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General theory of intraband relaxation processes in heavily doped graphene
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The frequency and wave-vector-dependent memory function in the longitudinal conductivity tensor of weakly
interacting electronic systems is calculated by using an approach based on quantum transport equations. In
this paper, we show that there is a close relation between the single-electron self-energy, the electron-hole pair
self-energy, and the memory function. It is also shown in which way singular long-range Coulomb interactions,
together with other q ≈ 0 scattering processes, drop out of both the memory function and the related transport
equations. The theory is illustrated on heavily doped graphene, which is the prototype of weakly interacting
single-band electron-phonon systems. A steplike increase of the width of the quasiparticle peak in angle-resolved
photoemission spectra at frequencies of the order of the frequency of in-plane optical phonons is shown to be
consistent with the behavior of an intraband plasmon peak in the energy loss spectroscopy spectra. Both anomalies
can be understood as a direct consequence of weak electron scattering from in-plane optical phonons.
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I. INTRODUCTION

The principal objective of this paper is to give an ana-
lytical background for accounting for intraband relaxation
processes in weakly interacting electron-phonon systems.
The formulas presented here can be used in comparative
studies of transport [1,2], reflectivity [3], angle-resolved
photoemission spectroscopy (ARPES) [4,5], and energy loss
spectroscopy [6,7] data measured on doped graphene samples
for �ω < EF and for a large enough Fermi energy EF. Equally
important, the present analysis can be easily extended to the
interband conductivity and the interband relaxation processes
in the intraband channel as well, which are both of importance
in the study of the ballistic conductivity in graphene [1,2,8,9].
The numerical results regarding some of these issues will be
given in a separate presentation [10]. Here, we only report
on the results that illustrate the simplest effect, namely, the
development of the single-electron spectral function and the
energy loss function with wave vector for �ω ≈ �ωνq′ . The
purpose of this part of the analysis is to justify in single-
band electronic systems the use of the memory function in
the analysis of the scattering by those boson modes whose
properties are similar to those of in-plane optical phonons in
graphene. The scattering by magnons in underdoped cuprate
superconductors is one important example [11].

According to Ref. [12], we can use the Ward identity
to show the dynamical conductivity of a general multiband
electronic model in terms of the elements of the random phase
approximation (RPA) irreducible response tensor πμν(q,ω)
(μ,ν = 0,x,y,z in a general three-dimensional case, and
μ,ν = 0,x,y in graphene) and the total effective number of
charge carriers nαα(q) in the following way:

σαα(q,ω) = i

qα

πα0(q,ω) = i

ω

(
παα(q,ω) + e2nαα(q)

m

)
(1)

[here q = qαêα and α = x,y (α = x,y,z) in two-dimensional
(three-dimensional) systems]. The first expression will be
referred to as the first Kubo formula for the conductivity
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tensor, and the second one as the second Kubo formula [13].
The advantages of using the second Kubo formula have been
discussed in detail in Mahan’s textbook within a simple single-
band model with the scattering from impurities, including the
detailed examination of vertex effects [14]. The appearance
of the product of two single-electron spectral functions of
the same wave vector is an important characteristic of this
approach, as well as the fact that it deals exclusively with the
real part of σαα(q,ω) at q = 0. The same approach has been
frequently used in examinations of electrodynamic properties
of low-dimensional strongly correlated electronic systems [15]
as well as of doped graphene [16,17], usually with vertex
effects neglected from the outset.

In this paper, we shall use the first Kubo formula with
the vertex corrections taken into account to determine the
dynamical conductivity of a general single-band model with all
relevant retarded and nonretarded interactions included. This
approach is based on the finite-temperature quantum transport
equation derived from the Bethe-Salpeter equation for the
intraband electron-hole propagators [18]. The most important
fact about this approach is that the current-charge correlation
function πα0(q,ω) is expressed in terms of two different
damping functions (the imaginary parts of the single-electron
self-energy and of the electron-hole self-energy), and that it is a
linear function of the single-electron spectral function A(k,ε).
It will be shown below that this approach provides a unified
diagrammatic representation for different multicomponent
excitations in the electron-phonon system under consideration
in which the forward scattering contributions and the normal
and umklapp backward scattering contributions are distinctly
resolved. Another advantage of the present approach over the
second Kubo formula is that it can also be used to determine
the structure of other correlation functions of interest, such
as the self-energy of acoustic and optical phonons, as well as
the structure of σαα(q,ω) at finite q. In this way, it is possible
to study in detail a rich variety of phenomena characterizing
the case in which the energy of external electromagnetic fields
�ω, the energy of in-plane optical phonons �ωνq′ , and the
energy of intraband plasmons �ωpl(q) are comparable to each
other [19–22].
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It is shown here that, in the case where the dependence
of the electron-phonon coupling function on wave vectors is
negligible, the electron-electromagnetic field vertex correc-
tions associated with electron scattering by optical phonons
can be neglected. On the other hand, electron scattering
by intraband plasmon modes produces dramatic changes in
the single-electron self-energy (and in ARPES spectra) with
respect to the self-energy of an electron-hole pair (which is
relevant to both the dynamical conductivity and the energy
loss function). Although the electrodynamic properties of
heavily doped graphene are very similar to that of common
metallic systems with parabolic dispersion, the single-electron
spectral function of these two systems can be quite different,
depending on the wave-vector dependence of both ωpl(q) and
the electron-plasmon coupling function.

