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The random-field Ising model shows an extreme critical slowdown that has been described by activated dynamic
scaling: The characteristic time of relaxation toward equilibrium diverges exponentially with the correlation
length ln τ ∼ ξψ/T , with ψ an a priori unknown barrier exponent. Through a nonperturbative functional
renormalization group, we show that for spatial dimensions d less than a critical value dDR � 5.1, also associated
with dimensional-reduction breakdown, ψ = θ with θ the temperature exponent near the zero-temperature fixed
point that controls the critical behavior. For d > dDR, on the other hand, ψ = θ − 2λ, where θ = 2 and λ > 0
an additional exponent. At the upper critical dimension d = 6, λ = 1, so that ψ = 0, and activated scaling gives
way to conventional scaling. We give a physical interpretation of the results in terms of collective events in real
space, avalanches, and droplets. We also propose a way to check the two regimes by computer simulations of
long-range one-dimensional systems.
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I. INTRODUCTION

Activated dynamic scaling [1] is a phenomenological
description of the extreme slowdown of dynamics observed in
some disordered or glassy systems: systems in the presence
of a quenched random field [2,3], spin glasses in their
ordered phase [4], pinned elastic manifolds [5–7], and possibly
supercooled liquids as they approach their glass transition
[8]. According to this scaling, the dynamics involve thermal
activation over barriers that grow with the typical length scale
�, leading to a characteristic time at the scale � behaving
as ln τ� ∼ (E/T )�ψ , with ψ an a priori unknown barrier
exponent. Activated scaling leads to a broad distribution of
relaxation times, which shows up in the time or frequency
dependence of the response and correlation functions, and also
has consequences for the nonequilibrium dynamics [1,6,7].

The random-field Ising model (RFIM) [9] is one system
whose dramatic critical slowing down is expected to be
described by activated dynamic scaling [1,2]. Its critical point
is controlled, in the renormalization group sense, by a zero-
temperature fixed point at which the “dangerously irrelevant”
renormalized temperature is characterized by an exponent
θ > 0. The dangerous irrelevancy leads to a breakdown of
the hyperscaling relation between critical exponents and to
anomalous thermal fluctuations, all controlled by the exponent
θ and further rationalized at a physical level by the “droplet
scenario” [1,2,4]. The simplest droplet assumption would be
to set ψ = θ . Actually, this equality has been found in the
dynamics of a simpler disordered system, an elastic manifold
pinned in a random potential [5,10], but in the case of the RFIM
there has been no attempt to compute the barrier exponent ψ .
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The functional renormalization group (FRG) is a tool of
choice to provide a theoretical treatment beyond phenomenol-
ogy and compute the barrier exponent ψ . In its perturbative
form, it has been successfully applied to the dynamics of
the pinned elastic manifolds [5,6]. For the RFIM, as was
shown for the (static) equilibrium behavior, the FRG must be
nonperturbative [11–13]. In this work we therefore generalize
the nonperturbative FRG (NP-FRG) approach to describe the
critical slowing down of the RFIM.

We find that the critical slowing down of the RFIM is
indeed of an activated type with two different regimes as a
function of spatial dimension d. For d less than a critical
value dDR � 5.1, also associated with the breakdown of
the d → d − 2 dimensional-reduction property [11–14], the
barrier exponent coincides with the temperature exponent
ψ = θ , as in elastic manifolds pinned in a random potential
(see above). On the other hand, for d > dDR, ψ = θ − 2λ,
where θ = 2 (the dimensional-reduction value) and λ > 0 is
an additional exponent that is computed within the NP-FRG.
At the upper critical dimension d = 6, one finds λ = 1 around
the Gaussian fixed point, so that ψ = 0, and activated scaling
gives way to conventional scaling. We stress that in the range
6 > d > dDR, where the main critical exponents describing
the static behavior coincide with the dimensional-reduction
predictions, the critical dynamics is nonetheless activated and
that this feature is completely missed by perturbation theory
which instead predicts conventional dynamic scaling, τ ∼ ξz

with z � 2 + 2η [15,16].

