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Finite-temperature properties of the relaxor PbMg1/3Nb2/3O3 from atomistic simulations
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An atomistic numerical scheme is developed and used to study the prototype of relaxor ferroelectrics, that is
PbMg1/3Nb2/3O3 (PMN), at finite temperatures. This scheme not only reproduces known complex macroscopic
properties of PMN, but also provides a deep microscopic insight into this puzzling system. In particular, relaxor
properties of PMN are found to originate from the competition between (1) random electric fields arising
from the alloying of Mg and Nb ions belonging to different columns of the Periodic Table within the same
sublattice; (2) the simultaneous condensation of several off-center k points as a result of a specific short-range,
antiferroelectriclike interaction between lead-centered dipoles; and (3) ferroelectriclike interactions. Such origins
contrast with those recently proposed for the homovalent Ba(Zr,Ti)O3 solid solution, despite the fact that these
two materials have similar macroscopic properties—which therefore leads to a comprehensive understanding of
relaxor ferroelectrics.
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I. INTRODUCTION

Relaxor ferroelectrics have attracted much attention since
their discoveries more than five decades ago. In particular,
numerous studies have been conducted on the prototype
of ferroelectric relaxors, that is lead magnesium niobate
PbMg1/3Nb2/3O3 (PMN), and have revealed anomalous fea-
tures, which are also inherent to some magnetic systems [1,2]
therefore extending their significance beyond ferroelectrics.
For instance, PMN adopts a dielectric response-versus-
temperature function that possesses a rounded peak, having
a large magnitude and is strongly dependent on the frequency
of the applied ac electric field, while PMN remains macro-
scopically nonpolar, down to the lowest temperatures [3,4].
Measurements of its inverse dielectric permittivity [5] as
a function of temperature have also revealed an unusual
deviation from linear behavior for a specific temperature,
which is now known as the Burns temperature TB [6].

Several conflicting models have been proposed to un-
derstand the microscopic origin of relaxor ferroelectrics, in
general, and of PMN, in particular. A popular belief to explain
their macroscopic anomalies is the existence of the so-called
polar nanoregions (PNRs) [5–9]. These polar correlations are
thought to appear at TB and to freeze on cooling, as similar
to the dipole glass state. Another widespread and alternative
model is that PMN owes its unusual properties to the devel-
opment of a state formed by nanoscale multidomains [10–13].
Indeed, Ref. [12] proposed that quenched random fields
(arising from the fact that the randomly distributed Mg and
Nb cations possess different nominal ionic charges) prevent
the normal ferroelectric state to take place and rather break
it down into a nanodomains state. Reference [10] suggested
that the large magnitude of the dielectric permittivity of PMN
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is then due to the side-wall motion in these nanodomains.
Actually, the glassy-state versus nanodomains model is still
debated and no consensus or satisfactory description of the real
structure currently exists. As detailed in some reviews [3,13–
15], other concepts have also been considered to explain the
peculiar properties of PMN, including chemically ordered
regions [16] possessing large dielectric response [17,18],
overbonded oxygen ions [19], polaronic mechanism [20,21],
and the coexistence of ferroelectric and antiferroelectric cou-
plings [22]. It is also unclear if the recent mechanism that has
been determined from first-principles-based calculations on
the homovalent Ba(Zr,Ti)O3 (BZT) relaxor ferroelectric—that
is the coexistence within the same material of ferroelectrically
active and ferroelectrically inactive (silent) ions [23]—holds
for PMN.

A comprehensive understanding of lead-based relaxors,
in general, and its representative compound, i.e., PMN, in
particular, is therefore still lacking, despite the introduction
of remarkable pioneering analytical approaches, such as the
random-site [24], spherical-random-bond-random-field [25],
and soft pseudospin glass [26] models as well as other
models [27]. One reason behind this paucity of knowledge
is that finite-temperature properties of heterovalent lead-based
relaxors are rather challenging to mimic due, e.g., to the facts
that its mixed B sublattice is formed by ions that are chemically
very different (Mg and Nb in PMN) and that the other cation
sublattice possesses (lead) ions that strongly desire to move
away from their ideal positions [7,28,29].

