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Cavitation density of superfluid helium-4 around 1 K
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Using an optical interferometric method, the cavitation density of bulk superfluid helium at T = 0.96 K is
measured and found to be ρcav = 0.1338 ± 0.0002 g cm−3. A well-established equation of state for liquid helium
at negative pressures converts this to the cavitation pressure Pcav = −5.1 ± 0.1 bars. This cavitation pressure is
consistent with a model taking into account the presence of quantized vortices, but disagrees with previously
published experimental values of Pcav.
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I. INTRODUCTION

Because helium is a model material at low temperature,
its phase transitions have been studied in much detail. In
particular, the stability limits of the liquid phase with respect to
the solid phase at high pressure and to the gas phase at negative
pressure have been studied experimentally and theoretically
(see the review articles of Balibar et al. [1,2]). To avoid
wall-induced nucleation of the new phase, experimental over-
and under-pressures are produced in bulk liquid away from
any surface using high-amplitude focused sound waves [3].
While the appearance of the new phase is easily detected
optically, the measurement in situ of the local pressure at
which nucleation occurs is a challenge. Estimations have been
drawn either from the oscillation amplitude of the sound
emitter combined with an estimation of the gain due to
the focusing [4–6], or from extrapolating the liquid static
pressure down to where a vanishingly small sound wave
would produce cavitation [6]. However nonlinear effects in
the sound wave propagation introduce uncertainties in both
methods.

In 2010, our group introduced a time-resolved quantitative
multiphase interferometric imaging technique [7] for measur-
ing the density of a medium inside a sound wave with cylindri-
cal symmetry. In 2012, this technique was successfully applied
for density measurements in solid helium at 1 K in pressure
swings below the equilibrium melting pressure [8]. We
intended to implement the same technique to study metastable
liquid at pressure above this melting pressure. In order to check
the method in liquid helium, we decided to measure first the
liquid density at which cavitation occurs around 1 K aiming
at verifying the results of Ref. [6]. In this article, we present
our result for the cavitation density. Previous experimental
results were given as cavitation pressures. So an equation of
state for liquid helium at negative pressures has to be used
for comparison. Fortunately, various theoretical approaches
[9–12] have produced quite similar equations of state. To our
surprise, our density result converted to pressure does not quite
agree with previous estimations. Thus we also reproduced the
pressure extrapolation of Caupin and Balibar [6], and found a
reasonable agreement with their data. After discussion of vari-
ous sources of uncertainties in our measurements, we compare
our results with various theoretical estimates of the cavitation
pressure.

II. EXPERIMENTAL SETUP

The technique to measure the local density variations
in focused acoustic waves has been described in previous
articles [7,8]. Here is a brief reminder.

The experimental cell containing liquid helium is cooled in
a cryostat with four optical ports. The working temperature can
be regulated from 0.9 K to 2.1 K. In the experiment described
in this paper, the temperature is fixed at T = 0.96 K. The cell
is connected to a buffer volume at room temperature, so that
the static pressure Pst is easily monitored with the help of a
Keller X35 pressure sensor with an accuracy of ±15 mbars.
A hemispherical piezoelectric transducer (PZT) excites and
focuses ultrasound waves in helium at the frequency 1.15 MHz
of its first thickness vibration mode. The transducer inner
diameter is 12 mm, and the thickness is 2 mm. In order to
observe directly the acoustic focus, a small part, 0.9 mm in
height, has been removed around the transducer rim. One side
of the transducer is grounded and the other side is connected
to the output of a RF amplifier driven by an arbitrary function
generator (AFG). A detailed scheme is shown in Fig. 1.

The optical part of the setup is a Jamin interferometric
imaging system with a pulsed Nd:YAG laser (λo = 532 nm) as
a light source and a CCD camera for detection. The focal region
is imaged onto the CCD camera with a magnification factor of
2 using an appropriate lens. The spatial resolution of the entire
system is 20 μm [7], about 1/10 of sound wavelength λs =
0.24 mm. The CCD camera orientation is such that columns of
pixels are parallel to the transducer axis. Lines of pixels are thus
along a radius of the sound field. One arm of the interferometer
passes through the acoustic focal region while the other crosses
the cell in an unperturbed zone. The acoustic wave introduces a
density variation that modulates the refractive index of helium
(mainly in the acoustic focus) and hence gives rise to an optical
phase shift between the two paths. A pair of phase plates is
placed between the laser and the cell. One of these phase plates
is mechanically controlled by a computer in order to add a
known phase shift to the unperturbed ray. This added phase
shift enables us to extract the phase shift due to the variation
of the refractive index as we will see in the next section.