II. MODEL AND DYNAMICAL FIELD THEORY

As we are interested in the long-time collective behavior
of the RFIM, a coarse-grained field theory provides an
appropriate starting point. The relaxation dynamics of the
scalar field ϕxt is thus described by a Langevin equation
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(for simplicity we consider the case of a nonconserved order
parameter, known as model A [17])

∂tϕxt = −�B

δS[ϕ]

δϕxt

+ ηxt , (1)

where ηxt is a Gaussian random noise term with zero mean and
variance 〈ηxtηx ′t ′ 〉 = 2T �Bδ(d)(x − x ′)δ(t − t ′). The “action”
or effective Hamiltonian S[ϕ] is given by

S[ϕ; h + J ] = SB[ϕ] −
∫

x

[h(x) + Jx]ϕx,

SB[ϕ] =
∫

x

{
1

2
[∂xϕx]2 + r

2
ϕ2

x + u

4!
ϕ4

x

}
, (2)

where
∫
x

≡ ∫
ddx, Jx is an external source, and hx is a random

“source” (a random magnetic field) taken with a Gaussian
distribution characterized by a zero mean and a variance
hxhx ′ = Bδ(d)(x − x ′).

The generating functional of the multipoint and multitime
correlation and response functions can be built as usual by
following the Martin-Siggia-Rose (MSR) formalism [18,19].
After introducing an auxiliary “response” field ϕ̂xt and taking
into account the fact that the solution of Eq. (1) is unique [20],
one obtains the “partition function”

Zh,η

[
Ĵ ,J

] =
∫

DϕDϕ̂ exp

{
−

∫
xt

ϕ̂xt

[
∂tϕxt + �B

δSB[ϕ]

δϕxt

− ηxt − hx

]
+

∫
xt

(Ĵxtϕxt + Jxt ϕ̂xt )

}
, (3)

where we have used the Itō prescription (which amounts to
setting to 1 the Jacobian of the transformation between the
thermal noise and the field) [20].

The conventional route for studying the dynamics of
disordered systems is then to average the partition function
in Eq. (3) over both the thermal noise and the disorder and
to take advantage of the property that Zh,η[Ĵ = 0,J ] = 1
[21]. However, in previous NP-FRG work on the RFIM
[11–13], it was shown that the key point for taking relevant
events such as avalanches and droplets into account is to
describe the full functional dependence of the cumulants of
the renormalized disorder, a point that is overlooked by the
standard replica, superfield, or dynamic formalisms. The most
convenient procedure to obtain this full functional dependence
is to introduce copies or replicas of the system: The copies
have the same disorder h but are coupled to distinct sources,
in contrast with the usual replica trick [11,13]. We therefore
combine dynamics and replicas or copies. The latter are
now characterized not only by distinct sources, but also by
independent thermal noises [22].

After averaging over the thermal noises and the disorder,
one obtains

Z[Ĵa,Ja]

=
∫ ∏

a

DϕaDϕ̂ae
−Sdyn[{ϕ̂a ,ϕa}]+

∑
a

∫
xt

(Ĵa,xt ϕa,xt+Ja,xt ϕ̂a,xt ),

(4)

where the (bare) dynamical action is

Sdyn [{ϕ̂a,ϕa}] =
∑

a

∫
xt

ϕ̂a,xt

{
∂tϕa,xt − T ϕ̂a,xt

+δSB [ϕa]

δϕa,xt

}
− B

2

∑
ab

∫
xtt ′

ϕ̂a,xt ϕ̂b,xt ′ ,

(5)

and where we have set �B = 1; ln Z is the sought generating
functional of the response and correlation functions.

In the long-time limit, the relaxation toward equilibrium
satisfies, in addition to the causality requirement, an invariance
under time translation (TTI) and a time-reversal symme-
try (TRS) [20]. The latter in turn implies the fluctuation-
dissipation theorem [20,23,24]. The TRS corresponds to an
invariance of the theory under the simultaneous transforma-
tions t → −t , ϕa → ϕa , and ϕ̂a → ϕ̂a − (1/T )∂tϕa [24].

III. NONPERTURBATIVE FUNCTIONAL
RENORMALIZATION GROUP

The theoretical formalism we use to describe the long-time,
long-distance physics of the RFIM near its critical point is the
NP-FRG. We have generalized the formalism developed for
the (static) equilibrium properties of the RFIM [11–13] by
combining it with the approach put forward by Canet et al.
[25] for the critical dynamics of the Ising model in the absence
of quenched disorder.