The goal of this paper is to report the development and
results of an atomistic numerical scheme that is able to
realistically mimic the subtle and intriguing features of PMN,
and which further provides a deep insight (that we believe
to be unprecedented) into the microscopic description of this
prototypical relaxor ferroelectric. In particular, this scheme
reveals the major importance of random electric fields as well
as complex and unexpected antiferroelectriclike interactions
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(involving several off-center vectors in the reciprocal space),
allowing us to understand the properties of PMN. The use
of this scheme also resolves the aforementioned issues about
the microscopic nature of PMN, and also elucidates the
(controversial) effect of chemical ordering on properties of
PMN.

II. METHODS

As detailed in the Supplemental Material [30–35], we
developed an effective Hamiltonian (Heff ) for PMN. Its degrees
of freedom are as follows: (1) The local soft-mode in unit cell
i, ui, which represents the collective motion of Pb, Mg/Nb,
and oxygen ions associated with the lowest transverse optical
phonon branch [36]. ui is therefore directly proportional to the
local electric dipole moment in cell i. It is technically chosen
to be centered on the Pb sites, as consistent with the known
fact that lead ions significantly move of center in Pb-based
perovskites [28,29,37–40]; (2) Nb/Mg-centered dimensionless
local displacements vi that are related to the inhomogeneous
strain inside each cell [36]; (3) The homogeneous strain
tensor, ηH [36]. Such effective Hamiltonian also depends
on {σj} variables that characterize the atomic configuration
of the PMN solid solution. More precisely, σj = +1 or −1
corresponds to the presence of a Mg or Nb atom located
at the B-lattice site j , respectively [41]. Here, we average
properties over 30 different alloy configurations, all randomly
selected and frozen during the simulations, in order to mimic
well disordered PMN systems [42]. Monte Carlo simulations
using this Heff are performed using 18 × 18 × 18 supercells
(29 160 atoms) with periodic boundary conditions. Note that
the parameters entering the expressions of the total energy
of the Heff of PMN are initially determined by conducting
first-principles computations [43–45] on small cells. However,
these parameters are also allowed to vary from their first-
principles values in the present work, in order to obtain
a better agreement with experiments. In particular and as
discussed below, we found that two types of these parameters
play an important role on properties of PMN and need to
be carefully adjusted from their computed values. They are
(i) the short-range parameter called j5 in Ref. [36], that
characterizes a specific interaction between second-nearest
neighbors (e.g., between different Cartesian components of
the local modes that are centered on two Pb sites that are
the closest along the 〈110〉 pseudocubic directions); and
(ii) the magnitude of the coefficients denoted by Q|j−i|(σj),
which represent the strength and direction of the so-called
random electric fields [12,24,46,47].

III. RESULTS AND DISCUSSIONS

Figure 1(a) reports the dielectric susceptibility χ of disor-
dered PMN as a function of temperature, computed from the
cumulant method detailed in Ref. [48] and involving the local
soft modes (χ therefore corresponds to the experimental situa-
tion for which small electric fields are applied). The dielectric
susceptibility of PMN has a rounded peak while, as shown
in the right inset of Fig. 1(b), no polarization is numerically
found to appear on zero-field cooling, even at the lowest
temperatures. Such features are consistent with experiments

on PMN and are characteristics of relaxor ferroelectrics [3–5].
They also contrast with the case of “normal” ferroelectrics
for which the dielectric susceptibility has a sharp peak around
the paraelectric-to-ferroelectric phase transition temperature.
Other information revealed by Fig. 1(a) is that χ follows a
Curie-Weiss law [49] C/(T − T0) (where T is the temperature,
and with C = 1.27 × 105 K and T0 = 400 K) for temperatures
above �600 K, while it deviates from this law for temperatures
below 600 K. Interestingly, this latter temperature corresponds
to the Burns temperature (TB = 620 K) reported for PMN [6]
below which there is a known deviation of χ from the Curie-
Weiss law, and above which the Curie-Weiss law is well obeyed
with C = 1.25 × 105 K and T0 = 396 K according to Ref. [5]
(note that similar values of the Curie-Weiss constant were
obtained in other experiments, e.g., C = 2.05 × 105 K and
C ≈ 105 K in Refs. [11] and [14], respectively). Comparisons
between the predicted and measured values of both TB and
T0, as well as of the Curie-Weiss constant, therefore attest to
the accuracy of the simulations after careful selection of the
effective Hamiltonian parameters. It is also worth mentioning
that χ exhibits rather large error bars for temperatures below
TB , in general, and close to or below its peak, in particular.
This indicates that properties of PMN are rather sensitive to
the atomic configuration. Moreover, T0, which usually corre-
sponds to the Curie temperature in normal ferroelectrics, can be
identified here as the so-called T ∗ temperature inherent to re-
laxors [5,8,50–53]. We will come back to these points later on.

