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The cases of graphene, boron nitride, and planar superlattices
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The physics of thermal transport on strained, two-dimensional (2D) materials graphene, boron nitride, and
their superlattices is analyzed by molecular dynamics, lattice dynamics, and numerical solutions to Boltzmann
transport equation. The thermal conductivity of these materials is found to be highly sensitive to tensile strain, and
the strain dependence itself is also highly dependent on the sample total length. Both finite-sized systems (varying
from ∼100 to 300 nm long) as well as infinitely long systems are considered. In contrast to the typical reduction of
thermal conductivity with strain exhibited by bulk 3D materials, the thermal conductivity initially increases to a
peak value, after which it then decreases with further strain. Modal decomposition of the phonon spectrum shows
that the nonmonotonic behavior arises from a competition between in-plane softening and flexural stiffening of
phonons. The length sensitivity arises from the nature of the linear/quadratic dispersion of the in-plane/flexural
modes and their distinct scattering selection rules: longer systems favor out-of-plane flexural phonon stiffening
while smaller systems favor in-plane phonon softening. Additionally, we show that this competition occurs in con-
cert with a strain-induced transition in the nature of the phonon flow from ballistic dominant to diffusive dominant.
Overall these effects give rise to a complex dependence of thermal conductivity on strain and sample size.
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I. INTRODUCTION

The class of two-dimensional materials including graphene,
boron nitride, and their planar superlattices has received inter-
est as a playground for nanoscale thermal engineering [1,2].
These materials exhibit rich thermal physics and potentially
offer a route to tailored thermal properties [3]. Through
confinement of a material to one atomic plane, interesting
phononic effects can arise. For example, flexural phonon
modes emerge with unique characteristics such as parabolic
(rather than linear) dispersion and peculiar selection rules
governing their scattering [3]. This leads to a crossover of
thermal conductivity to that of three-dimensional (3D) graphite
when layers of graphene are stacked [4]. The flexural modes
are also intimately related to the recent debate regarding
possible divergence of the thermal conductivity of graphene
[5,6]. Furthermore, 2D superlattices of graphene and boron
nitride have recently been studied, and sensitive dependences
of thermal conductivity on superlattice period and interfacial
defects have been reported [7].

Amongst the many questions that remain regarding 2D
materials, one question is how the presence of strain affects
the thermal transport. On one hand, ab initio lattice dynamics
simulations [8] and classical equilibrium molecular dynamics
simulations [9] demonstrate that the thermal conductivity κ of
unstrained graphene ultimately converges to a finite value as
the sample size increases. However, these simulations demon-
strate not only that κ is enhanced when strain is present, but also
that strain changes the asymptotic behavior of the length de-
pendence, yielding now a diverging κ . The change is attributed
to the ZA flexural phonon modes: when unstrained, their
vanishing group velocities contribute negligibly to conduction,
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but serve primarily as scattering pathways and prevent the loga-
rithmic divergence predicted for purely 2D systems. According
to these analyses, strain “linearizes” the normally parabolic
dispersion of the ZA modes, and the increased group velocities
then enable the ZA modes to contribute to conduction [8,9].

Interestingly, these results are in sharp contrast with those
of several nonequilibrium molecular dynamics simulations
[5,10,11], which instead tend to find that (i) without the
presence of strain, the κ of graphene may already diverge
logarithmically as the system size increases [5], and (ii) that
the effect of strain for a fixed sample size is to reduce (rather
than increase) κ [10,11]. Conventional wisdom based on what
is known about bulk 3D materials supports the idea that in
general tensile strains soften phonon modes, depress group
velocities, and decrease relaxation times [12]. Additionally,
even before strain is imposed, decomposition of κ into modal
contributions suggests that the ZA modes contribute to (and
may even be dominant contributors to) κ . However, many
of these studies have been carried out for single, finite-sized
samples and the length dependence of the reported trends is
not clear. We have found one exception to this trend in the
literature, which is an NEMD study of the effects of strain on
silicene, a 2D allotrope of graphene, in which an increase in κ

with strain is reported [13].
In this work, we use several techniques (nonequilibrium