To apply the NP-FRG formalism to the above dynamical
field theory, we introduce an infrared (IR) regulator Sk to
the action (5), whose role is to suppress the integration over
slow modes associated with momenta |q| � k in the functional
integral [11,13,26,27],

Sk[{�a}] = 1

2

∫
xx ′t t ′

tr

[∑
a

�a,xt R̂k(|x − x ′|,t − t ′)�	
a,x ′t ′

+ 1

2

∑
ab

�a,xt R̃k(|x − x ′|,t − t ′)�	
b,x ′t ′

]
, (6)

where �a ≡ (ϕa,ϕ̂a), �	
a its transpose, and R̂k and R̃k are

symmetric 2 × 2 matrices of masslike IR cutoff functions
that enforce the decoupling between fast (high-momentum)
and slow (low-momentum) modes in the partition function.
Following Ref. [25], it proves sufficient to control the contri-
bution of the fluctuations through their momentum dependence
and take R̂k,11 = R̂k,22 = 0, R̂k,12 = R̂k,21 = R̂k(x − x ′), and
R̃k,11 = R̃k,12 = R̃k,21 = 0, R̃k,22 = R̃k(x − x ′), where R̂k(q2)
and R̃k(q2) are chosen (in Fourier space) such that the
integration over modes with momentum |q| � k is suppressed
[11,13,27]. To avoid an explicit breaking of the underlying
super-rotations of the theory [28], we take [13]

R̃k(q2) ∝ ∂R̂k(q2)

∂q2
. (7)

Note that the above choice of IR regulator satisfies the TRS, a
crucial property.

Through this addition Z[{Ja}] is replaced by a k-dependent
quantity Zk[{Ja}], where Ja denotes (Ĵa,Ja). The central
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quantity of the NP-FRG is the “effective average action” �k

[26], which is the generating functional of the one-particle
irreducible correlation functions at the scale k. It is defined
(modulo the subtraction of a regulator contribution) from
ln Zk[{Ja}] via a Legendre transform,

�k[{�a}] + ln Zk[{Ja}] =
∑

a

∫
xt

trJa,xt�
	
a,xt − Sk[{�a}],

(8)

where �a ≡ (φa,φ̂a) now denotes the “classical” (or aver-
age) fields with φa,xt = δ ln Zk/δĴa,xt = 〈ϕa,xt 〉 and φ̂a,xt =
δ ln Zk/δJa,xt = 〈ϕ̂a,xt 〉; the trace operation is over the two
components of �a and Ja .

Expansions in generalized cumulants are then generated
by expanding the functionals in an increasing number of
unrestricted sums over copies,

�k[{�a}] =
∞∑

p=1

(−1)p−1

p!

∑
a1···ap

�kp[�a1 , . . . ,�ap
], (9)

where �kp can be formally expressed as

�kp =
∫

x1t1···xptp

φ̂a1,x1t1 · · · φ̂ap,xptpγkp;x1t1,...,xptp , (10)

with γkp a functional of the fields �a1,t1 , . . . ,�ap,tp and of
their time derivatives, ∂q

t1�a1,t1 , . . . ,∂
q
tp�ap,tp , q � 1. When the

fields are chosen uniform in time with φa,xt = φa,x and φ̂a,xt =
0, the γkp’s reduce to the cumulants of the renormalized
random field at equilibrium already studied in Refs. [11–13].
For generic fields, the additional contributions then represent
kinetic terms [5].

The functional �k satisfies an exact RG equation (ERGE)
that describes its evolution with the IR cutoff k [26],

∂k�k[{�a}] = 1
2 Tr

{
(∂kRk)

(
�

(2)
k [{�a}] + Rk

)−1}
, (11)

where the trace is over space-time coordinates, copy indices,
and components, and �

(2)
k is the matrix formed by the second

functional derivatives of �k . (In what follows, superscripts
within parentheses are used to indicate derivatives with respect
to the appropriate arguments.) By inserting the expansion in
an increasing number of sums over copies and proceeding to
the associated algebraic manipulations, one then derives an
infinite hierarchy of ERGEs for the generalized cumulants �kp

or, alternatively, for the functionals γkp.