In Sec. II, we introduce the notation for bare and renor-
malized interactions in heavily doped graphene. The effects
of the electron scattering by in-plane optical phonons on the
single-electron spectral function are discussed in Sec. III. In
Sec. IV, the first Kubo formula for the dynamical conductivity
and the general solution of the Bethe-Salpeter equation for the
auxiliary electron-hole propagators are combined to determine
the structure of the longitudinal dynamical conductivity in a
general single-band case. In Sec. V, the spectral representation
of the dynamical conductivity is shown for the case of weak
electron-phonon interactions. Local charge conservation and
gauge invariance of the present response theory are briefly
discussed in Secs. V–VII. The effects of the scattering by
in-plane optical phonons on the real part of the dynamical
conductivity and on the energy loss function in doped graphene
are studied in Sec. VIII. Section IX contains concluding
remarks.

II. HEAVILY DOPED GRAPHENE

In doped graphene with the Fermi energy EF large
enough, low-energy electrodynamic properties are completely
described in terms of the intraband contributions. The term
low-energy is related here to the energy region �ω < 0.8|EF|,
where the dynamical interband screening of the intraband
plasmon modes is found to be negligible [12,23]. In this case,
we restrict our attention to the intraband contribution to the
conductivity tensor (1) and drop reference to the band index in
all elements in this tensor as well as in the total Hamiltonian.
The bare electronic Hamiltonian is thus given by

H el
0 =

∑
kσ

[ε0(k) + μ]c†kσ ckσ . (2)

In the nearest-neighbor tight-binding approximation for con-
duction electrons, the bare electron dispersion in graphene,
measured with respect to the chemical potential μ, is ε0(k) =
ε0
π (k) = −|t(k)| − μ, in the hole-doped case, and ε0(k) =

ε0
π∗ (k) = |t(k)| − μ, in the electron-doped case [9,24] [|t(k)|

is given by Eq. (A7)]. The scattering Hamiltonian is the sum
of two contributions, H ′ = H ′

1 + H ′
2, where

H ′
1 =

∑
νq

∑
kσ

Gν(k+,k)√
N

(bνq + b
†
ν−q)c†k+qσ ckσ (3)

and

H ′
2 = 1

2

∑
kk′q

∑
σσ ′

ϕ(q)

V
c
†
k+qσ c

†
k′σ ′ck′+qσ ′ckσ (4)

describe, respectively, all retarded and all nonretarded
electron-electron interactions [12], with k+ = k + q.

In the finite-temperature formalism, it is customary to use
the notation

W (k+,k′,k′
+,k,iνm) = ϕ(q′)

V
+ F(k+,k′,k′

+,k,iνm) (5)

for the renormalized two-point interaction and U (k+,k′,
k′

+,k,iωn+,iωm,iωm+,iωn) for the completely irreducible
four-point interaction [14,25–27]. The retarded part of
W (k+,k′,k′

+,k,iνm) is labeled by F(k+,k′,k′
+,k,iνm). Here

and hereafter, iωn+ = iωn + iνn, q′ = k′ − k, and iνm =
iωm − iωn. Similarly, we separate from the completely
irreducible four-point interaction U (k+,k′,k′

+,k,iωn+,iωm,

iωm+,iωn) two contributions. The first one describes the
bare nonretarded contribution ϕ(q′)/V and the second one,
	U (k+,k′,k′

+,k,iωn+,iωm,iωm+,iωn), all other contributions.
We also introduce the abbreviations for the renormalized
interactions with two independent wave vectors; for example,
W (k,k′,iνm) = ϕ(q′)/V + F(k,k′,iνm) is the abbreviation for
W (k,k′,k′,k,iνm).

III. SINGLE-ELECTRON DYSON EQUATION

The Dyson equation for the single-electron Green’s func-
tion is of the form

[i�ωn − ε0(k) − �
(k,iωn)]G(k,iωn) = �. (6)

The same relation holds for the auxiliary Green’s function
G̃(k,iωn) (to be defined later). Here,

�
(k,iωn) =−
∑
k′σ ′

1

β�

∑
iωm

G(k′,iωm)U (k,k′,iωn,iωm) (7)

is the single-electron self-energy and U (k,k′,iωn,iωm) is the
simplified version of the completely irreducible four-point
interaction U (k+,k′,k′

+,k,iωn+,iωm,iωm+,iωn). The skeleton
series of diagrams from Fig. 1 represents the simplest form
of 
(k,iωn), which is expressed in terms of G(k,iωn) and
W (k+,k′,k′

+,k,iνm), rather than in terms of their bare forms.
Such a structure of 
(k,iωn) is an important assumption of

k k k k

k’

k’=k+q’

q’

...