III. LOCAL DENSITY MEASUREMENT

Using the AFG, we can choose the time t with respect to the
sound pulse triggering at which an image of the interference
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FIG. 1. Experimental setup. At the center of the transducer, the
small star is the acoustic focus where cavitation occurs. A CCD
camera monitors the focus plane through a lens. The camera image is
composed of pixels distributed in lines and columns. We optimized
the camera orientation so that lines are parallel to the x axis.

field is taken by the camera. This time is adjusted by steps
of 0.05 μs, about 6% of the sound period. By repeating the
measurements and recording images at successive delays on
a relatively long period, we are able to reconstruct a temporal
evolution of the interference field in the focal region.

The observed intensity of a given pixel at time t is expected
to be

I (t) = I0(t){1 + C(t) cos[δφ(t) + β]}; (1)

δφ(t) is the optical phase to be measured, and β is the
controllable phase shift due to the phase plates. I0(t) and C(t)
are respectively the mean intensity and the fringe contrast.
A series of measurements with different β at the same time
enables us to extract the phases δφ(t) through a fit [7] of Eq. (1).

Let y be the light propagation axis, z the PZT axis, and x

the axis orthogonal to y and z (Fig. 1). At a given delay t , the
phase shift δφ(x,z) is related to the refractive index map by a
simple integration along the y axis. In our case, the sound field
is rotationally invariant around the hemisphere axis z, so that
the refractive index variation δn is only a function of z and
r =

√
x2 + y2. Given the fact that δn is 0 outside the sound

field, we can write δφ as the Abel transform of δn:

δφ(x,z) = 2π

λ

∫ +∞

−∞
dy δn(

√
x2 + y2,z). (2)

Conversely, radial refractive index profiles can be retrieved
from phase shift maps via an inverse Abel transform. Then,
using the Clausius-Mossotti relation in the limit n0 ∼ 1, the
density variation δρ of the medium can be deduced easily:

δn

n0 − 1
= δρ

ρ0
, (3)

n0 and ρ0 being the unperturbed refractive index and density.
From the measured quantity δn, the density itself is easily
deduced by ρ = ρ0(1 + δn

n0−1 ). Figure 2 shows a typical density
radial profile obtained for Pst = 0.15 bars at the time when the
density is minimum at acoustic focus.

IV. DETERMINING THE CAVITATION VOLTAGE

Our measurement of local density by interferometry re-
quires a completely reproducible phenomenon. If bubbles
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FIG. 2. Typical radial density profile for Pst = 0.15 bar at the
time when the density is minimum at acoustic focus. The static density
corresponding to Pst is shown by the horizontal dashed line. The error
bar calculation is detailed in Sec. V.

appear randomly, it is impossible to measure the optical phase
shift δφ(t) for the pixels involved. In other words, this method
only allows us to measure the local density just below the
cavitation density where no cavitation process occurs (or the
cavitation probability is very low). Then the measured local
density should be very close to the real cavitation density and a
linear extrapolation to the cavitation voltage would introduce
only a small correction.

Thus, before performing any density measurement, we
have to precisely determine the cavitation voltage. Other
groups have observed that bubble lifetime in superfluid helium
depends on the static pressure Pst and is of the order of some
tens of microseconds [4,13]. Then, ∼10 μs after the minimum
pressure wave front passed the acoustic focus, bubbles have
expanded to their maximum size and are easily observed on
the CCD camera (see Fig. 3).

The cavitation process has a statistical behavior because of
the thermal fluctuations. According to Caupin et al. [6], this
probability is described by the “asymmetric S-curve formula”:

�(V ) = 1 − exp{−ln 2 exp[ξ (V/Vc − 1)]}, (4)

where V is the excitation voltage, Vc the cavitation voltage,
and ξ a dimensionless parameter. In order to determine Vc,

400 µm PZT480 500 520 540 560 580
0

0.5

1

V(mV)

Σ(
V

)

FIG. 3. Left: Cavitation probability at 0.96 K for three differ-
ent pressures Pst : circles, 0.15 bars; triangles, 0.65 bars; crosses,
1.26 bars. The corresponding lines are fits according to Eq. (4). Right:
Image of a bubble recorded by the camera 10 μs after its creation.
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we proceed as follows. For a given static pressure, the bubble
probability is determined for 5 different excitation voltages.
Each voltage point corresponds to 1000 trials (1000 sound
pulses) and the probability is then simply given by the number
of positive events (creation of bubble) divided by the number
of trials. The relative standard deviation on the probability
is 1/

√
1000 � 3%. To avoid heating, 10 bursts of 100 sound

pulses at 10 Hz repetition rate were shot, waiting 100 s between
each burst. To precisely control the driving voltage of the PZT,
we fixed the RF amplifier gain factor at about 390, and adjust
only the AFG voltage amplitude with a relative accuracy of
10−4. Hence we use the AFG voltage V as a scale to determine
the cavitation voltage instead of the PZT driving voltage.