IV. NONPERTURBATIVE APPROXIMATION SCHEME

One cannot hope to solve exactly the infinite hierarchy of
functional flow equations for the γkp’s, but one can describe
the long-distance physics of the problem by means of a
nonperturbative approximation scheme. We combine the min-
imal truncation of the effective average action already shown
to successfully describe the equilibrium critical behavior of
the RFIM [13] with an account of the dynamics through a
truncation of the expansion in kinetic coefficients that allows
us to describe the characteristic relaxation time. By taking into

account the TRS, we arrive at the following ansatz,

γk1;xt [�] = δ

φxt

[
Uk(φxt ) + 1

2
Zk(φxt )(∂xφxt )

2

]
+Xk(φxt )(∂tφxt − T φ̂xt ), (12)

γk2;x1t1,x2t2 [�1,�2] = δ(d)(x1 − x2)k(φ1,x1t1 ,φ2,x1t2 ), (13)

while the γkp’s with p � 3 are set to zero. Note that this
ansatz describes the characteristic relaxation time but not its
distribution: To do this, the next orders of the truncation of
the expansion in kinetic coefficients would be required, as
discussed in Refs. [5,7].

The next step is to derive the RG flow equations for the
functions contained in the ansatz from the ERGEs for the γkp’s.
As already mentioned, we work in the Itō discretization scheme
and the corresponding prescription can be systematically
implemented in the NP-FRG equations by following the simple
procedure developed in Ref. [25]. The derivation is tedious but
straightforward, and more details are given below and in the
Appendix. The output is a set of coupled flow equations for
three functions of one field, U ′

k(φ), Zk(φ), Xk(φ), and one
function of two fields, k(φ1,φ2). As a result of the TRS, the
renormalized kinetic function Xk does not enter the flow of
the static ones (U ′

k , Zk , and k).
The flow equations involve the renormalized propagators at

scale k evaluated at the lowest order of the expansions in sums
over copies and for fields that are uniform in space and time,
�a,xt ≡ (φa,0). In Fourier (momentum) space, these prop-
agators are expressed as Pk,ab(q; t,t ′) = P̂k(q; φa; t,t ′)δab +
P̃k(q; φa,φb; t,t ′), where the 2 × 2 matrix P̂k has a structure
following from causality, TTI, and fluctuation-dissipation
theorem, with

P̂ 12
k (q; φ; t ′ − t) = �(t ′ − t)Xk(φ)−1e

− (t ′−t)
τk (q;φ) , (14)

the response function, P̂ 21
k (t ′ − t) = P̂ 12

k (t − t ′), P̂ 11
k the two-

time disorder-connected correlation function given by

P̂ 11
k (q; φ; t ′ − t) = T [Zk(φ)q2 + R̂k(q2) + U ′′

k (φ)]−1e
− |t ′−t|

τk (q;φ) ,

(15)
and P̂ 22

k = 0; the characteristic relaxation time is defined as

τk(q; φ) = Xk(φ)

[Zk(φ)q2 + R̂k(q2) + U ′′
k (φ)]

. (16)

In addition, the only nonzero component of P̃k is

P̃ 11
k (q; φ1,φ2; t ′ − t)

=
∫

t

P̂ 12
k (q; φ1; t)

∫
t ′
P̂ 21

k (q; φ2; t ′)[k(φ1,φ2) − R̃k(q2)],

(17)

which, in this truncation, is simply the static (equilibrium)
disorder-disconnected correlation function.

Finally, to study the vicinity of the relevant zero-
temperature critical fixed point [2], the NP-FRG equations are
cast in a dimensionless form by introducing appropriate scaling
dimensions φ ∼ k(d−4+η̄)/2, Zk ∼ k−η, U ′

k ∼ k(d−2η+η̄)/2, and
k ∼ k−(2η−η̄), and the renormalized temperature Tk ∼ T kθ ,
where θ = 2 + η − η > 0 [11,13]. We express the results in
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terms of the dimensionless fields ϕ = ϕ1+ϕ2

2 and δϕ = ϕ2−ϕ1

2 .
With lowercase letters denoting dimensionless quantities, one
can formally write the flow equations for the static quantities
as

k∂ku
′
k(ϕ) = βu′0(ϕ) + Tkβu′1(ϕ),

k∂kzk(ϕ) = βz0(ϕ) + Tkβz1(ϕ), (18)

k∂kδk(ϕ,δϕ) = βδ0(ϕ,δϕ) + Tkβδ1(ϕ,δϕ),

where the beta functions depend on u′
k , zk , δk , their derivatives,

and on the (dimensionless) cutoff functions.
These equations generalize those given in Ref. [13] to

nonzero temperature: βu′0(ϕ), βz0(ϕ), and βδ0(ϕ,δϕ) coincide
with the zero-temperature beta functions explicitly given in
this reference. The beta functions βu′1(ϕ) and βz1(ϕ) are regular
functions whose expression is unilluminating and is not given
here. Finally, βδ1(ϕ,δϕ) is given by