FIG. 1. The skeleton series for the single-electron self-energy

(k,iωn). U (k,k′,iωn,iωm) (white rectangle) and W (k,k′,iνm) =
ϕ(q′)/V + F(k,k′,iνm) (bold dashed line) are the completely ir-
reducible four-point interaction and the renormalized two-point
interaction.
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the present self-consistent treatment of the single-electron and
electron-hole propagators.

It is not hard to verify that two Dyson equations forG(k,iωn)
and G(k+,iωn+) can be combined to give

G(k,iωn)G(k+,iωn+)

= G(k,iωn) − G(k+,iωn+)

iνn + ε0(k,k+)/� + �0(k,k+,iωn,iωn+)
, (8)

where �0(k,k+,iωn,iωn+) ≡ �0(k,q,iνn,iωn) = 
(k,iωn) −

(k+,iωn+) is the bare electron-hole self-energy and
ε0(k,k+) = ε0(k) − ε0(k+). The relation (8) is the basic
relation that connects the Bethe-Salpeter equations with the
quantum transport equations (see Sec. IV) [18,28].

A. GW approximation

In weakly interacting systems with the interactions inde-
pendent of spin, we can make a simplification by replacing
U (k,k′,iωn,iωm) in Eq. (7) with the renormalized two-point in-
teraction W (k,k′,iνm) = ϕ(q′)/V + F(k,k′,iνm) and using a
similar approximation for U (k+,k′,k′

+,k,iωn+,iωm,iωm+,iωn)
in Bethe-Salpeter equations. This approximation (correspond-
ing to the first diagram in Fig. 1) can be understood as the
effective Hartree-Fock approximation for 
(k,iωn) [29] in
which the bare retarded interaction F0(k,k′,iνm) is replaced
by F(k,k′,iνm). It is usually called the GW approximation.

In the general case described by Eqs. (3) and (4), the
retarded part of W (k,k′,iνm) can be shown in the form

F(k,k′,iνm) =
∑

ν

|Gν(k,k′)|2
N�

Dν(q′,iνm) + 1

V
	ϕ̃(q′,iνm).

(9)

Here, Dν(q′,iνm) is the phonon Green’s function and
	ϕ̃(q′,iνm) = ϕ(q′)/ε(q′,iνm) − ϕ(q′) is the frequency-
dependent part of the screened nonretarded interaction.
The latter is equal to the screened dielectric susceptibility,
χ̃ (q′,iνm), multiplied by |ϕ(q′)|2.

The interaction U (k,k′,iωn,iωm) produces two qualitatively
different effects in the single-electron self-energy (7),

�
(k,iωn) = 	ε̃HF(k) + �	
(k,iωn). (10)

The interaction ϕ(q′) gives the well-known purely real
Hartree-Fock correction to the electron dispersion, 	ε̃HF(k),
which is usually added to the bare electron dispersion
ε0(k) to give ε̃(k) = ε0(k) + 	ε̃HF(k). On the other hand,
	U (k,k′,iωn,iωm) in 	
(k,iωn) leads to various types of
damping effects and, through the Kramers-Kronig relations, to
additional corrections to the electron dispersion. For example,
the scattering of conduction electrons by phonon modes leads
to [14]

�	
(k,ω) = 1

N

∑
νk′

|Gν(k,k′)|2
∫ ∞

−∞

dε′

2π

∫ ∞

−∞

dω′

2π
A(k′,ε′)

×Bν(k′ − k,ω′)
f b(ω′) + f (ε′)

�ω + iη − ε′ + �ω′ . (11)

Here, f b(ω) is the Bose-Einstein distribution function, f (ε)
is the Fermi-Dirac distribution function [with f (−ε) = 1 −

f (ε)], A(k,ε) is the single-electron spectral function intro-
duced by

G(k,iωn) =
∫ ∞

−∞

dε

2π

A(k,ε)

iωn − ε/�
, (12)

and Bν(q′,ω′) is the boson spectral function defined by

Dν(q′,iνm) =
∫ ∞

−∞

dω′

2π

Bν(q′,ω′)
iνm − ω′ . (13)

B. Second-order perturbation theory

The result of the direct diagrammatic calculation of the
(H ′

1)2 contributions to 
(k,ω) is [14,29]

�
[2](k,ω) ≡ �
[2](k,ω + iη)

= 1

N

∑
νk′

|Gν(k,k′)|2

×
∑
s=±1

f b(ωνk′−k) + f (sε(k′))
�ω + iη − ε(k′) + s�ωνk′−k

. (14)

This result can also be obtained by substituting

A(k,ε) ≈ A0(k,ε) = 2πδ(ε − ε(k)),

Bν(q′,ω′) ≈ B0
ν (q′,ω′) = 2π

∑
s=±1

sδ(ω′ − sωνq′) (15)

into Eq. (11) and using the relation s[f b(sωνk′−k) +
f (ε(k′))] = f b(ωνk′−k) + f (sε(k′)).