We also conducted simulations for which disordered PMN
is cooled down under a dc electric field that is oriented
along the pseudocubic [111] direction, and having Cartesian
components equal to 1.0 × 107 V/m along the x, y, and z

axes (the magnitude of this field is therefore
√

3 × 107 V/m).
Under these circumstances, PMN adopts a significant elec-
trical polarization along the direction of the applied field
below a certain temperature, and, correspondingly, a large
dc susceptibility (not shown here), which differs from the
susceptibility, obtained by the cumulant method, and that can
be considered as one of the main features of the relaxors
and glasses [26]. Interestingly, such polarization remains finite
when this field is removed at low temperature. The left inset
of Fig. 1(b) reveals that this polarized state (obtained at 10 K
here) possesses some degrees of disorder in it since not all
the dipoles are aligned along the [111] direction—which is in
contrast with the case of a typical ferroelectric like BaTiO3

but is consistent with what was observed experimentally in
PMN by local probes such as the nuclear magnetic resonance
technique in Ref. [7]. We numerically find that this degree of
disorder originates from the random electric fields existing
inside PMN. The system is then heated under no electric
field starting from this low-temperature, polarized state. The
resulting temperature dependence of the Cartesian components
of the supercell average of the local mode, 〈u〉, is displayed in
Fig. 1(b) (note that the x, y, and z axes are chosen along the
pseudocubic [100], [010], and [001] directions, respectively).
One can, e.g., see that the x, y, and z Cartesian components
of 〈u〉 are all predicted to have a magnitude of 0.050 a.u.
at 10 K, 0.045 a.u. at 150 K, and of 0.039 at 250 K, which
corresponds to a polarization of 0.54, 0.49, and 0.43 C/m2,
respectively, that is oriented along [111]. These magnitudes
agree rather well with measurements providing 0.46 C/m2 at
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FIG. 1. (Color online) Predicted temperature dependence of several properties in PMN solid solutions. Panel (a) shows the dielectric
susceptibility, and its inverse, when cooling down the disordered PMN system under no bias field. TB and T0 correspond to the Burns
temperature and the critical temperature extrapolated from the Curie-Weiss law at high temperatures, respectively. Panel (b) displays the
x component of the supercell average of the local mode, 〈u〉, (which is equal to its y and z components) when heating the system is under no
field, after having cooled it under an electric field and then having removed this field at 10 K. The depolarizing temperature is Tdepol = 250 ± 50
K and is indicated by a vertical dashed line. The left inset of panel (b) shows an example of the dipolar configuration when the field is removed
at 10 K. The right inset of panel (b) shows the x component of 〈u〉, but when the system is cooled under no field. The error bars in panels (a) and
(b) are those arising from computing averages over 30 different chemical configurations. Panels (c) and (d) show the dielectric susceptibility (as
well as its inverse) and the x component of the supercell average of the local mode (which is identical to its y and z components), respectively,
when random fields are switched off. The left inset of panel (d) displays the resulting dipolar configuration at 10 K, when random fields are
turned off.

temperature close to 0 K [54] and 0.41 C/m2 at 150 K [55]
as well as with first-principles calculations yielding values
ranging between 0.40 and 0.65 C/m2 at 0 K [38,39]—which
further emphasizes the capability of our Heff to realistically
mimic the complex properties of PMN. Figure 1(b) also
indicates that the polarization decreases on heating and then,
at about 250 ± 50 K, experiences a sudden jump down leading
to its vanishing. Such striking behavior has indeed been
experimentally reported, with the temperature associated with
this jump being called the depolarization temperature Tdepol,
and being equal to �210–230 K for (111) crystals [12,56–58].
The temperature at which this jump occurs is also linked to
the freezing temperature Tf , below which PMN is noner-
godic [12]—as evidenced in Fig. 1(b) by the different ground

states obtained depending on the cooling regime (zero-field
cooling or removing of electric field after field cooling).