βδ1(ϕ,δϕ) = −1

8

∫
q̂

∂̂s r̂(q̂2)

{
[p̂k(q̂; ϕ + δϕ)2 + sym]

[
δ

(02)
k (ϕ,δϕ) + δ

(20)
k (ϕ,δϕ)

] + 2[p̂k(q̂; ϕ + δϕ)2 − sym]

× δ
(11)
k (ϕ,δϕ) + 2δ

(01)
k (ϕ,δϕ)

∂

∂δϕ
[p̂k(q̂; ϕ + δϕ)2 + sym] + 2δ

(10)
k (ϕ,δϕ)

∂

∂δϕ
[p̂k(q̂; ϕ + δϕ)2 − sym]

}
, (19)

where q̂ = q/k,
∫
q̂

≡ ∫
dd q̂/(2π )d , the dimensionless cutoff

function r̂(q̂2) is defined through R̂k(q2) = Zkq
2r̂(q̂2), and

∂̂s r̂(q̂2) ≡ −[ηq̂2r̂(q̂2) + 2q̂4r̂ ′(q̂2)] is a symbolic notation for
the term obtained from k∂kR̂k(q2). Similarly, one defines
r̃(q̂2) from R̃k(q2) = kr̃(q̂2), but it is simply related to r̂

via r̃(q̂2) = −∂q̂2 [q̂2r̂(q̂2)] from Eq. (7). The dimensionless
hat propagator is given by p̂k(q̂; ϕ) = {q̂2[zk(ϕ) + r̂(q̂2)] +
u′′

k (ϕ)}−1. Finally, sym denotes a term obtained by changing
δϕ in −δϕ.

When T = 0, it was previously found that the fixed-point
solution displays two regimes [13]: (1) For d < dDR � 5.1, a
“cusp” in |δϕ| is present in the fixed-point function δ∗ when
δϕ → 0,

δ∗(ϕ,δϕ) = δ∗(ϕ,0) − δ∗,a(ϕ)|δϕ| + O(δϕ2), (20)

with δ∗,a = 0. This cusp is associated with the presence of
avalanches on all scales at the critical point [29].

(2) For d > dDR the fixed-point function δ∗ is “cuspless,”
which ensures that the d → d − 2 dimensional-reduction
property of the (static) critical exponents [28] is valid (and
that the super-rotation is not spontaneously broken along the
RG flow). Avalanches are still present but lead to only a
subdominant cusp [29],

δk(ϕ,δϕ) = δ∗(ϕ,0) − δk,a(ϕ)|δϕ| + O(δϕ2) (21)

when k → 0, where δk,a goes to zero as

δk,a(ϕ) ∼ kλ, (22)

with λ > 0 characterizing the (diverging) number of spanning
avalanches [30,31].

V. THERMAL BOUNDARY LAYER

Describing the critical slowing down requires a nonzero
temperature and additional care is needed. The beta function
for δk shows a nonuniform convergence when k → 0 and
δϕ → 0 and for a nonzero T the cusp is rounded near δϕ = 0
in a “boundary layer” of width δϕ ∼ Tk (see also Refs. [5,6]
for the case of the elastic manifold in a random environment).

For T > 0 the beta function of δk in the limit δϕ → 0 and
Tk → 0 can indeed be written as

k∂kδk(ϕ,δϕ) � βδ,reg(ϕ) + a1k(ϕ)

2

∂2[δk(ϕ,δϕ) − δk(ϕ,0)]2

∂(δϕ)2

− Tka2k(ϕ)δ(02)
k (ϕ,δϕ), (23)

where βδ,reg is the contribution that is independent of the
derivatives of δk with respect to δϕ; a1k and a2k are regular
functions obtained from the static functions: a1k(ϕ) is the
prefactor of the anomalous contribution in βδ0(ϕ,δϕ) whose
limit when δϕ → 0 is nonzero only in the presence of a cusp,

a1k(ϕ) = 1

2

∫
q̂

∂s r̂(q̂2)p̂k(q̂; ϕ)3, (24)

and a2k(ϕ) is the prefactor of the potentially singular piece in
βδ1(ϕ,δϕ),

a2k(ϕ) = 1

4

∫
q̂

∂s r̂(q̂2)p̂k(q̂; ϕ)2. (25)