For H ′ = H ′
2, low-order perturbation theory for 	
(k,ω)

starts with the (H ′
2)2 contributions. The leading term is

described by the first diagram in Fig. 1 as well, with
[|Gν(k,k′)|2/N�]Dν(q′,ω) replaced by [|ϕ(q′)|2/V ]χ̃ (q′,ω).
The result is

�
[4](k,ω) =
∑
k′q

|ϕ(q)|2
V 2

[f (k′) − f (k′
+)]

× f b(ω(k′
+,k′)) + f (k+)

�ω + iη − ε(k+) + ε(k′+,k′)
, (16)

with ε(k,k′) = ε(k) − ε(k′) ≡ �ω(k,k′) and f (ε(k)) ≡ f (k).

C. Electron-phonon coupling in graphene

When considering the scattering of conduction electrons
by in-plane optical phonons in graphene, we can simplify the
expression (14) by ωνq′ ≈ ωLOq′ ≈ ωop, g2

ν/Mν ≈ g2
LO/MLO,

and η → �
i . Here, the phenomenological damping energy
�
i mimics the finite width of A(k′,ε′) in Eq. (11) as well
as the effects of the electron-phonon vertex corrections not
included in Eq. (11). Although this approximation is similar
to the relaxation-time approximation, which is widely used in
the study of the dynamical conductivity of weakly interacting
systems, it is easily seen that the energy 2�
i is actually well
above the energy �/τtr (τtr is the transport relaxation time).
The reasons for that are explained below.

In graphene, the dependence of the intraband coupling
between conduction electrons and in-plane optical phonons
in Eq. (14) on wave vectors can be neglected [16]. For EF not
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too large, we can write (see Appendix A)

|Gν(k′,k)|2 ≈ 1

2

∑
ν(op)

|Gν(k′,k)|2

≈ �g2
LO

4MLOωLOk′−k

∑
ν(op)

∣∣qss
ν (k′,k)

∣∣2
(17)

and then use the Dirac cone approximation for qss
ν (k′,k) [12],∣∣qss

α (k′,k)
∣∣2 ≈ ∣∣qss

α (k)
∣∣2 ≈ (3k̃α/k̃)2, (18)

to obtain

|Gν(k′,k)|2 ≈ |Gν |2 ≈ �
(
9g2

LO/2
)

2MLOωLO0
. (19)

D. ARPES spectral functions

In order to determine the structure of the single-electron
spectral function

A(k,ε) = −2�
i(k,ω)

[�ω − E(k,ω)]2 + [�
i(k,ω)]2
(20)

at energies |ε| ≡ |�ω| ≈ �ωLOq′ , it is convenient to show the
single-electron self-energy 
(k,ω) = 
r (k,ω) + i
i(k,ω) as
a sum of two contributions, 
(k,ω) = 
op(k,ω) + δ
(k,ω)
[as usual, E(k,ω) = ε0(k) + �
r (k,ω), with μ ≈ EF here-
after]. In numerical calculations, the scattering from in-plane
optical phonons is described by Eq. (14), in which the sum∑

ν(op) runs over two in-plane optical phonon branches, result-
ing in 
op(k,ω). The damping energy �δ
i(k,ω), associated
with other scattering channels, is assumed to be of the form
a + |�ω|b, where a and b are two adjustable parameters.
|Gop|2 = ∑

ν(op) |Gν |2 from Eq. (19) is another adjustable
parameter in the spectral function (20). δ
r (k,ω) is neglected
in the present considerations.

Figure 2 shows the real and imaginary parts of −�
op(k,ω)

obtained in this way for k = (kx,0) and kx = 1.95 Å
−1

. It must
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FIG. 2. (Color online) The real part (solid line) and the imaginary
part (dashed line) of −�
op(k,ω) in the π∗ band, for k = (kx,0),

kx = 1.95 Å
−1

, t = 2.52 eV, EF = 1.35 eV, |Gop|2 = 0.2 eV2, �ωop =
0.2 eV, η = �
i = 20 meV, and T = 30 K. For these values of param-
eters, we obtain −Re{�
op(k,0)} = 81.5 meV, which corresponds to
the change of the chemical potential, δμ.
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FIG. 3. (Color online) The spectral function (1/2π )A(k,ε) in the

π∗ band for k = (kx,0), kx = 1.8,1.85,1.9, and 1.95 Å
−1

. Dotted line:
the damping function −�
i(k,ω). The parameters are the same as in
Fig. 2, with �δ
i(k,ω) = a + |�ω|b, and a = 0.03 eV, b = 0.05.

be noticed that for |Gν(k′,k)|2 ≈ |Gν |2 and �ωνq′ ≈ �ωop,
the function −
i

op(k,ω) follows the density of states shifted
roughly by −�ωop (+�ωop) for ε < 0 (ε > 0). One important
consequence of this observation is that particle-hole symmetry
of 
(k,ω) is broken in graphene [i.e., �
i

op(k,ω) is not an
even function of ω]. This makes the Kramers-Kronig analysis
of ARPES data measured in graphene more complicated than
in usual weakly interacting systems. On the other hand, the
memory-function Mα(k,ω) from Sec. VIII has particle-hole
symmetry by definition.