Having demonstrated the predictive capability of our
simulations at both global/macroscopic [cf. Fig. 1(a)] and
local/nanoscopic [left inset of Fig. 1(b)] levels, let us now
provide a microscopic insight of PMN by showing, in
Figs. 2(a)–2(d), snapshots of the dipolar patterns within a (x,y)
plane for different temperatures, when the system is cooled
under no field. These snapshots reveal that correlated clusters,
usually referred to as polar nanoregions (PNRs) and inside
which dipoles are nearly parallel to each other and contain
at least two Pb-centered dipoles, indeed exist in PMN, as
suggested in Refs. [6,40,58–61] and similar to the case of
the homovalent BZT relaxor [23,42,62,63]. These PNRs are
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FIG. 2. (Color online) Snapshots of the local modes’ patterns within a (x,y) plane for different temperatures, panels (a)–(d), and temperature
dependence of the average size of the polar nanoregions, panel (e), when disordered PMN is cooled under no field. In panels (a)–(d), the
corresponding temperature is indicated on the top left and the red lines delimit the PNRs. The error bars in panel (e) are those resulting from
incorporating 30 different chemical configurations into the computation of the averaged PNR size.

delimited by red lines in Figs. 2(a)–2(d), and are numerically
found by using the same Bayesian algorithm as in Refs. [42,62]
from instantaneous snapshots (configuration of the last Monte
Carlo sweep for any investigated temperature). Their average
(dimensionless) size [64] is computed as 〈s〉 = 〈N2〉/〈N〉,
where N is the number of Pb sites belonging to a PNR, and the
brackets denote the average over all the PNRs existing inside
the supercell. Figure 2(e) displays the predicted temperature
dependency of 〈s〉. The data of Fig. 2 indicate that 〈s〉 rapidly
grows and the number of PNRs becomes larger upon cooling
below TB , in general, and below Tf , in particular (note that
PNRs containing a single Pb dipole are included in the
definition of 〈s〉, which explains why 〈s〉 is not equal to 0
above the Burns temperature). Indeed, Figs. 2(c) and 2(d)
reveal the large number of PNRs below 200 K, and Fig. 2(e)
demonstrates an average cluster size of 19. Interestingly, such
size corresponds, in one dimension, to a length of about 72 Å,
which is similar to the spatial correlation length of 62.4 Å
obtained experimentally by neutron diffuse scattering [58] at
10 K. Note that the Supplemental Material also discusses the
dynamic versus static characters of these PNRs for different
temperatures (see Fig. 1 there), which is found to be in line
with experimental findings [51,58]. As a result, on decreasing
temperature, the size (cf. Fig. 2) and the degree of the static
character (see the Supplemental Material [30]) of the polar
correlations in PMN are increasing to get a microscopic con-
figuration, below Tf , which is described by many nanosize
clusters that are separated from a few isolated, nonvanishing

dipoles, or that can even touch each other—which contrast
with the case of BZT [23].

Let us now discuss and reveal the key features at the
origin of the aforementioned microscopic description and
properties of PMN relaxor. For that, we first decided to
compute correlations between dipoles as follows:

θα,α(r) = 1

Nsc

∑

i

ui,αui+r,α

|ui · ui+r| , (1)

