. The partial density
contributions and also the pair potentials are parametrized as
sums over cubic terms:

f (l)
αi

(r) =
2∑

n=1

a(n,l)
αi

(
r (n,l)
αi

− r
)3

�
(
r (n,l)
αi

− r
)
, (12)

φ(l)
αi ,αj

(r) =
2∑

n=1

b(n)
αi ,αj

(
s(n)
αi ,αj

− r
)3

�
(
s(n)
αi ,αj

− r
)
, (13)

where a(n,l)
αi

, b(n)
αi ,αj

, r (n,l)
αi

, and s(n)
αi ,αj

are parameters to be
optimized and where �(r ′ − r) is a step function, providing a
cutoff for r ′ > r .

Note that in the present work, two pairwise terms are used
for each of the partial density contributions and pair potentials.
In addition, a maximum cutoff radius is imposed: r (n,l)

αi
, s(n)

αi ,αj
<

4.4 Å, so that up to second-nearest-neighbor interactions are
included in the potential (as well as a small fraction of third-
nearest-neighbor interactions due to thermal fluctuations) [21].

B. Fitting strategy

Rather than generating potentials for all V and T across
which the anharmonic free energy is to be calculated, poten-
tials are instead optimized only at T = 3800 K (the largest
temperature to be considered in the subsequent anharmonic
calculations). For each value of V , the T = 3800 K potential
is then used to provide the intermediate reference state not just
at the melting point but also for all other values of T . This
strategy reduces the overall computational cost of generating
the potentials, which must be balanced against the marginal
improvement in efficiency in using temperature-dependent
potentials for the calculation of the anharmonic free energy.

The MEAM potentials were optimized using the MEAMfit
fitting code [22], with the variance in the error of the fitted
energies taken as the objective function to be minimized:

σ
(
EDFT

low − Epot
)2 = 〈(

EDFT
low − Epot

)2〉 − 〈
EDFT

low − Epot
〉2
,

(14)

where the ensemble averages are taken over fitting sets each
containing 1000 EDFT

low energies. These energies and their
associated atomic configurations are generated from DFT LD
runs, and can be reused when the λ = 1 ensemble averages of
Eq. (5) are calculated in Sec. IV. Typical optimized values of
σ (EDFT

low − Epot) are found to be of the order ∼4 meV/atom at
T = 3800 K. As a specific example, the optimized potential

for V = 14.26 Å
3
/atom and T = 3800 K is presented in

Table I , for which a value σ (EDFT
low − Epot) = 3.4 meV/atom

was obtained.

IV. CALCULATIONS

A. Computational details

The DFT calculations were performed with the VASP
software package [23–26] using both LDA and GGA

TABLE I. Parametrization of the ZrC MEAM potential used for

V = 14.26 Å
3
/atom and T = 3800 K (see main text for function

definitions and descriptions).

Embedding functions
a (eV) b (eV) c (eV)

Eemb
Zr 0.1746 −2.2773 × 10−5 −1.7412 × 10−6

Eemb
C 2.3486 −4.8510 × 10−4 1.7512 × 10−9

Pairwise functions
a(1) b(1) (Å) a(2) b(2) (Å)

f
(l=0)

Zr −49.5413 2.0981 5.0457 3.5321

f
(l=1)

Zr −7.3363 3.3746 7.1910 3.5267

f
(l=2)

Zr 1.8025 3.3967 18.0434 2.4384

f
(l=3)

Zr −6.2369 3.4621 5.0754 3.9220

f
(l=0)

C −13.3902 2.6382 0.5372 4.4000

f
(l=1)

C −2.0187 3.8652 −0.8673 2.6386

f
(l=2)

C −9.5178 4.2405 7.5633 4.3771

f
(l=3)

C −5.8925 3.7789 3.7078 3.6166

a(1) (eV) b(1) (Å) a(2) (eV) b(2) (Å)

φZr,Zr 1.2909 3.7638 3.9528 2.1817

φZr,C 3.8086 2.4008 1.6265 3.1136

φC,C 20.1904 4.3969 − 19.6642 4.4000

Background density prefactors
Zr C

t (1)
α 5.7609 4.1455

t (2)
α −10.7622 −1.0892

t (3)
α −0.7883 −0.4435

exchange-correlation functionals. The projector-augmented
wave method is used [27,28], with 4s- and 4p-Zr electrons
included as valence states. ZrC has a simple cubic (rocksalt)
structure, and in the present case is taken to have a stoichio-
metric composition (although experimentally it is normally
found to have a slightly substoichiometric composition, ZrCx ,
with x = 0.95–1). The plane-wave cutoff and the k-point
convergence were adjusted separately for each of the free
energy contributions to ensure convergence of the free energy
contributions to within ±1 meV/atom at the melting point in
each case. The converged values of the DFT parameters along
with the supercell dimensions for each free energy contribution
are reported in Table II.