Experimental data measured in electron-doped graphene
with EF ≈ 1.35 eV [5] are characterized by a steplike increase
of 
i(k,ω) from the value ≈40 meV below the threshold
energy |ε| = �ωLOq′ to the value ≈80 meV above this energy.
To obtain the desired behavior of −
i(k,ω) (≈const) for
−EF < ε < −�ωLOq′ , it is necessary to take into account
frequency dependent contributions to �δ
i(k,ω), which are
associated with the scattering from other electrons. Similarly,
in the energy region −�ωLOq′ < ε < 0, the damping energy
−�
i(k,ω) is predominantly related to the scattering from
static disorder and from acoustic phonons [4]. The latter
contribution is of relevance when considering the temperature
effects in A(k,ε).

Figure 3 illustrates the dependence of the spectral function
(1/2π )A(k,ε) on the wave vector in the vicinity of the K
point, in the same case. The full width at half maximum is in
agreement with experimental data from Ref. [5], confirming
that |Gop|2 ≈ 0.2 eV2 and �δ
i(ω) ≈ a + |�ω|b, with a =
0.03 eV and b = 0.05, in the leading approximation. This
value of |Gop|2 is also in agreement with the generally accepted
value of the electron-phonon coupling constant gLO [16].

E. Momentum distribution function

The momentum distribution function is an important
ingredient of all response functions treated by means of
the memory-function approximation. It is defined by n(k) =
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(1/β�)
∑

iωn
G(k,iωn), leading to

n(k) =
∫ ∞

−∞

dε

2π
A(k,ε)f (ε). (21)

For example, it helps us to incorporate the damping energy

i(k,ω) from the single-electron spectral functionA(k,ε) into
the conductivity formulas (32) and (33).

IV. BETHE-SALPETER EQUATIONS

At finite temperatures, low-energy electrodynamic proper-
ties of heavily doped graphene can be described by the first
Kubo formula for the intraband conductivity tensor (q = qαêα)

σαα(q,τ ) = i

qα

πα0(q,τ ) ≡ παᾱ(q,τ )

= 1

�V
〈Tτ [Ĵα(q,τ )P̂α(−q,0)]〉irred. (22)

The two density operators in question are the intraband
current density operator Ĵα(q) and the intraband dipole
density operator −P̂α(−q). Here, Jα(k,k+) and Jᾱ(k+,k) ≡
−Pα(k+,k) = i�Jα(k+,k)/ε0(k+,k) ≈ ie/qα are the corre-
sponding bare vertex functions [12,18]. An alternative to
the use of Eq. (22) is the second Kubo formula (35) in
which σαα(q,τ ) is expressed in terms of the current-current
correlation function παα(q,τ ). In both cases, we can write
σαα(q,τ ) ≈ σ 0

αα(q,τ ), in the leading approximation. The bare
conductivity tensor σ 0

αα(q,iνn) comprises by definition only
the contributions that are irreducible with respect to both the
long-range and short-range RPA interactions.

Any consistent study of the dynamical conductivity in
doped graphene requires thus the understanding of the

k

k+q

k

k+q

k

k+q
q q q

Jν Jν Jν

k’+q

k’

FIG. 4. The Bethe-Salpeter equation for the auxiliary electron-
hole propagator �0

ν(k,k+,iωn,iωn+). The white rectangle repre-
sents the irreducible four-point interaction U 0(k+,k′,k′

+,k,iωn+,

iωm,iωm+,iωn).

elements of the RPA irreducible 4 × 4 response tensor
πμν(q,iνn) [30] and their bare forms,

π0
μν(q,iνn) = 1

V

∑
kσ

Jμ(k,k+)
1

β

∑
iωn

�0
ν(k,k+,iωn,iωn+),

(23)

where μ,ν = 0,x,y, and J0(k,k+) ≈ e is the charge vertex
function. The self-consistent Bethe-Salpeter equation for
the auxiliary electron-hole propagator �0

ν(k,k+,iωn,iωn+) is
illustrated in Fig. 4. It has a simple self-consistent structure,
but, by using Eq. (8), can be transformed into a much
more transparent expression known as the quantum transport
equation [18,28]. In order to make the analysis of this equation
easier, we take into account the aforementioned nonretarded
Hartree-Fock contributions and the corresponding vertex cor-
rections by replacing the dispersion ε0(k) by ε(k) = ε0(k) +
	εHF(k) and by replacing the irreducible four-point interaction
in which the long-range and short-range RPA contribu-
tions are disregarded, U 0(k+,k′,k′

+,k,iωn+,iωm,iωm+,iωn),
by 	U 0(k+,k′,k′

+,k,iωn+,iωm,iωm+,iωn) [notice that ε(k) −
ε(k+) �= ε̃(k) − ε̃(k+)]. The result is