molecular dynamics, equilibrium molecular dynamics, har-
monic lattice dynamics, and the Boltzmann transport equation)
to understand how strain influences thermal transport in 2D
materials. We considered samples ranging from 100 to 300 nm
using nonequilibrium molecular dynamics and the Boltzmann
transport equation; further we use the latter to extend our anal-
ysis to infinite systems. The length-dependent analysis pre-
sented here offers an explanation for the above discrepancies.
As the applied strain increases we find that graphene, boron
nitride, and graphene/boron nitride superlattices generally
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FIG. 1. (Color online) (a) Schematic of a G/BN superlattice with
strain ε = 15%. P denotes the superlattice period and L is the total
length. Tensile strain is applied along the x direction and meanwhile
the superlattice sample is sandwiched between two heat baths for
NEMD simulations. (b) The convergence of thermal conductivity of
G/BN with varying widths W , for sample length L = 215 nm, both
strained and unstrained.

become more thermally conducting up to a threshold strain,
beyond which κ begins to decrease. The nonmonotonic
behavior occurs as a result of a competition between stiffening
of flexural ZA modes and softening of in-plane phonon modes.
The position of the peak in κ , however, is highly sensitive to
the total length: for reasons that we will discuss, the former
effect is dominant in large systems, and the latter in small
systems. Our analysis brings the seemingly disparate results
reported above into concert. Further, we demonstrate that the
application of strain induces a transition in the nature of the
phonon flow from ballistic dominant to diffusive dominant.
Overall, these effects give rise to a complex dependence of κ

on the applied strain and sample size for 2D materials.

II. MODEL STRUCTURES AND
COMPUTATIONAL METHODS

We consider three 2D systems: graphene (G), hexagonal
boron nitride (BN), and planar graphene-boron nitride super-
lattices (G/BN). For example, Fig. 1(a) illustrates a G/BN su-
perlattice composed of alternating graphene and boron nitride
sections. We have implemented several different atomic-scale
methods in our analysis: equilibrium and nonequilibrium
molecular dynamics (EMD, NEMD), lattice dynamics (LD),
and iterative solutions to Boltzmann transport equation (BTE).
The EMD and NEMD simulations are implemented within
LAMMPS [14]; we have used Tersoff potentials [15] for
G and BN as optimized by Lindsay and Broido [16] for
thermal properties. (For the case of the superlattice in which

both carbon and boron/nitrogen atoms are present, Tersoff’s
mixing rules [15] are applied to describe their interactions at
superlattice interfaces.) For the LD analysis that we use to
spectrally decompose the heat carriers, we employed GULP
[17]. Finally, in order to evaluate scattering effects through
numerical solution of the BTE solutions, we used the open-
source package PhonTS [18].

It is important to note that the different approaches used in
our study introduce different levels of approximations. While
LD truncates the spatial derivatives of the potential to second
order (ignoring phonon-phonon scattering), it can still extract
limited but useful harmonic information. By contrast, both
molecular dynamics and the BTE account for phonon-phonon
scattering, although in different manners. Within the BTE,
the third derivatives of the energy are effectively incorporated
via phonon relaxation times, and the resulting equations are
solved numerically within a computational supercell [18]. On
the other hand, the classical molecular dynamics simulations
incorporate anharmonic effects directly within the many-body
potential.

In our EMD and NEMD simulations, periodic boundary
conditions are always applied. We use a time step of 0.1 fs. All
systems are initially relaxed and then thermalized for at least 10
ps with Nose-Hoover thermostats; the systems are considered
to be thermalized when steady ensemble fluctuations around
the target temperature T = 300 K have been established. In
NEMD, the system is sandwiched between two heat baths
as shown in Fig. 1(a). To mimic real world experiments,
a quantity of heat Q is extracted from the cold bath and
replenished to the hot bath. This procedure establishes a
steady thermal gradient ∇T [19] based on which the thermal
conductivity can be estimated from Fourier’s law Q = −κ∇T

(computational details of our NEMD approach are described in
detail in Ref. [7]). All molecular dynamics results reported are
determined from a minimum of three independent simulations
(each is run for at least 1 ns), and system averages are deter-
mined by binning quantities of interest to ensure statistically
uncorrelated sampling; all error bars denote 95% confidence
intervals in the sampled quantity. In our NEMD simulations
for finite systems, the computational domain is comprised of
supercells with total lengths L0 = 300,500, and 700 unit cells
(∼130, 215, and 300 nm, respectively). As described below,
the corresponding widths W are selected to maintain a constant
aspect ratio. For the superlattice, a pitch of P = 10 unit cells
(∼4 nm) was selected; based on our previous work this is the
pitch that minimizes the thermal conductivity [7].