The quasiharmonic contribution, F qh(V,T ), is calculated
using the direct method [29], with a mesh consisting of five vol-

umes (V = 12.85 Å
3
/atom, 13.23 Å

3
/atom, 13.47 Å

3
/atom,

13.83 Å
3
/atom, and 13.87 Å

3
/atom for the GGA).

For F el(V,T ), Mermin’s finite-temperature formulation of
DFT is used, with a mesh of 10 volumes and 10 temperatures
constructed in the relevant region. Temperatures were chosen
to span the range (0 K, . . . , 3800 K). Note that for these cal-
culations as well as others, a slightly larger upper temperature
limit of 3800 K is used (T melt ≈ 3700 K) to provide a better
basis for fitting analytic functions to the free energy contribu-
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TABLE II. The k-point Monkhorst-Pack meshes and plane-wave
cutoffs used to calculate Etot(V ), F el(V,T ), F qh(V,T ), and F ah(V,T ),
as defined in Eq. (2). Supercell sizes in units of the 8-atom
conventional cubic cell are also shown.

Supercell size k-point grid Ecut (eV)

Etot(V ) 1 × 1 × 1 16 × 16 × 16 700
F el(V,T ) 1 × 1 × 1 24 × 24 × 24 700
F qh(V,T ) 2 × 2 × 2 8 × 8 × 8 700
F ah(V,T ) 2 × 2 × 2 8 × 8 × 8 700

tions. The temperature range in turn determines the relevant
range for the volumes: Veq(T = 0 K), . . . ,Veq(T = 3800 K),
with Veq(T = 3800 K) ≈ 1.15Veq(T = 0 K). A fourth-order
polynomial in terms of V and T was then used to fit F el(V,T )
(
∑

i,j V iT j with i � 0, j � 1, and i + j � 4).
For the fully anharmonic calculations, the same set of V

values as for the quasiharmonic calculations are used, and five
values are used to span the temperature range (T = 760 K,
1900 K, 2500 K, 3200 K, and 3800 K). Furthermore, to
perform the numerical integration over the coupling parameter
λ2 [second term in Eq. (5)], five values are used: λ2 = 0,
0.15, 0.5, 0.85, and 1. These values were chosen to reflect the
dependence of 〈EDFT

low − Epot〉
λ

on λ, which mainly followed
a linear dependence except for slight deviations from linearity
close to λ = 0 and λ = 1.

LD simulations were performed to evaluate the ensemble
averages using a time step of 3 fs. As described in Sec. II B,
the LD runs are performed using reduced DFT parameters, and
then subsequently upsampled using a small number of fully
converged calculations. The optimal choice for these reduced
DFT parameters was determined by calculating F ah(V,T )

for V = 13.87 Å
3
/atom and T = 3800 K and finding the

smallest values of the reduced DFT parameters which still
gave the correct free energy to within ±1 meV/atom upon up-
sampling. Reduced parameters of 500 eV for the plane-wave
cutoff and a grid of 2 × 2 × 2 Monkhorst-Pack k points were
thus obtained.

Simulations were run until the standard deviation of the
canonical ensemble average, 〈EDFT

low − Epot〉
λ
, was less than

1 meV /atom. The longest runs were necessary for the T =
3800 K and λ = 0 ensemble averages, with ≈1000 LD steps
required in these cases. Once calculated for the full set of
volume-temperature points, the 25 F ah(V,T ) values were
used as fitting input for a smooth parametrization of the free
energy in terms of a single temperature and volume-dependent
Einstein frequency, ωah = a0 + a1T + a2V , with a0, a1 and
a2 taken as fitting coefficients [5]. This enables us to take
smooth first and second derivatives as required for evaluating
the thermophysical properties.

B. Results

From the total energy at T = 0 K, Etot, equilibrium lattice
constants of a = 4.658 Å and a = 4.724 Å were found within
the LDA and GGA, respectively, consistent with previous
theoretical results (a = 4.66 to 4.69 Å for LDA, Refs. [30]
and [31], and a = 4.70 to 4.72 Å for GGA, Refs. [30–34]).
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FIG. 1. (Color online) Heat capacity at constant pressure (per
mole of formula units) within the quasiharmonic approximation for
both LDA and GGA results.