where the index i runs over all the Nsc Pb sites of the supercell
and where ui and ui+r are the local modes in cell i and in the
cell centered on the Pb atom distant from r from the cell i,
respectively [65]. ui,α and ui+r,α are the α-Cartesian compo-
nents of ui and ui+r, respectively. Note that θα,α(r) is equal to
1/3 for any α (i.e., x, y or z) and for any r in the hypothetical
case for which the dipoles all have the same magnitude and
are all lying along the pseudocubic [111] direction. Positive
and negative signs of θα,α(r) are representative of correlations
and anticorrelations, respectively, between the α component
of ui and ui+r. Figures 3(a) and 3(b) display θx,x(r) for the r
vectors lying in the (x,y) plane, at 10 K and for two different
realizations of disordered PMN. While these two correlations
between the x components of the local modes can present
some differences in, e.g., shape, anisotropy, and values at some
particular r distances, they also share a remarkable feature: the
existence of significant anticorrelations in regions of space
centered about r1 = ±4.5alatx and r2 = ±4.5alatx ± 9alaty in
our 18 × 18 × 18 supercell, where alat is the lattice constant
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FIG. 3. (Color online) Properties associated with anticorrelations and off-center points in disordered PMN. Panels (a) and (b) show the
θx,x(r) correlation between the x components of the local modes centered on lead atoms for the r vectors ling in the (x,y) plane at 10 K for
two different realizations of the disordered PMN system. Panels (c) and (d) display the temperature dependence of the square of the Fourier
transform of the x component of the local modes’ configurations for different kmax ,i points for the atomic configurations corresponding to panels
(a) and (b), respectively. The three integers nx , ny , and nz indicated in the legends of panels (c) and (d) index the kmax ,i points, that is such k

points are given by 2π

18alat
(nxx + nyy + nzz) for our 18 × 18 × 18 supercell. Note also that the square of the Fourier transform of the x component

of the local modes’ configurations is invariant by inversion in the reciprocal space, i.e., 2π

18alat
(nxx + nyy + nzz) and 2π

18alat
(−nxx − nyy − nzz)

have precisely the same value of the Fourier transform.

of the five-atom primitive cell and where x and y are unit
vectors along the x and y axis, respectively. Note that we also
numerically found (not shown here) (1) similar anticorrelations
of the x components of the local modes in the (x,z) plane
for regions centered about r1 and r3 = ±4.5alatx ± 9alatz
(where z is the unit vector along the z axis); and (2) similar
anticorrelations of the y and z components of the local modes
in the planes and around positions that can be deduced by cyclic
permutations from the case of the anticorrelations between
the x components of the local modes. These anticorrelations
can be thought of as representative of antiferroelectriclike
interactions existing inside PMN, which is consistent with
the previously suggested idea that antiferroelectricity plays
some role in relaxor behaviors [22,23,66–69]. Moreover, such
anticorrelations between the x components of the local modes
were further found to be associated with the Fourier transform
of the distribution of the x component of the local modes inside
the supercell [70] being significant at several off-center vectors

of the first Brillouin zone. Typically, in our 18 × 18 × 18
supercells, these off-center k points are among the eight given
by 2π

9alat
(±x ± y) and 2π

9alat
(±x ± z), and that will be denoted

as kmax ,i in the following, where i runs from 1 to 8. Note
that (1) for the case of the x components of the local modes,
these kmax ,i lie, close to �, along the � − M lines of the first
Brillouin zone, where the M points are given by π

alat
(±x ± y);

(2) the kmax ,i are given by 2π
9alat

(±x ± y) and 2π
9alat

(±y ± z) for
the Fourier transform of the y components of the local modes,
and by 2π

9alat
(±x ± z) and 2π

9alat
(±y ± z) for the Fourier transform

of the z components of the local modes; and (3) the kmax ,i

vectors also depend on the size of the periodic supercell used
in the simulations. For instance, they are still lying along the
� − M lines of the first Brillouin zone when using N × N × N

supercells with N = 12, 14, or 16, but their magnitude is now
equal to

√
2 2π

Nalat
in these cases (note that these k points are

thus not located at zone boundaries). As a result, one can infer
that the magnitude of the “real” kmax ,i for which the Fourier
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transforms of the Cartesian components of the local modes
are maximum ranges 0.0884–0.1571 in 2π

alat
units (note that this

magnitude can also be rather sensitive to the j5 parameter).
Furthermore, Figs. 3(c) and 3(d) display the temperature