The cusp in |δϕ| that is present in T = 0 is rounded at finite
temperature because of the last term in Eq. (23). Instead, δk

develops a “thermal boundary layer,”

δk(ϕ,δϕ) = δk(ϕ,0) + Tkbk

(
ϕ,y = δϕ

Tk

)
+ O

(
T 2

k ,δϕ2
)
,

(26)
when Tk,δϕ → 0. It is easy to derive that the solution has the
explicit form

bk(ϕ,y) = a2∗(ϕ)

a1∗(ϕ)

⎛⎝1 −
√

1 + a1∗(ϕ)2δk,a(ϕ)2

a2∗(ϕ)2
y2

⎞⎠ , (27)

where ap∗ are the (nonzero) fixed-point functions and δk,a(ϕ)
behaves differently when k → 0 for d < dDR and d > dDR

(see above).

VI. ACTIVATED DYNAMIC SCALING

We now turn to the NP-FRG equation for the kinetic term
Xk(φ). It is obtained from the renormalization prescription

Xk(φ) = − 1

T

∂

∂φ̂
γk1;xt (φ,φ̂)

∣∣∣∣
φ̂=0

, (28)
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and is given in graphical terms in the Appendix. After having
introduced the dimensionless quantities, it can be rewritten as

k∂kXk(ϕ) = βX0(ϕ) + TkβX1(ϕ), (29)

where βX0(ϕ) is given in the Appendix and βX1(ϕ) is a regular
function that leads only to subdominant terms near the fixed
point.

Note that we have kept Xk itself in a dimensionful form.
In the case of a conventional critical slowing down [17], one
introduces a dynamical exponent z such that the characteristic
relaxation time scales as τk ∼ k−z near the fixed point.
The kinetic term then has dimension Xk ∼ k−z+(2−η) [25].
However, in the presence of a nonzero random-field strength,
where one anticipates an unconventional activated dynamic
scaling, one should rather focus on Fk = ln Xk (where, if
needed, Xk can be made dimensionless inside the logarithm
by dividing by a k-independent factor).

By inserting the boundary layer solution in Eqs. (29) and
(A3) (see the Appendix) and working at the dominant orders
when Tk → 0 (and k → 0), it is easy to derive the flow of
Fk(ϕ) = ln Xk(φ), which reads

k∂kFk(ϕ) = d − 4 + η

2
ϕF ′

k(ϕ) + c̃1k(ϕ) + c̃2k(ϕ)F ′
k(ϕ)

+ c̃3k(ϕ)[F ′′
k (ϕ) + F ′

k(ϕ)2] − 1

Tk

a1,k(ϕ)2

a2k(ϕ)
δk,a(ϕ)2

+O(Tk), (30)

where the c̃pk’s are regular functions of ϕ whose expressions
are given in the Appendix.

The solution of Eq. (30) when k → 0 is then of the form

Fk(ϕ) = 1

Tk

ek + 1√
Tk

gk(ϕ) + O(1), (31)

with ek independent of ϕ. We find that ek → e∗ > 0 for d <

dDR and ek → 0 as k2λ for d > dDR [compare with the term in
1/Tk in Eq. (30)].

VII. RESULTS

To support the analytical solutions provided above and
compute the exponents, we have numerically solved the
NP-FRG equations for a wide range of dimensions between 3
and 6. To do so, we have discretized the fields on a grid and
used a variation of the Newton-Raphson method. For the cutoff
function r̂k(q̂2) we have chosen the same form as in previous
work and optimized the parameters by stability considerations
[13].

First, the numerical solution confirms the behavior of Fk(ϕ)
given in Eq. (31). We illustrate this point by showing the flow of√

Tk[Fk(ϕ) − Fk(0)], which should asymptotically converge to
gk(ϕ) − gk(0), for the case d = 4.4. We can see from Fig. 1
that the fixed-point function is indeed well behaved.

In Fig. 2 we further illustrate the dominant 1/Tk dependence
of Fk for the two cases discussed above with Fk ∼ 1/Tk for
d = 4.4 < dDR and Fk ∼ k2λ/Tk for d = 5.4 > dDR.