From the quasiharmonic calculations, the thermal prop-
erties were found to depend strongly on the choice of
exchange correlation functional. This is shown in Fig. 1,
where the heat capacity at constant pressure, calculated within
the quasiharmonic approximation [i.e., from the free energy
F (V,T ) = Etot(V ) + F qh(V,T )], is plotted for both LDA and
GGA. One sees a good agreement between the LDA and GGA
results up to T ≈ 1500 K; however above this temperature
the GGA results increase markedly, diverging at T ≈ 3400 K
(≈300 K below the melting point).

The same behavior has been reported previously for
Au [35], where the heat capacity calculated within the
quasiharmonic approximation diverged in a similar manner
for the GGA results. In that work it was found that the
inclusion of anharmonic contributions only partially corrected
this unphysical divergence, which could be fully removed
by including a treatment of exchange and correlation within
the random phase approximation (RPA). Application of the
RPA, although more costly, is well known to correct some
of the shortcomings of the GGA and LDA approximations,
but is beyond the scope of the present work. Thus most of
the thermodynamic properties have been calculated here only
within the LDA, which did not give this spurious divergence
with temperature.

Thermal expansion and constant-pressure heat capacity
curves are presented in Figs. 2 and 3, respectively, for
quasiharmonic (qh), quasiharmonic + electronic (qh+el), and
quasiharmonic + electronic + anharmonic (qh+el+ah, or
“full vibrational”) calculations, alongside the experimental
results. The effect of the electronic contribution can be seen by
comparing the qh+el and qh curves. For the thermal expansion,
the electronic contribution results in only a small change, with
the qh+el value at the melting point only 4% larger than the
corresponding qh value. For the heat capacity, however, a larger
change is found, with the qh+el value at the melting point 15%
larger than the qh value.

These results differ from recently published calculations
[37], which found a much smaller electronic contribution to
the heat capacity (≈1% increase at 3000 K in contrast to
an increase of 9% at 3000 K in the present work). This
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FIG. 2. (Color online) Linear thermal expansion within the LDA
for different levels of approximation, including quasiharmonic (qh),
quasiharmonic + electronic (qh+el), and quasiharmonic + electronic
+ anharmonic (qh+el+ah), compared against experimental results.

discrepancy was found to be due to the use of different
functions to describe the excitation of electrons to states above
the Fermi level [36]. We used the Fermi-Dirac distribution
here, whereas the original calculations [37] were performed
with Methfessel-Paxton smearing [38].

Inclusion of the anharmonic contribution strongly affects
both the thermal expansion and heat capacity: The thermal
expansion at the melting point is found to be 20% smaller for
the full vibrational curve than for the qh+el curve, whereas
a reduction of 15% at the melting point is found in the case
of the heat capacity. Coincidentally for the heat capacity, the
full vibrational results are very close to the quasiharmonic
results, with the anharmonic contribution effectively canceling
out the electronic contribution, an effect found previously
also for other materials [39]. For the thermal expansion this
is not the case, with the full vibrational thermal expansion
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FIG. 3. (Color online) Heat capacity at constant pressure (per
mole of formula units) for different levels of approximation, includ-
ing quasiharmonic (qh), quasiharmonic + electronic (qh+el), and
quasiharmonic + electronic + anharmonic (qh+el+ah), compared
against experimental results.

FIG. 4. (Color online) Total time taken to compute
〈EDFT

low − Epot〉
λ

for T = 3800 K and V = 13.87 Å3/atom using 24
cores plotted against the TI coupling parameter, λ. Results are shown
for both UP-TILD and TU-TILD methods.

significantly lower than both the quasiharmonic and qh+el
thermal expansions.

For the thermal expansion the full vibrational results
represent an improvement over the qh+el results, with values
brought within experimental error of Touloukian’s results,
which represent a critically assessed average over all of the
available experimental data [40]. For the heat capacity, there
is a large experimental error associated with the directly
measured values [8,41–45], so that in fact both the qh+el
and the full vibrational results lie within the scatter of this
experimental data. A more useful quantity for comparison in
this case is the CALPHAD-derived heat capacity [8]. Within
the CALPHAD approach, all available experimental data
(and associated experimental errors) are incorporated within a
single model, which is carefully optimized to provide the best
possible fit to the data. Within this approach, the heat capacity
is calculated up to the melting point, and the result is found
to be in excellent agreement with the full vibrational curve of
this work, but in marked disagreement with the qh+el result.