evolution of the square of the Fourier transform of the x

component of the local dipoles configuration at some of these
kmax ,i points for the two alloy configurations associated with
Figs. 3(a) and 3(b), respectively. Interestingly, these quantities
are nonzero only below 450 ± 50 K, which we identify as
the so-called T ∗ critical temperature of relaxors and which
we also considered to be equal to T0 in the aforementioned
Curie-Weiss relationship for the dielectric response. Note
that different measurements provide values of 350 K [50],
400 K [5,8,51], and 500 K [52] for T ∗ in PMN, and that
both hyper-Raman [71] and inelastic neutron [72] scattering
techniques pointed out to a condensation of the soft polar
mode at respectively 400 and 340-K. It is interesting to
realize that the onset of anticorrelations shown in Figs. 3(c)
and 3(d) occurs in a temperature range that is consistent with
the condensation of the M- and R-point zone boundary soft
modes observed in PMN by Swainson et al. [69] between
400 and 450 K. Such experimental data (i) therefore cover a
rather wide temperature interval inside which our prediction
falls in and (ii) which can be understood by realizing that
Figs. 3(c) and 3(d) reveal that this T ∗ can depend on the alloy
configuration (and thus should be experimentally dependent
on the sample preparation and the spatial (and probably time)
scale resolution of the experimental technique). As a matter of
fact, Fig. 3(c) gives a T ∗ close to 400 K while Fig. 3(d) yields
a value closer to 450 K. Note that the Supplemental Material
also provides additional details about the effect of atomic
ordering on properties of PMN systems. Figures 3(c) and 3(d)
further show that the square of the Fourier transform increases
when decreasing the temperature below T ∗ until reaching
a rather significant value that also strongly depends on the
atomic configuration used to represent disordered PMN. For
instance, the two configurations resulting in the correlations
depicted in Figs. 3(a)and 3(b) possess values of about 12% for
2π

9alat
(x + z) and of about 7% for 2π

9alat
(x + y) of the total spectra

gathering the Fourier transforms at all possible k points at 10 K,
respectively. Such results indicate that, as similar to the BZT
case [23], anticorrelations begin to occur at the T ∗ critical
temperature and strengthen as the temperature is reduced
below T ∗. The fact that Figs. 3(c) and 3(d) demonstrate
that several of these symmetry-related kmax ,i exist for any
disordered atomic configuration at any temperature below T ∗
makes the disordered PMN different from an incommensurate
crystal, for which only a single off-center k point condenses
at a critical temperature in one macroscopic domain [15,73].
The simultaneous condensation of several k points presently
discovered here is also a key ingredient of the so-called weak
crystallization theory [74] and is also likely consistent with
the idea of phonon localization advanced in Refs. [75,76]
to explain the relaxor behavior in PMN (note also that the
occurrence of correlated regions localized in real space, such
as the PNRs, also automatically imply the existence of more
than one k point in the Fourier transform of the local modes).
It is important to know that increasing the magnitude of a
specific short-range order parameter between second nearest
neighbors (namely, the j5 coefficient indicated in the methods

section) was numerically found to enhance both the strengths
of the anticorrelations and of the Fourier transform of the
local modes at kmax ,i for any temperature below T ∗, therefore
demonstrating its relevance to understand PMN, as well as the
possibility for tuning relaxorlike properties.