As always, with the use of NEMD [20], care must be taken
to avoid spurious effects that may arise from the presence of
heat baths and/or violation of the linear response regime. In
our simulations, we have ensured that the induced temperature
gradient is proportional to the heat flux so that linear response is
not broken. Our choice of heat baths is based on the approach
of Shiomi and Maruyama [21], where the bath length is set
to half of the system length L (we considered heat baths of
different lengths, and find that our results are not substantially
altered). A representative temperature profile was reported in
our earlier work [7], where no obvious effects due to thermal
boundary resistance can be identified. We have also tested our
results using baths made of different materials (i.e., either G,
or BN, or both), from which very stable thermal conductivities
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FIG. 2. (Color online) (a) Longitudinal stresses σxx on G and BN
subdomains of the G/BN superlattice as a function of applied strain.
(b) A snapshot of atomic configuration at ε = 15%, showing that no
tears or rupturing occurs; the strain is accommodated homogeneously
throughout the superlattice.

are obtained. Additionally, given the large aspect ratio of the
finite-sized systems that we consider, care must also be taken
to ensure that the calculated results are not unphysically large
due to the quasi-one-dimensional nature of the computational
domain [22]. Therefore, Fig. 1(b) shows the results of a
convergence test with respect to the width W for a system
with total length L0 = 215 nm: widths of W = 12 nm are
well converged, and thus this aspect ratio of 215:12 will be
maintained for the remainder of our NEMD analysis.

To apply strain, materials of natural (unstrained) length L0

are uniformly stretched in the longitudinal (x) direction to a
length L. The total strain is defined as εxx = (L − L0)/L0. We
exclusively study pristine crystals with strains less than 20%,
which is close to the limit strain for graphene [23]. As a result
of the imposed strain, a stress σxx develops in the systems.
Figure 2(a) shows a typical stress distribution (shown here for
the G/BN superlattice) as a function of the applied strain; as
required by mechanical equilibrium σxx is continuous across
the interfaces from the G to the BN subdomain. A snapshot of
an atomic configuration is captured in Fig. 2(b) at εxx = 15%,
showing perfect crystalline interfaces and no resulting rips,
tears, or other defects. We note that in our simulations, the
width of the materials in the transverse direction is held fixed
(rather than allowed to contract according to the Poisson ratio),
resulting in the presence of smaller transverse stresses (σyy)
as well. For several cases we checked the robustness of our
results when transverse relaxations are allowed, and find that
they are not substantially altered.

III. THERMAL CONDUCTIVITY OF FINITE SYSTEMS
UNDER TENSILE STRAIN

Figures 3(a)–3(c) compare κ obtained via both BTE and
NEMD for G, BN, and G/BN as a function of the applied strain
for systems of total length Lo = 215 nm.1 Here the BTE results

1In comparison to experimental measurements of κ , the values
reported here are low. Compare for instance our κ for unstrained
graphene (∼1500 W/mK) to measured values which range from

are obtained without including anharmonic scattering effects
in the relaxation times: only boundary scattering τ = L/υ

for each phonon is incorporated. In comparison with silicene
results previously reported also from NEMD [13], the lattice
conductivities of G, BN, and G/BN behave very differently.
At small tensile strains, κ of graphene appears relatively
insensitive (in NEMD the fluctuations are within error bars),
while that of BN somewhat increases, and G/BN increases
markedly. At larger applied strains, κ for all three systems starts
decreasing. As plotted in Figs. 3(a)–3(c), overall the κ from
NEMD coincide well with those from BTE; the agreement is
particularly good in the low-strain regime but exhibits some
deviations at increasing strain (to be discussed later).