The cavitation voltage is the value corresponding to a bub-
ble probability of 1/2 according to Eq. (4). As can be seen in
Fig. 3, the relative width of the curves is about 1% of Vc. These
curves are indeed very sharp and for the AFG voltage Vmax of
about 2% below Vc, the probability �(Vmax) is about 10−3.

V. CAVITATION DENSITY

In this section, we present our results for the cavitation
density of superfluid helium at T = 0.96 K. The cavitation
density was reached from three different static pressures :
0.15 bars, 0.65 bars, and 1.26 bars. For each static pressure,
the cavitation voltage is determined following the approach
depicted previously (see Fig. 3). Then the minimum density in
time and space ρmin was measured for several voltages below
the cavitation threshold. An example is shown in Fig. 4. The
density variation is not a linear function of the voltage. This is
due to nonlinear effects in the acoustic wave and possibly to
the appearance of shock waves [14]. Assuming a local linear
dependence of ρmin on V , and taking into account the error
bars, one can safely consider ρcav is ρmin(Vmax). In order to
improve the accuracy in determining ρcav, we have made a lot
of measurements of the local density just below the cavitation
voltage.
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FIG. 4. Experimental measurements of minimum densities ρmin

for different driving voltages V at T = 0.96 K and Pst = 0.15 bars.
The dashed line represents the cavitation voltage.

The measurement uncertainties can be divided in two parts:
the statistical ones which come mainly from the extraction
process of the optical phase shift induced by the acoustic wave,
and the systematic errors arising from an imperfect cylindrical
symmetry of the pressure wave.

As we mentioned earlier, for each time and for each pixel,
the phase shift value δφ(t) is obtained by applying a fit on
β-dependent intensities using Eq. (1) [7]. We use a computer
program to extract these phases with 95% confidence bounds.
This gives the phase shift uncertainties mainly due to shot
noise, camera reading noise, and laser power fluctuations.
Once the phase shift map is determined, an inverse Abel
transform [7] is applied to recover the refractive index local
variation induced by the acoustic wave. Then, the density
variations are deduced from the optical index variations using
Eq. (3). The inverse Abel transform is a linear transformation.
In a given line of an image, which is along the x axis, the
calculation of the optical index at a given pixel i depends
linearly on the phase shift values for all pixels on the same line
farther from the transducer axis. The local density variation at
pixel i is thus in the form

δρi =
jmax∑
j=i

αij δφj , (5)

where j is the pixel index in the line, αij is a weight, and jmax

is the line end pixel where the sound field is negligible. The
errors �δρi on δρi can be computed from the error �δφj on
δφj and the weights αij which could be in principle extracted
from the Abel inversion program. Instead we used a simpler
empiric method, assuming that the phase uncertainty is about
the same for each pixel, and is not correlated from one pixel to
an other. In that case, the uncertainty of the density variation
at the pixel i is

(�δρi)
2 =

jmax∑
j=i

α2
ij (�δφj )2 = (�δφ)2

jmax∑
j=i

α2
ij . (6)

Then, we performed N = 1000 density calculations, for the
same treated line while adding a Gaussian noise to the phase
shifts for every calculation. The standard deviation of the
added noise is chosen to be the same as the phase shift
uncertainty �δφ. Once we have these N treatments, the
statistical uncertainty (�δρi)N of the radial density variation
is calculated for each pixel of the line. By construction,
this uncertainty is equal to

√
2 times the original unknown

statistical uncertainty �δρi of the density variation, because

(�δρi)
2
N =

jmax∑
j=i

α2
ij [(�δφ)2 + (�δφ)2] = 2(�δρi)

2. (7)

Applying this method, we found that the statistical uncertainty
around the cavitation density is on the order of 0.0002 g cm−3,
while the maximum value of δρ is of order 0.0125 g cm−3.