C. Calculation efficiency

The TU-TILD calculations presented here represent a very
sizable improvement in efficiency compared to calculations
performed within the original UP-TILD scheme. To quantify
this improvement, the anharmonic free energy at T = 3800 K

and V = 13.87 Å
3
/atom was also computed using the original

UP-TILD scheme. The CPU times necessary to compute
the corresponding ensemble averages (〈EDFT

low − Eqh〉
λ

and
〈EDFT

low − Epot〉
λ

for the original UP-TILD and TU-TILD
methods respectively) are then plotted in Fig. 4 as a function
of the TI coupling parameter, λ. The TU-TILD approach has
reduced computational times to only 24 hours on 24 cores for
each λ value, compared to at least 20 days with the original
UP-TILD approach. This is also illustrated in Fig. 5, where
〈Epot − Eqh〉λ is plotted for λ = 0 as a function of the number
of configurations used to evaluate this average for both MEAM
and quasiharmonic references. Taken across all λ, V , and T
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FIG. 5. (Color online) 〈Epot − Eqh〉λ for λ = 0, relative to its
converged value, plotted against the number of configurations used
to evaluate the quantity for both UP-TILD and TU-TILD methods.
Inset: Zoomed-in view of the plot at the origin.

values, an overall factor of 50 improvement in efficiency is
achieved compared to the original UP-TILD approach.

V. CONCLUSIONS

The thermal expansion and heat capacity of ZrC have been
calculated up to its melting point (≈3700 K) using DFT within
the local density approximation. The full anharmonicity of lat-
tice vibrations is included, besides the electronic contribution.
The effect of anharmonicity is found to be responsible for a
reduction in these properties of 20% and 15%, respectively, at
the melting point in comparison to quasiharmonic calculations.
The anharmonic correction brings the calculated thermal
expansion into better agreement with experimental values, and

the heat capacity into excellent agreement with CALPHAD
results.

The calculations presented here represent an application
of the two-stage upsampled thermodynamic integration using
Langevin dynamics (TU-TILD) approach. In the original
UP-TILD approach, a single thermodynamic integration was
performed from the quasiharmonic Hamiltonian to the fully
anharmonic DFT Hamiltonian. Our approach is to divide the
thermodynamic integration into two stages. We use interatomic
potentials to describe an intermediate reference state, which
is the end point of a first thermodynamic integration from
the quasiharmonic reference state and the starting point for
a second thermodynamic integration to the fully anharmonic
DFT Hamiltonian. This development achieved the same level
of accuracy while increasing the efficiency of the calculation
by about a factor of 50. The gain in efficiency, although not the
value of the final free energy, should depend to some extent
on the potential used for the intermediate reference state, for
which we adopted a MEAM potential, fitted to the energies of
molecular dynamics configurations close to the melting point.
The MEAMfit code [22] is freely available for this purpose.
Our procedure will be generally applicable to other ultrahigh-
temperature ceramics, and indeed to a wide range of materials.
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[34] S. Méçabih, N. Amrane, Z. Nabi, B. Abbar, and H. Aourag,

Physica A 285, 392 (2000).

[35] B. Grabowski, S. Wippermann, A. Glensk, T. Hickel, and J.
Neugebauer, Phys. Rev. B 91, 201103 (2015).

[36] S. Iikubo (private communication).
[37] S. Iikubo, H. Ohtani, and M. Hasebe, Mater. Trans. 51, 574

(2010).
[38] M. Methfessel and A. T. Paxton, Phys. Rev. B 40, 3616 (1989).
[39] A. Glensk, B. Grabowski, T. Hickel, and J. Neugebauer, Phys.

Rev. Lett. 114, 195901 (2015).
[40] Y. S. Touloukian and E. H. Buyco, Thermophysical Properties

of Matter, TPRC Data Series, Vol. 13 (Plenum Press, New York,
1977).

[41] M. M. Mebed, R. P. Yurchak, and L. A. Korolev, Teplofiz. Vys.
Temp. 11, 427 (1973).

[42] I. I. Petrova and V. Y. Chekhovskoi, Teplofiz. Vys. Temp. 16,
1226 (1978).

[43] R. H. Valentine, T. F. Jambois, and J. L. Margrave, values
reported in Ref. [8].

[44] A. P. Kolesnichenko and A. V. Pustogarov, Teplofiz. Vys. Temp.
13, 1197 (1975).

[45] R. A. McDonald, F. L. Oetting, and H. Prophet, Proc. Meet.
Interagency Chemical Rocket Propulsion, Group of Thermo-
chemistry, New York, 1963, CPIA 44, Vol. 1, Johns Hopkins
University, Applied Physics Laboratory, Silver Spring, MD,
1954.