To compare the relative sensitivity of the three systems
to strain, Fig. 3(d) shows the conductivities normalized by
their respective unstrained values. Overall, the superlattice
exhibits the greatest sensitivity, followed by BN, and then
by G. At small strains, while κ of BN and G/BN increase
with strain, G appears to be relatively strain-neutral (variations
are within 5% of the unstrained value). For the superlattice,
which is most sensitive, κ first increases up to strains εxx ∼
7% and then begins to decrease, giving a volcano shape.
The nonmonotonic response contrasts with the monotonically
increasing trend reported for silicene [13], and particularly
contrasts starkly with the well-documented reduction of κ with
tensile strain that is typically reported for NEMD simulations
of 2D materials [10,11]. We note that a similarly nonmonotonic
relationship was reported in Ref. [24], but in this case the initial
increase was attributed to the relaxation of an initially buckled
configuration. This explanation does not apply to our materials,
which are initially completely equilibrated before application
of strain. Furthermore, even at the largest applied strains, we
see no tears, holes, or other defects [Fig. 2(b)] that might give
rise to the observed behavior.

IV. TRANSPORT REGIMES

To explore the physics that gives rise to the nonmonotonic
dependence for the Lo = 215 nm, W = 12 nm systems in
Fig. 3, it is helpful to establish the ballistic vs diffuse nature of
the phonon flows. This can be accomplished via the phononic
Knudsen number, defined by Kn = �/Lc, where � and Lc

are respectively the phonon mean free path and a system
characteristic length. Strict limits to the nature of flows are
typically given by Kn > 10 for ballistic flow and Kn < 0.01
for diffusive flow [25]. While phonons carry heat and transfer
energy between boundaries without interphonon collisions in
the ballistic regime, they usually encounter multiple scattering
events before delivering heat between boundaries in the
diffusive regime. In the intermediate so-called “transitional”
regime (i.e., 0.01 < Kn < 10), both ballistic and diffusive

2000 to 5000 W/mK (see Ref. [1]). This underestimate is typical
for simulations of finite sized samples for which the transport is
largely ballistic. Moreover, discrepancies from experiment can be
further aggravated by the use of an empirical potential, the neglect of
quantum carrier statistics, and the introduction of boundary scattering.
Our reported values, however, are in good agreement with other
simulations of similarly sized samples (e.g., Refs. [5] and [9]).
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FIG. 3. (Color online) Thermal conductivity vs strain for (a) graphene, (b) boron nitride, and (c) G/BN superlattices, all with total length
Lo = 215 nm. The solid lines represent numerical BTE calculations, while the dashed lines indicate NEMD results. While graphene is initially
insensitive to strain, BN and G/hBN become increasingly conducting under small strains; for all systems the conductivity then decreases under
large strain. In (d), the NEMD results are normalized to compare the relative sensitivities of all systems, and for comparison to previously
reported results for silicene.

natures coexist and compete. [We note that models such as
nonequilibrium Green’s function (NEGF) and the Landauer
formalism are rigorously valid when Kn > 10, although in
practice many reported ballistic flows are actually in the tran-
sitional regime.] Moreover, such coexistence and competition
can often give rise to intriguing transport phenomena [26].

To determine the nature of the flow for the Lo = 215 nm
systems in Fig. 3, it is necessary to obtain an estimate of the
phonon mean free path �. For this, we employed EMD to
extract long-ranged and short-ranged phonon relaxation times
[27]. As suggested by previous studies (e.g., Refs. [10,27]
and references therein), the total κ can be decomposed as
κ = κsh + κlg , where κsh and κlg are contributions due to
short-ranged and long-ranged phonons (corresponding loosely
to diffuse and ballistic carriers, respectively). These two
phonon families are characterized by their distinct relaxation
times τsh and τlg , which are extracted by fitting the heat
flux autocorrelation function (HFACF) to the functional
form Cyy(t) = A1e

−t/τsh + A2e
−t/τlg as shown in the inset

of Fig. 4(a) for a G/BN superlattice. While τsh is reported
to be insensitive to temperature and strain, the long-ranged
carriers are believed to respond sensitively and account for
the temperature dependence of thermal conductivity [27]. We
find a similar trend as shown in Fig. 4(a): the short-ranged
phonon relaxation time stays relatively constant for all strains