Interestingly, we can also infer that, in addition to j5, the
random electric fields are also key ingredients at the very
heart of the properties of PMN. To illustrate this fact, we
conducted additional simulations in which the random electric
fields are switched off [practically, the Q|j−i|(σj) coefficients
are imposed to be null]. Figures 1(c) and 1(d) show the
resulting temperature dependency of the dielectric response
and of the x component of the 〈u〉 supercell average of the
local modes (which is also equal to its y and z components),
respectively, when the system is progressively cooled from
high temperature down to 10 K. Comparing Fig. 1(a) with
Figs. 1(c) and 1(d) tells us that the random electric fields play
a primordial role in the relaxor behavior of PMN: without
them, disordered PMN would display a first-order transition
at around 550 ± 50 K (that is characterized by a large and
sharp peak in the dielectric susceptibility) above which the
system is macroscopically paraelectric while below which it
is ferroelectric with an electrical polarization lying along the
pseudocubic [111] direction and increasing in magnitude as the
temperature is reduced [as shown by Fig. 1(d)]. Figure 1(c)
further shows that the Curie-Weiss law is also followed for
temperatures above 750 K with a corresponding T0 of 633 K,
when random fields are not included in the simulations.
Surprisingly, for temperatures ranging T = 550 to 750 K (that
is “just” above the transition temperature) another Curie-Weiss
law is obeyed, one for which T0 is now very close to
500 K. We numerically find that the existence of these two
different Curie-Weiss laws originates from the appearance of
the aforementioned (j5-driven) antiferroelectric (AFE) -like
features for temperatures ranging 550–750 K. On the other
hand, these AFE-like features are found to vanish in favor of a
ferroelectric state for temperatures smaller than 550 ± 50 K,
that is below the phase transition—as demonstrated by the
inset of Fig. 1(d) revealing that the low-temperature polar state
is homogeneous, when random electric fields are turned off.
Such findings therefore demonstrate the strong competition
between ferroelectric and AFE-like interactions. Moreover, It
is also important to know that the temperature at which the
peak of the dielectric response occurs when random fields
are neglected does not necessarily coincide with the Burns
temperature nor T0 or T ∗ of the true disordered PMN system
[i.e., incorporating the Q|j−i|(σj) coefficients]. As a matter of
fact, we numerically found that it is possible to find different
combinations between the aforementioned j5 and Q|j−i|(σj)
parameters giving the same T0 and TB as in Fig. 1(a) for
disordered PMN [in general the larger j5 is in magnitude the
bigger Q|j−i|(σj) is for these combinations], while the position
of the peak of the dielectric response reported in Fig. 1(c)
(in the case of no random electric field) does depend on this
combination. Note that, technically speaking, we also needed
to vary a third effective Hamiltonian parameter, along with
j5 and Q|j−i|(σj) coefficients, to have a fixed T0 temperature.
This third parameter is the harmonic coefficient of the local
electric dipoles, and is therefore directly related to the strength
of the ferroelectric instability at the zone center. Such facts
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(further) demonstrate that ferroelectric degrees of freedom,
antiferroelectriclike motions, and random fields all interact
with each other to produce the striking properties of disordered
PMN, and thus all need to be accounted for to understand
this complex system, in particular, and lead-based relaxors, in
general.

IV. SUMMARY

In summary, we develop and use an effective Hamiltonian
method to study finite-temperature properties of PMN. This
numerical technique reproduces known anomalous striking
signatures of this prototype of relaxor ferroelectrics, therefore
demonstrating its accuracy and capability. It also reveals the
nanoscale picture of PMN and the microscopic origins of its
properties. It is also worth realizing that a similar technique
was recently used to investigate the lead-free and homovalent
Ba(Zr,Ti)O3 system [23]. Comparing that study [23] to the
present one reveals that different relaxor ferroelectrics can
exhibit similar macroscopic properties but their microscopic
origins can be fundamentally different: in one case, the
difference in polarizability between the ions belonging to
the mixed sublattice [that is Ti and Zr in Ba(Zr,Ti)O3] was
found to be essential to reproduce relaxor behavior via the

formation of small embedded polar nanoregions. On the other
hand, in the case of PMN, the major players are the
random electric fields arising from the mixed B sublattice,
the strong short-range interactions between lead-centered
electrical dipoles, and the competition between ferroelectric
and antiferroelectric interactions, which result in a complex
nanodomain structure exhibiting anticorrelations associated
with several off-center k points. We therefore hope that the
present work results in a deeper and broader knowledge of
the fascinating class of relaxor ferroelectrics, and can also
be useful for the understanding of other inhomogeneous sys-
tems with remarkable properties like colossal magnetoresis-
tance or high-temperature superconductivity where competing
states in the presence of random fields are key ingredients
too [77].
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Vanderbilt, Phys. Rev. B 70, 054103 (2004).

[66] N. Takesue, Y. Fujii, M. Ichihara, and H. Chen, Phys. Rev. Lett.
82, 3709 (1999).

[67] W. Hu, K. Hayashi, K. Ohwada, J. Chen, N. Happo, S.
Hosokawa, M. Takahasi, A. A. Bokov, and Z.-G. Ye, Phys. Rev.
B 89, 140103(R) (2014).

[68] A. Tkachuk and C. Chen, arXiv:cond-mat/0303105.
[69] I. P. Swainson, C. Stock, P. M. Gehring, Guangyong Xu, K.

Hirota, Y. Qiu, H. Luo, X. Zhao, J.-F. Li, and D. Viehland, Phys.
Rev. B 79, 224301 (2009).
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