214311-8

http://dx.doi.org/10.1088/0965-0393/19/1/015003
http://dx.doi.org/10.1088/0965-0393/19/1/015003
http://dx.doi.org/10.1088/0965-0393/19/1/015003
http://dx.doi.org/10.1088/0965-0393/19/1/015003
http://dx.doi.org/10.1016/j.cpc.2015.05.016
http://dx.doi.org/10.1016/j.cpc.2015.05.016
http://dx.doi.org/10.1103/PhysRevB.47.558
http://dx.doi.org/10.1103/PhysRevB.47.558
http://dx.doi.org/10.1103/PhysRevB.47.558
http://dx.doi.org/10.1103/PhysRevB.47.558
http://dx.doi.org/10.1103/PhysRevB.49.14251
http://dx.doi.org/10.1103/PhysRevB.49.14251
http://dx.doi.org/10.1103/PhysRevB.49.14251
http://dx.doi.org/10.1103/PhysRevB.49.14251
http://dx.doi.org/10.1016/0927-0256(96)00008-0
http://dx.doi.org/10.1016/0927-0256(96)00008-0
http://dx.doi.org/10.1016/0927-0256(96)00008-0
http://dx.doi.org/10.1016/0927-0256(96)00008-0
http://dx.doi.org/10.1103/PhysRevB.54.11169
http://dx.doi.org/10.1103/PhysRevB.54.11169
http://dx.doi.org/10.1103/PhysRevB.54.11169
http://dx.doi.org/10.1103/PhysRevB.54.11169
http://dx.doi.org/10.1103/PhysRevB.50.17953
http://dx.doi.org/10.1103/PhysRevB.50.17953
http://dx.doi.org/10.1103/PhysRevB.50.17953
http://dx.doi.org/10.1103/PhysRevB.50.17953
http://dx.doi.org/10.1103/PhysRevB.59.1758
http://dx.doi.org/10.1103/PhysRevB.59.1758
http://dx.doi.org/10.1103/PhysRevB.59.1758
http://dx.doi.org/10.1103/PhysRevB.59.1758
http://dx.doi.org/10.1103/PhysRevLett.78.4063
http://dx.doi.org/10.1103/PhysRevLett.78.4063
http://dx.doi.org/10.1103/PhysRevLett.78.4063
http://dx.doi.org/10.1103/PhysRevLett.78.4063
http://dx.doi.org/10.1016/j.diamond.2010.11.021
http://dx.doi.org/10.1016/j.diamond.2010.11.021
http://dx.doi.org/10.1016/j.diamond.2010.11.021
http://dx.doi.org/10.1016/j.diamond.2010.11.021
http://dx.doi.org/10.1016/j.matchemphys.2009.02.031
http://dx.doi.org/10.1016/j.matchemphys.2009.02.031
http://dx.doi.org/10.1016/j.matchemphys.2009.02.031
http://dx.doi.org/10.1016/j.matchemphys.2009.02.031
http://dx.doi.org/10.1080/01411594.2012.661862
http://dx.doi.org/10.1080/01411594.2012.661862
http://dx.doi.org/10.1080/01411594.2012.661862
http://dx.doi.org/10.1080/01411594.2012.661862
http://dx.doi.org/10.1016/j.physb.2011.04.020
http://dx.doi.org/10.1016/j.physb.2011.04.020
http://dx.doi.org/10.1016/j.physb.2011.04.020
http://dx.doi.org/10.1016/j.physb.2011.04.020
http://dx.doi.org/10.1016/S0378-4371(00)00233-8
http://dx.doi.org/10.1016/S0378-4371(00)00233-8
http://dx.doi.org/10.1016/S0378-4371(00)00233-8
http://dx.doi.org/10.1016/S0378-4371(00)00233-8
http://dx.doi.org/10.1103/PhysRevB.91.201103
http://dx.doi.org/10.1103/PhysRevB.91.201103
http://dx.doi.org/10.1103/PhysRevB.91.201103
http://dx.doi.org/10.1103/PhysRevB.91.201103
http://dx.doi.org/10.2320/matertrans.MBW200913
http://dx.doi.org/10.2320/matertrans.MBW200913
http://dx.doi.org/10.2320/matertrans.MBW200913
http://dx.doi.org/10.2320/matertrans.MBW200913
http://dx.doi.org/10.1103/PhysRevB.40.3616
http://dx.doi.org/10.1103/PhysRevB.40.3616
http://dx.doi.org/10.1103/PhysRevB.40.3616
http://dx.doi.org/10.1103/PhysRevB.40.3616
http://dx.doi.org/10.1103/PhysRevLett.114.195901
http://dx.doi.org/10.1103/PhysRevLett.114.195901
http://dx.doi.org/10.1103/PhysRevLett.114.195901
http://dx.doi.org/10.1103/PhysRevLett.114.195901