As a result of Eqs. (16) and (31), the asymptotic behavior
of ln τk goes as ek/Tk with ek given above and Tk ∼ T kθ , so
that the characteristic relaxation time τk follows the activated

-0.4 -0.2 0 0.2 0.4ϕ
-15

-10

-5

0

√T
k[ 

F
k(ϕ

)-
F

k(0
)]

s=0
s=-7.1

FIG. 1. (Color online) Evolution of
√

Tk[Fk(ϕ) − Fk(ϕ0)] for RG
times s = ln k from 0 (initial condition where the function is chosen
equal to zero: red line) to −7.1 (essentially, the fixed point: blue
line). Here ϕ0 = 0 (but other choices lead to the same asymptotic
function). The function is illustrated for the case d = 4.4 and a bare
temperature T = 0.1; the minimum of the effective potential is then
for ϕ � ±0.085.

dynamic scaling with

τk ∼ e
E
T

k−ψ

(32)

for its leading behavior when k → 0 (we have dropped the
prefactor and subdominant terms in the exponential).

From the above, we find ψ = θ for d < dDR and ψ = θ −
2λ with θ = 2 (due to dimensional reduction) and λ > 0 for
d > dDR. At the upper critical dimension d = 6, one finds
that λ = 1 around the Gaussian fixed point so that ψ = 0
[32]. Activated dynamic scaling thus gives way to conventional
dynamic scaling [33], a scaling which is, for instance, found
in the mean-field, fully connected, version of the model. The
barrier exponent ψ is shown as a function of d in Fig. 3.

-10 -5 0
s

0

5

10

ln
 F

k[ϕ
0]

d=4.4
d=5.4

FIG. 2. (Color online) The flow of ln Fk(ϕ0) with the RG “time”
s = ln(k/�) with the UV scale � ≡ 1; ϕ0 is (arbitrarily) chosen near
the minimum of uk(ϕ), for d = 5.4 and d = 4.4. The thin solid lines
denote the expected asymptotic slopes, ψ = θ ≈ 1.909 for d = 4.4
and ψ = θ − 2λ ≈ 0.855 for d = 5.4.
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3 4 5 6
d

0

0.5

1

1.5

2

ψ
Ξ

FIG. 3. (Color online) The barrier exponent ψ (solid black line)
and the temperature exponent θ (dashed red line) vs dimension d;
θ � 1.49 in d = 3 and 1.84 in d = 4, in excellent agreement with
simulation results [36]. The two exponents � and � become equal
below dDR � 5.1.

VIII. DISCUSSION

The above results can be physically interpreted by invoking
the collective events that are present at criticality. At T = 0
these are avalanches, which have a fractal dimension df =
(d + 4 − η̄)/2 − 2λ with λ = 0 for d < dDR and λ > 0 for d >

dDR [29]. For T > 0 but very small, there emerge from these
avalanches, which correspond to an exceptional degeneracy
between ground states, low-energy excitations corresponding
to quasidegeneracy, known as droplets. The result for the
barrier exponent can then be rationalized by assuming that

with a probability T/L(θ−2λ) there are critical samples of size
L with such a quasidegeneracy and that the whole energy
landscape of the quasidegenerate system has a unique scale,
then given by L(θ−2λ).

The droplet picture also predicts anomalous static thermal
fluctuations of the field (or magnetization) [34]. In the rare
samples, the magnitude of the magnetization fluctuations goes
as Ldf , so that the pth cumulants associated with the thermal
fluctuations of the magnetization, [L−d〈(∫

x
ϕx − 〈∫

x
ϕx〉)2〉]p,

has an anomalous scaling, ∝(T/Lθ−2λ)L(4−η̄−2λ)p. We have
checked the validity of the scaling for p = 2 from the NP-FRG
equations, along the lines detailed in Ref. [12].

Finally, we conclude by proposing a way to directly
check the two regimes, ψ = θ and ψ = θ − 2λ with λ > 0,
in computer simulations. As recently shown [35], the one-
dimensional (1D) RFIM with long-range power-law interac-
tions ∝|x|d+σ has a critical value σc � 0.379 around which
the change of regime should be observed. In the mean-field
region, for σ < 1/3, one should also find that the relaxation is
no longer activated but follows conventional scaling with the
mean-field dynamic exponent z = σ .
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APPENDIX: NP-FRG FLOW FOR THE KINETIC TERM

The flow of the kinetic term Xk(φ) is obtained from the
renormalization prescription in Eq. (28) and from the ERGE
for γk1;xt . In graphical terms the flow equation reads

∂sXk(φ) = 1

4
∂̃s

∫
q

2 −4 +

+ 2 −8 −8

+4 +4 +8

(A1)

where a cross in the circle denotes a vertex Xk(φ), the lines denote static propagators P̂k , and the dotted lines the disorder vertex
k(φ1,φ2) (after having taken the needed derivatives, one sets φ1 = φ2 = φ); ∂̃k is shorthand notation to indicate a derivative
acting only on the cutoff functions, i.e., ∂̃k ≡ ∂kR̂kδ/δR̂k + ∂kR̃kδ/δR̃k . To implement the Itō prescription we have followed the
trick devised by Canet et al. [25], which amounts to shifting the time dependence of the response field by an infinitesimal amount
in the renormalized response functions.