[i�νn + ε(k,k+)]�0
ν(k,k+,iωn,iωn+) = 1

�
[G(k,iωn) − G(k+,iωn+)]Jν(k+,k) − λ2[�	
(k,iωn) − �	
(k+,iωn+)]

×�0
ν(k,k+,iωn,iωn+) − λ2 1

�
[G(k,iωn) − G(k+,iωn+)]

∑
k′σ ′

1

β

∑
iωm

�0
ν(k′,k′

+,iωm,iωm+)

×	U 0(k+,k′,k′
+,k,iωn+,iωm,iωm+,iωn), (24)

with the perturbation parameter λ2 set to unity. The renormal-
ized electron-hole pair energy in the abbreviated notation is
ε(k,k+) = ε(k) − ε(k+). The relaxation processes are clearly
distinguished here from the purely real Hartree-Fock cor-
rections to ε0(k) − ε0(k+), 	εHF(k) − 	εHF(k+). The latter
ones are unimportant when considering the Drude regime,
corresponding to ω2 � q2

αv2
α(k), and, consequently, can be

neglected hereafter. The discussion of the Thomas-Fermi
regime ω2 < q2

αv2
α(k) is also interesting, but it is beyond the

scope of the present analysis.

A. Formal solution

Since the last term on the right-hand side of Eq. (24) is an
integral over all values of k′ and iωm, with the electron-hole
propagator being a function of both k′ and iωm, this equation

is an integral equation of a complicated kind. The solution of
this integral equation can be obtained by iteration and shown
in powers of λ2. Evidently, this method represents the high-
energy expansion of the auxiliary electron-hole propagator
�0

ν(k,k+,iωn,iωn+) [31]. It is characterized by explicit control
of the law of conservation of energy and momentum and by
precise characterization of the elementary excitations in the
electron-phonon system under consideration, in both Kubo
formulas for the conductivity tensor.

There are three different ways to find the solution to this
equation, which are associated with three conductivity for-
mulas: the generalized Drude formula, the memory-function
conductivity formula, and the electron-hole self-energy con-
ductivity formula. Strictly speaking, they represent three
different levels of the generalization of the ordinary Drude
formula (51). For example, the electron-hole self-energy
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conductivity formula is the generalization of the ordinary
Drude formula to the case in which the relaxation function
in question depends on both wave vectors and on both energy
variables and where the single-electron spectral function has
the finite width.

In these three approaches, the dynamical conductivity
σαα(q,ω) is given in terms of π (2n)

μν (q,ω), introduced by

πμν(q,ω) =
∞∑

n=0

λ2nπ (2n)
μν (q,ω). (25)

The latter correlation functions are obtained by analytical
continuation of

πμν(q,iνn) ≈ π0
μν(q,iνn)

= 1

V

∑
kσ

Jμ(k,k+)
1

β

∑
iωn

[
�(0)

ν (k,k+,iωn,iωn+)

+ λ2	�(2)
ν (k,k+,iωn,iωn+) + · · · ], (26)

where

�(0)
ν (k,k+,iωn,iωn+) = 1

i�νn + ε(k,k+)

1

�
[G(k,iωn)

−G(k+,iωn+)]Jν(k+,k), (27)

and

	�(2)
ν (k,k+,iωn,iωn+)

=−�(0)
ν (k,k+,iωn,iωn+)

{
1

i�νn + ε(k,k+)

× [�	
(k,iωn) − �	
(k+,iωn+)]

− 1

Jν(k+,k)

∑
k′σ ′

1

β

∑
iωm

�(0)
ν (k′,k′

+,iωm,iωm+)

×	U 0(k+,k′,k′
+,k,iωn+,iωm,iωm+,iωn)

}
. (28)

The first term in Eq. (26) depends on the renormalized two-
point interactions (5) only through two momentum distribution
functions, while the second term includes the interactions from
the scattering Hamiltonian H ′ = H ′

1 + H ′
2 through two self-

energy contributions and the corresponding vertex corrections
as well. In both of them, i�νn + ε(k,k+) can be approximated
by i�νn.

In the electron-hole self-energy approximation, we com-
pare Eq. (26) with the λ0 and λ2 contributions to the formula

πμν(q,iνn)

= 1

V

∑
kσ

Jμ(k,k+)Jν(k+,k)
1

β�

×
∑
iωn

G(k,iωn) − G(k+,iωn+)

i�νn + ε(k,k+) + λ2�	�μν(k,k+,iωn,iωn+)

(29)

to determine the structure of the complex relaxation function
	�μν(k,k+,iωn,iωn+) ≡ 	�μν(k,q,iνn,iωn), here called the
electron-hole self-energy.

This expression for the elements of the RPA irreducible 4 ×
4 response tensor is the first important result of the present pa-

per. πμν(q,iνn) is shown here, for the first time, in terms of the
exact single-electron Green’s function G(k,iωn) and, in princi-
ple, the exact electron-hole self-energy �μν(k,k+,iωn,iωn+).
The latter is defined implicitly by Eq. (28) and represents the
general expression for the relaxation function attributed to the
response function πμν(q,iνn).