(∼0.2 ps), while the relaxation time for the long-ranged
phonons drops monotonically from ∼4 ps to ∼0.2 ps as the
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FIG. 4. (Color online) (a) Long-ranged and short-ranged phonon
relaxation times obtained by fitting heat flux autocorrelation functions
(as shown in the inset), and (b) longitudinal Knudsen number of
long-ranged relaxation times vs tensile strain for the Lo = 215 nm
superlattice. All strained phononic flows turn out to be in the
transitional regime. As the strain is increased, the reduction of the
Knudsen number indicates that transport becomes more diffusivelike.
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FIG. 5. (Color online) (a)–(c) Phonon spectrum of (a) G, (b) BN, and (c) G/BN demonstrate that increased strain leads to reduced frequencies
of LA modes and increased frequencies of ZA modes, while TA modes remain almost unchanged. The arrows indicate the trends for increasing
strain, and the colors denote different mode families: blue (LA), orange (TA), and green (ZA). (d)–(f) The spectral decomposition for the
three systems respectively shows the competition between LA and ZA modes. Here colors indicate the applied strain. Note that in (f) mode
family differentiation has not been carried out for G/BN due to multiple zone folding, but the modes are approximately categorized by their
relative contributions as indicated in the inset. In all cases, while the ZA contribution increases with strain, the LA contribution decreases. The
competition between LA softening and ZA stiffening accounts for the variations of overall thermal conductivities.

strain increases. This drop indicates a change in the nature of
the flow from more ballisticlike towards more diffusivelike.

Using the relaxation times of Fig. 4(a), a representative
Knudsen number for the long-ranged flow can now be
estimated by Kn = �P /Lc, where �P = vP τlg , vP is the
longitudinal sound speed, and Lc = L. The Knudsen number
of long-ranged longitudinal phonons for G/BN is illustrated
in Fig. 4(b) as a function of strain. For the unstrained system
Kn ∼ 15 (strictly ballistic flow); as the strain increases Kn
decreases monotonically to Kn ∼ 0.4 (although not shown
here explicitly, the pure graphene and BN systems exhibit
similar trends). This observed change in Kn is consistent
with the deviation between MD and BTE results in Fig. 3.
Since interphonon collisions are not accounted for in the BTE
analysis, the two techniques give similar results at small strains
where collisions are not significant, but deviate somewhat
from each other at larger strain where phonon collisions are
enhanced.

It is also interesting to note that for the majority of cases
considered, the phonon flows are located in the transitional
regime. Nevertheless, as the strain increases, the nature of
the flow changes from ballistic dominant towards diffusive
dominant. Although it is difficult to determine the precise
physical mechanism underpinning the decrease of Kn, it is
feasible that it arises from the softening of bonds when
tensile strain is applied (discussed later), which can introduce
interphonon scattering and reduce mean free paths [12,24].

V. SPECTRAL DECOMPOSITION

To further provide insights to the strain dependence of κ , we
decomposed the total κ into contributions from distinct phonon
families for the systems shown in Fig. 3. In the Boltzmann
framework, the total lattice conductivity is given by

κ (T ,ε) = L
∑
χ

∫ ∞

0

1

(2π )2 vω,χ Cω,χg (ω,ε) dω, (1)

where g(ω,ε) denotes phonon density of states, vω,χ =
∂ωχ/∂kχ and Cω,χ = kBx2ex(ex − 1)−2 are respectively the
modal group velocity and heat capacity, kB denotes the Boltz-
mann constant, x = �ω/kBT , and χ denotes a summation over
phonon branches. The parameters in Eq. (1) such as the DOS,
group velocity, etc., are obtained with lattice dynamics (LD).