The inverse Abel transform assumes that the symmetry
axis is exactly known. Actually, it is unknown and has to be
determined experimentally by searching a symmetry axis in the
phase maps. But the noise in the phase as well as any possible
asymmetry of the acoustic wave locally perturb the left-right
symmetry of the phase shift maps. This perturbation will add
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FIG. 5. Cavitation density as a function of static pressure at T =
0.96 K. For more clarity, the different measurements are shifted from
their actual Pst values (black circles). The horizontal continuous line
represents the average cavitation density and the dashed lines its
uncertainty.

an uncertainty in the calculation of density variations. The dif-
ference between the Abel inversion applied to the left and to the
right of this axis gives an order of magnitude of this uncertainty.

The symmetry axis for a given phase map is found by
fitting a straight line through all symmetry centers when the
amplitude of the sound pulse at focus is maximum. Then the
mean and the standard deviations for the positions of these axis
are computed. The uncertainty on the symmetry axis is about
3 μm, giving a contribution to the density variation uncertainty
on the order of 0.0003 g cm−3. To this systematic uncertainty
we add another incertitude due to the difference between the
left and right parts of the Abel inversion. This gap varies from
one image to another and it is on the order of 0.0005 g cm−3.

We have measured many minimum densities in the vicinity
of the cavitation voltage at several static pressures (0.15 bars,
0.65 bars, and 1.26 bars) and at the same temperature 0.96 K
as shown in Fig. 5. In this figure, the error bars represent
the quadratic sum of statistical and systematic uncertainties
for each minimum density measurement. Within the error
bars we find as expected that ρcav is independent of Pst .
Thus, we computed the mean of these measurements and their
mean squared error to determine, respectively, the cavitation
density of helium and its uncertainty. Our final result is that
the cavitation density of superfluid helium-4 at 0.96 K is
ρcav = 0.1338 ± 0.0002 g cm−3.

Note that the uncertainty given here (2 × 10−4 g cm−3)
compared to the density variation δρ gives a relative uncer-
tainty about 2%. Concerning the reliability of this measure-
ment, it may be interesting to recall that a comparison with a
hydrophone [7] was made in water in 2010. It was found that
the deviation between the two methods is less than 5%.

VI. DISCUSSION

Previous results [5,6] about cavitation in liquid helium
were given as cavitation pressures instead of cavitation

densities. The equation of state (EOS) of liquid helium in its
metastable state (density and pressure below the boiling curve
values) is needed to convert the ρcav to a corresponding Pcav.
Although such an equation of state has never been measured
experimentally, some have been proposed. Maris has pointed
out that, in the stable phase at T = 0.1 K, the sound velocity
pressure dependence could be fitted very well by the law
c3 = b(P − Pc) with c the sound velocity, P the pressure,
Pc the spinodal pressure, and b a constant [15]. He proposed
that this relationship holds in the metastable state (negative
pressure). Bauer et al. have performed path-integral Monte
Carlo simulations of liquid helium in the metastable state at
finite temperature and found the same dependence of sound
velocity on pressure [11]. Dalfovo et al. have calculated the
EOS of metastable liquid helium at T = 0 K using a density
functional approach [10], and Boronat et al. using a quadratic
diffusion Monte Carlo method to achieve a similar EOS [9].
The EOSs at 0 K agree within a few percent. Moreover, using
the density functional theory of Dalfovo et al., Maris and
Edwards have shown that in the temperature range 0 < T <

1 K, the EOS is nearly independent of temperature [12].
So in order to compare our cavitation density result to

cavitation pressure results of other experiments, we use the
EOS for metastable liquid helium established in Ref. [15] and
modified in Ref. [6] to correct for a unit error. This EOS is

P = Ps + γ (ρ − ρs)
3, (8)

where the pressure P is in bars, the density ρ in g/cm3,
Ps = −9.6435 bars, γ = 72 904 bars (g/cm3)

−3
, and ρs =

0.094175 g/cm3. This equation is valid at T = 0 K and we
assume it holds for T = 0.96 K [12]. Using this EOS, our
cavitation pressure is Pcav(0.96 K) = −5.1 ± 0.1 bars.

At temperatures ∼1 K, in addition to the present experi-
ment, there are to our knowledge only two experiments which
studied the wall-induced free cavitation of liquid helium. Both
also used focused acoustic wave. Xiong et al. [5] found that
the cavitation pressure at 1 K is ∼ − 3 bars. The incertitude
mentioned in this paper is about ±10% and comes mostly
from the difficulty of estimating the pressure at acoustic
focus knowing the displacement of the emitter. Nonlinear
effects were not taken into account in their calculation.
So this incertitude is likely to be underestimated. Caupin
et al. [6] studied the dependence of cavitation voltage on
the static pressure. They claim that this method enables
them to set an upper limit for the actual cavitation pressure.
Modeling a linear response of their emitter to voltage, they
also give a lower limit for the cavitation pressure. Their
result is −9.8 < Pcav(0.9 K) < −7.7 bars. According to the
data points published in [16], the result at T ∼ 1 K is almost
the same. One can see that there are large discrepancies among
these experiments.