This expression for πμν(q,iνn) has a wide range of
applicability. For example, it can be used to determine the
gauge-invariant structure of the intraband conductivity tensor
in different strongly interacting systems (the cuprate super-
conductors being an example), or to reconsider open questions
regarding electrodynamic properties of graphene. In most of
these cases, it is possible to simplify this quite general expres-
sion by replacing the relaxation function �μν(k,k+,iωn,iωn+)
by the quantity usually called the memory function. In the
transport regime of common metallic systems, the quantum
transport equation (24) reduces to the ordinary transport
equation and the latter relaxation function reduces to the
wave-vector dependent relaxation rate [32,33].

In order to illustrate the standard methods of calculating
πμν(q,iνn) in simple metallic systems in a way which preserves
gauge invariance of the response functions (29), we shall
consider first the case of weak electron-phonon coupling
(Sec. V) and then apply the results to heavily doped graphene
(Sec. VIII). Before doing this, let us emphasize some general
properties of the response functions (29).

B. Direct versus indirect contributions

The factorG(k,iωn) − G(k+,iωn+) in Eq. (29) can be shown
in the following way [34]:

G(k,iωn) − G(k+,iωn+) = [G(k,iωn+) − G(k+,iωn+)]

+ [G(k,iωn) − G(k,iωn+)]. (30)

The contributions to πμν(q,iνn) originating, respectively, from
the first and the second term in this expression will be
referred to as the direct and indirect contributions. There is
a well-defined exclusion rule here which has been overlooked
in the literature. The direct contributions are relevant only to
the correlation functions (29) in which at least one vertex is
the monopole-charge vertex. Their contribution to the current-
current correlation function παα(q,iνn) is thus negligible, due
to the factor q2

α . In παα(q,iνn), the leading role is played by
the indirect contributions.

C. Conductivity tensor

Let us now focus our attention to the direct contributions to
the current-dipole correlation function παᾱ(q,ω). The corre-
sponding conductivity tensor σαα(q,ω) is given by analytical
continuation of

σαα(q,iνn)

= 1

V

∑
kσ

Jα(k,k+)Pα(k,k+)
1

β�

×
∑
iωn

G(k,iωn+) − G(k+,iωn+)

i�νn + ε(k,k+) + λ2�	�(k,k+,iωn,iωn+)
.

(31)
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As shown below, we can use the spectral representation of the
single-particle propagators to show Eq. (31) in two slightly
different forms. The first one will be referred to as the
Boltzmann representation of σαα(q,ω) and the second one
as the Drude representation. They describe the low-energy
physics of weakly interacting systems equally well. Notice
also that the conductivity tensor (31) has the same form as
the result of the averaging procedure used in Appendix B,
Eqs. (B3) and (B4).

Similarly, summation over iωn in Eqs. (27) and (28) gives
the result, which can be easily compared to the expansion of
the memory-function conductivity formula

σαα(q,ω) = 1

V

∑
kσ

n(k) − n(k+)

ε0(k+) − ε0(k)

i|Jα(k,k+)|2
ω + λ2M(k,q,ω)

≈ ie

m

1

V

∑
kσ

(
− ∂n(k)

∂ε0(k)

)
mv2

α(k)

ω + λ2M(k,q,ω)
(32)

to second order in λ. Finally, summations over k and iωn

give the first two terms in the generalized Drude conductivity
formula

σαα(ω) = ie2nαα

m[ω + λ2Mα(ω)]
. (33)

In Eqs. (32) and (33), vα(k) = (1/e)Jα(k,k) is the electron
group velocity and

nαα(q) = 1

V

∑
kσ

m

e2
|Jα(k,k+)|2 n(k) − n(k+)

ε0(k+) − ε0(k)

≈ 1

V

∑
kσ

mv2
α(k)

(
− ∂n(k)

∂ε0(k)

)
(34)

is the effective number of charge carriers, with nαα = nαα(q ≈
0). Finally, n(k) is the momentum-distribution function from
Eq. (21).

D. Current-current correlation function

The comparison of the analytically continued forms of
Eqs. (26)–(28) for μ = α and ν = ᾱ with the second Kubo
formula [12]

σαα(q,ω) = i

ω

(
e2nαα(q)

m
+ παα(q,ω)

)
(35)

shows that the first term in the expansion (26) is nothing
but the exact expression for the diamagnetic conductivity.
Therefore the second contribution in Eq. (26) in this case can
be understood as the first term in the expansion of the current-
current correlation function παα(q,iνn) in powers of λ2.
Therefore the current-current correlation function παα(q,iνn)
from Eq. (29) can also be shown as

παα(q,iνn) = 1

V

∑
kσ

|Jα(k,k+)|2

× 1

β�

∑
iωn

G(k,iωn+) − G(k+,iωn+)

ε0(k+,k)

× −λ2	�(k,q,iνn,iωn)

i�νn + ε(k,k+) + λ2	�(k,q,iνn,iωn)
. (36)

The expressions (29) and (36) show thus the current-current
correlation function παα(q,iνn) in terms of the indirect and
direct contributions, respectively. These expressions can be
combined with any of three conductivity formulas mentioned
above.