Figures 5(a)–5(c) show the phonon dispersion spectrum
from LD for G, BN, and G/BN under various strains, where the
acoustic branches are labeled according to their character: LA
(longitudinal acoustic), TA (transverse acoustic), and ZA (out-
of-plane acoustic). As shown in Figs. 5(a)–5(c), a competition
between softening of the LA modes and a stiffening of the ZA
modes occurs as the applied strain increases (indicated by the
arrows). This manifests as a drop in the LA frequencies and an
increase in the ZA frequencies (and corresponding changes to
their group velocities). Take BN for example: the sound speed
of the LA modes is reduced by ∼1% at 10% applied strain, and
∼17% at 15% applied strain. Meanwhile, the ZA mode group
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FIG. 6. (Color online) Schematic illustration of strain depen-
dence, in this case for G/BN. Strain facilitates the crossover from
ballistic-dominant to diffusive-dominant transport of long-ranged
phonons. These two regimes are, respectively, dominated by flexural
mode stiffening and longitudinal mode softening.

velocity is enhanced by a factor of ∼7.5 and ∼9 for the same
strains, respectively. Particularly notable is that the change
observed in the ZA modes represents not only a stiffening,
but is also associated with a change from parabolic dispersion
(vanishing group velocity at the zone center) to a linear dis-
persion (nonvanishing group velocity at the zone center). This
“linearization” has been observed previously in ab initio LD
[8] and EMD simulations [9]. (In comparison to the behavior
of the LA and ZA modes, Figs. 5(a)–5(c) show that the TA
modes here appear less sensitive to the application of strain.)

In Figs. 5(d)–5(f), we decomposed the total κ in Eq. (1)
into contributions summed individually over the different
phonon families. This decomposition shows that before strain
is applied, the contribution of the planar modes is larger than
that of the flexural modes (at least for this system size). It
also quantitatively shows however that the contribution of
the ZA modes increases with tensile strain, while that of the
LA modes decreases. A summary of the previous analysis is
illustrated in Fig. 6, where strain effects are categorized as
harmonic (in-plane softening versus out-of-plane stiffening)
and anharmonic (varying scattering intensity). We also find
that this analysis of the LA, TA, and ZA contributions at
different applied strains can reproduce the nonmonotonic
trends in Fig. 3. For instance, for G/BN, by summing the
total contribution over all modes, the maximum enhancement
in κ of the superlattice is 32.9% and occurs at a strain of 7%,
which is in very close agreement to NEMD results in Fig. 3(c).
(Note that there are some differences in the magnitude of κ ,
since the LD results do not include scattering and in general
are expected to give larger thermal conductivities.)

VI. EFFECT OF TOTAL SYSTEM LENGTH

The results presented thus far correspond to G, BN, and
G/BN systems with total length Lo = 215 nm. It is necessary
to consider how the trends may vary for systems of different
size. The length dependence of the strain response is expected
to be nontrivial, given the competing role of strain in both
softening in-plane modes, while stiffening and linearizing
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FIG. 7. (Color online) Thermal conductivity of G/BN with dif-
ferent total lengths (L = 130, 215, and 300 nm). For all strains, as L

increases, so does κ . Additionally, as L increases, both (i) the initial
increase of κ vs strain becomes more pronounced, and (ii) the peak
occurs at larger strains.

flexural modes. Since the nature of the transport in our
systems ranges from ballistic to transitional, as the total sample
length increases the contributions to κ of longer wavelength
phonon modes (both in plane and out of plane) will increase
accordingly; however, in addition the effect of the applied
strain on the modal contributions must also be ascertained.

To analyze how our results change for different lengths Lo,
we carried out NEMD simulations of thermal conductivity
vs strain for a 2D G/BN superlattice now with total lengths
Lo = 130 and 300 nm to compare to the previous result with
Lo = 215 nm. We chose the superlattice because it exhibited
the largest strain sensitivity, and provides the best opportunity
to probe the mechanism underlying the response. Figure 7
shows a comparison of the results for the different sizes. As
expected, regardless of strain κ is always larger for the longer
systems. The nonmonotonic response is maintained for all
systems. However, two additional trends are present. First,
larger system size amplifies the initial increase in κ (the slope
of the curve is larger). Second, for larger systems, the onset
of the turnaround is delayed (i.e., the peak appears at larger
strain).