With the help of the dimensionless quantities, Eq. (A1) can be rewritten as

k∂kXk(ϕ) = βX0(ϕ) + TkβX1(ϕ), (A2)

where

βX0(ϕ) = d − 4 + η

2
ϕX′

k(ϕ) + 1

4

∫
q̂

{ − 2̂∂s r̃(q̂2)p̂k(q̂; ϕ)2X′′
k (ϕ) − 4p̂k(q̂; ϕ)3[q̂2z′

k(ϕ) + u
(3)
k (ϕ)

]
(−2[̂∂s r̃(q̂2)

+ 3̂∂s r̂(q̂2)p̂k(q̂; ϕ)[δk(ϕ,0) − r̃(q̂2)]]X′
k(ϕ) − 3̂∂s r̂(q̂2)p̂k(q̂; ϕ)δ(1,0)

k (ϕ,0)Xk(ϕ)) − 4p̂k(q̂; ϕ)4Xk(ϕ)[̂∂s r̃(q̂2)

+ 4̂∂s r̂(q̂2)(δk(ϕ,0) − r̃(q̂2))p̂k(q̂; ϕ)][q̂2z′
k(ϕ) + u

(3)
k (ϕ)]2 − 2̂∂s r̂(q̂2)p̂k(q̂; ϕ)3

[
2(δ(ϕ,0) − r̃(q̂2))X′′

k (ϕ)

+ 4δ
(1,0)
k (ϕ,0)X′

k(ϕ) + ( − δ
(0,2)
k (ϕ,0) + δ

(2,0)
k (ϕ,0)

)
Xk(ϕ)

]}
, (A3)
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where ∂̂s r̃(q̂2) is a symbolic notation for [2η − η̄][r̂(q̂2) + q̂2r̂ ′(q̂2)] + 2[2q̂2r̂ ′(q̂2) + q̂4r̂ ′′(q̂2)]. The regular term βX1(ϕ) leads
only to subdominant terms near the fixed point and is not given here.

The flow of Fk(ϕ) = ln Xk(φ) at dominant orders when Tk → 0 is given in Eq. (30) and the (regular) functions c̃pk(ϕ) are
expressed at the relevant order in Tk as

c̃1k(ϕ) = 1

2

∫
q̂

[−2̂∂s r̃(q̂2)p̂k(q̂; ϕ)4
[
q̂2z′

k(ϕ) + u
(3)
k (ϕ)

]2 + ∂̂s r̂(q̂2)p̂k(q̂; ϕ)3
( − δ

(20)
k (ϕ,0) + 2p̂k(q̂; ϕ)[q̂2z′

k(ϕ)

+u
(3)
k (ϕ)]

[
3δ

(10)
k (ϕ,0) − 4p̂k(q̂; ϕ)[δk(ϕ,0) − r̃(q̂2)]

[
q̂2z′

k(ϕ) + u
(3)
k (ϕ)

]])] + O(Tk), (A4)

c̃2k(ϕ) = 2
∫

q̂

p̂k(q̂; ϕ)3
[̂
∂s r̃(q̂2)

[
q̂2z′

k(ϕ) + u
(3)
k (ϕ)

] + ∂̂s r̂(q̂2)
( − δ

(10)
k (ϕ,0) + 3p̂k(q̂; ϕ)[δk(ϕ,0) − r̃(q̂2)]

[
q̂2z′

k(ϕ) + u
(3)
k (ϕ)

])]
+O(Tk), (A5)

c̃3k = −1

2

∫
q̂

(̂∂s r̃(q̂2) + 2̂∂s r̂(q̂2)[δk(ϕ,0) − r̃(q̂2)]p̂k(q̂; ϕ))p̂k(q̂; ϕ)2 − Tk

∫
q̂

∂̂s r̂(q̂2)p̂k(q̂; ϕ)2. (A6)
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