We have tried to reproduce the experiment of Caupin et al.
using their extrapolation method on Pst [6] (see Appendix).
The upper limit of Pcav we found is about −8 bars which agrees
pretty well with the one of Caupin et al.. But the disagreement
with our density measurement converted to pressure remains.

Jezek et al. [17] have calculated the cavitation pressure
of liquid helium as a function of temperature, by using
a density functional method and assuming the absence of
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defects (especially vortices). In order to compute the cavitation
pressure, the volume υ and the time τ in which nucleation
is likely to occur are needed. We take υ = (λs/2)3 and
τ = 0.1 μs is the 1/10 of the sound period. This gives
υτ ∼ 10−13 cm3 s. Using this υτ value, Jezek et al. calculated
P Jezek

cav (0.96 K) ∼ −6.9 bars. This value is just between our
result (−5.1 bars) and the central value (−8.8 bars) of Ref. [6].

Finally, we would like to point out that Maris has developed
a model of cavitation in the presence of quantized vortices
in liquid helium [18]. For a vortex density ranging from
104 to 1012 cm−2, he finds that −5.8 < P vortices

cav (0.96 K) <

−5.1 bars. Although Maris cannot estimate the error bar
on this simulation, we note that our result does lie in this
range. Besides, Pettersen et al. [19] have proposed that the
vortex density in the high-amplitude sound wave should be
of the order of 108 ∼ 1010 cm−2. The presence of vortices
might be a possible way to reconciliate our experimental
result with simulations. Because vortices are very difficult
to avoid in any experiment in superfluid helium, they are
likely to be present also in other cavitation experiments and
the experimental cavitation pressure should be similar to our
value of Pcav. Nevertheless, it remains to be understood why
the extrapolation method of Pst of Ref. [6] seems to point
towards the vortex free cavitation pressure rather than to the
experimental value of Pcav.

VII. CONCLUSION

Using an interferometric setup, we have measured the
cavitation density of liquid helium-4 at T = 0.96 K and the
result is ρcav = 0.1338 ± 0.0002 g/cm3. Trying to compare
this result with existing calculations on the cavitation pressure,
we found that a model taking into account the presence of
vortices in the liquid can rather satisfactorily explain our
result. We plan to investigate the influence of vortices on
cavitation in liquid helium in two ways. First, by studying the
dependence of ρcav on temperature, a signature while crossing
the lambda temperature should be seen. Second, we will probe
the dependence on the density (in the metastable state) of the
sound velocity and of the sound attenuation. This last part will
be done using stimulated Brillouin scattering.
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FIG. 6. Reproduction of Ref. [6] experiment. Pst as function of
ρstVc. The 3 data points (black circles) correspond to static pressures
of 0.15 bars, 0.65 bars, 1.26 bars. Cavitation voltages are the ones
shown in Fig. 3. The dotted line is the linear extrapolation of the data
points.

APPENDIX: CAVITATION PRESSURE BY
EXTRAPOLATING THE STATIC PRESSURE

In 2001, Caupin et al. implemented an extrapolation
method [6] to investigate the behavior of helium in negative
pressure. They imagined an environment with a “stable”
negative static pressure. In this situation, the required driving
voltage for achieving cavitation would be less than the
one in null static pressure. Then the very negative static
pressure corresponding to zero cavitation voltage would be
the cavitation pressure. That can be expressed as

Pcav = Pfocus = Pst + �P (ρstVc), (A1)

where Pcav, Pst , and Pfocus are respectively the cavi-
tation pressure, the static pressure of helium, and the
pressure at acoustic focus. �P (ρstV ) is the variation
of pressure induced by the sound wave and ρst is
the static density. This equation holds when the driving
voltage V reaches cavitation voltage Vc. Assuming that the
cavitation pressure is independent of Pst , we measure the
different cavitation voltages at different static pressures, and
then extrapolate linearly at zero cavitation voltage [20].
Numerical simulations [14] have shown that in the absence of
vortices the true curve is concave toward negative pressures.
The linear extrapolation gives an upper limit of the true
cavitation pressure.

Figure 6 shows our extrapolation corresponding to our
measurements of (Pst , Vc) values (see Fig. 3). The upper limit
of cavitation pressure obtained in this way is −7.9 ± 0.3 bars.
This is in agreement with Caupin et al.’s value.
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