We attribute both of these observations to the nature of
the (i) dispersion and (ii) scattering for the LA and ZA
families. Regarding (i): before strain is applied, as sample
length increases we expect that the effect of ZA modes on κ

should be more pronounced than that of the LA modes, due
to the quadratic dispersion and infinite density of states of the
former. (Relatedly, in EMD simulations [9] the contribution to
κ of in-plane acoustic modes has been shown to converge
relatively fast with system size, whereas the contribution
arising from the ZA modes requires much larger simulation
cells.) When the sample is strained, these ZA modes become
contributing carriers due to the linearization of their dispersion,
resulting in a pronounced increase in κ . Regarding (ii), it is
possible that the positive contribution to κ of the ZA modes
may be even further enhanced by the selection rules that
prevent their scattering [1,3] and allow them to remain ballistic
carriers. (Note, however, that when strain is applied, since the
dispersion of the ZA modes becomes linearized, the special
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FIG. 8. (Color online) Thermal conductivity of representative
finite (Lo = 215 nm) and infinite G and BN obtained from BTE
solutions, compared with previous silicene results. The infinite
systems respond more sensitively than the corresponding finite
systems to strain: they again show a more pronounced increase, and
a delay in the onset of the turnaround.

selection rule that prevents them from being scattered will
gradually be destroyed.)

Based on these considerations, it is reasonable that in Fig. 7
the larger systems (L = 300 nm) in which the effects of the
zone center ZA modes (and their stiffening/linearization) are
better captured show a more pronounced increase in κ with
strain, and a delayed onset of the turnaround. Correspondingly
for smaller sizes (Lo = 130 nm), the effects of ZA mode
linearization cannot be fully realized so the softening of the
LA modes dominates the response: as strain is applied these
systems show only a modest initial increase in κ , which quickly
turns over into a more pronounced reduction. This explains the
observed length dependence of the system’s response to strain.
Additionally, this length sensitivity also explains the difference
between previous EMD [9] and ab initio LD results [8] (carried
out for more macroscopic systems and show increasing κ with
strain) and the typical NEMD results [10,11] (which often
report reduction in κ , but have been carried out for smaller
systems a few 10s of nm for which the initial enhancement
is completely suppressed). Indeed, the only NEMD result that
reports an increase in κ with strain (silicene [13]) was also
carried out for relatively large sample size (∼687 nm).

To test further this analysis, BTE solutions enable predic-
tions for systems that are infinite in size. In Fig. 8 we present
a comparison of the strain effects on finite (L = 215 nm) and
infinite G and BN. For the infinite systems, the mean free paths
are obtained using iterative BTE solutions so that inherent
phonon mean free paths are used to calculate κ directly. Similar
to the comparison between finite G/BN of different lengths
(Fig. 7), the larger (infinite) systems (dashed lines) exhibit a
more pronounced initial increase in κ . Moreover, at infinite
length, a slight enhancement of κ at small strains can also be
identified even for pure G, before it again begins to decrease.

Before concluding, we consider possible reasons for the
differences in the relative sensitivity of κ of G, BN, and
G/BN to strain. In Fig. 3, the superlattice exhibited the largest
sensitivity, while graphene was least sensitive. In both cases,
as strain is applied, the softening of the in-plane modes gives
a decreasing contribution to κ , whe the linearization of the ZA
modes gives an increasing contribution: the question then is
which effect is most dominant. In graphene, the in-plane modes
have large group velocities and their relative contribution
to total κ is very dominant. Thus LA mode softening has
a comparatively large influence on κ , sufficient to offset
the effects of ZA mode linearization. By contrast, in the
superlattice even before strain is applied the planar modes
are already substantially softened due to the superlattice itself
structure (interfaces); their overall relative contribution to κ is
lower to begin. Therefore, their softening with strain has a
relatively smaller effect, allowing the linearization of the ZA
modes to dominate the response.

VII. CONCLUSIONS

In summary, in this work we demonstrate that the strain-
dependent thermal conductivity of 2D materials exhibits
anomalous features arising from the competition between
out-of-plane flexural stiffening and in-plane longitudinal soft-
ening. These features include a nonmonotonic dependence
of the thermal conductivity on the applied strain, which
is highly sensitive to the total system size. We show that
the nature of the phonon flow, which is initially ballistic
for the strain-free samples, changes to the transitional flow
regime as an external strain is applied. Our analysis helps to
resolve discrepancies between previous results presented in
the literature. Moreover, we note that the length-dependent
NEMD predictions presented here can in principal be verified
directly by experiment.
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