The expression (36) for the current-current correlation
function is the second important result of the present paper. It
shows that it is possible to determine the structure of παα(q,iνn)
by using the same methods as that used to calculate π00(q,iνn).
As pointed out in Sec. VII, this can be very useful in those ab
initio calculations in which the damping energy �
i(k,ω) in
the momentum distribution function n(k) is approximated by
η [where n(k) ≈ f (k)].

V. WEAK ELECTRON-PHONON INTERACTIONS

It is instructive first to determine the Boltzmann spectral
representation of the conductivity tensor from the previous
section for H ′ = H ′

1, the case which is of primary interest in
graphene for frequencies ω ≈ ωLOq′ . We combine the iterative
solution of the quantum transport equation (24) with the
electron-hole self-energy conductivity formula (31), and then
show the k- and ω-dependent memory function M(k,q,ω) ≈
Mα(k,ω) and the ω-dependent memory function Mα(ω) from
Eqs. (32) and (33) in terms of the electron-hole self-energy
	�(k,q,ω,ε) ≈ 	�α(k,ω,ε). For simplicity, we consider
the case of longitudinal external fields, where σαα(q,ω) is
described in terms of the direct contributions.

A. Boltzmann representation of σαα(q,ω)

After inserting the spectral representation of the prop-
agators G(k,iωn) and Dν(q′,iνm), Eqs. (12) and (13), into
Eqs. (26)–(28), we obtain the Boltzmann representation of
the electron-hole self-energy conductivity formula:

σαα(q,ω)

= 1

V

∑
kσ

|Jα(k,k+)|2
∫ ∞

−∞

dε

2π

[A(k,ε) − A(k+,ε)]f (ε)

ε(k+,k)

× i�

�ω + ε(k,k+) + iη

(
1 − λ2 �	�α(k,ω,ε)

�ω + ε(k,k+)
+ · · ·

)
= i�e2

m

1

V

∑
kσ

∫ ∞

−∞

dε

2π

[A(k,ε) − A(k+,ε)]f (ε)

ε(k+,k)

× mv2
α(k)

�ω + ε(k,k+) + λ2�	�α(k,ω,ε)
, (37)

with �ω � ε(k,k+). In the leading approximation, the
electron-hole self-energy is given by 	�α(k,ω,ε) ≈
	�(AB)

α (k,ω,ε), where

�	�(AB)
α (k,ω,ε)

=− 1

N

∑
νk′

(
1 − vα(k′)

vα(k)

)
|Gν(k,k′)|2

×
∫ ∞

−∞

dε′

2π

∫ ∞

−∞

dω′

2π
A(k′,ε′)Bν(k′ − k,ω′)

×
∑
s=±1

f b(ω′) + f (sε′)
�ω + iη + s(ε − ε′) + �ω′ . (38)
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-P

A A B1 2

α Jα -Pα Jα -Pα Jα

B

-Pα Jα

1

2

-Pα Jα

FIG. 5. The diagrammatic illustration of the λ2 contribution to
σαα(q,ω) from Eqs. (37), (26), and (28).

Figure 5 illustrates the λ2 contribution to σαα(q,ω) in this case.
The indices A and B stand, respectively, for the A and B RPA-

like series of diagrams for F(k,k′,iνm) in the single-electron
self-energy and in the vertex corrections term.

B. k- and ω-dependent memory function

In weakly interacting systems, the factor∫
(dε/2π )[A(k,ε) − A(k+,ε)]f (ε) in Eq. (37) can be

approximated by n(k) − n(k+), with ε replaced by ε(k). In
this way, we obtain the memory function

Mα(k,ω) ≈ M (AB)
α (k,ω) = 	�(AB)

α (k,ω,ε(k)), (39)

and Eq. (37) reduces to the memory-function conductivity
formula (32).

It should be noticed that the result of the direct diagram-
matic calculation of the (H ′

1)2 contributions to the memory
function Mα(k,ω),

�M [2]
α (k,ω) =− 1

N

∑
νk′

(
1 − vα(k′)

vα(k)

)
|Gν(k,k′)|2

∑
s=±1

∑
s ′=±1

s ′[f b(s ′ωνk′−k) + f (sε(k′))]
�ω + iη + sε(k,k′) + s ′�ωνk′−k

, (40)

can be obtained by substituting the expressions (15) into Eq. (38). Figure 6 shows σ (2)
αα (ω) in this case. Notice again that

s ′[f b(s ′ωνk′−k) + f (sε(k′))] = f b(ωνk′−k) + f (s ′sε(k′)). Consequently, the memory function (40) for the states at the Fermi
surface can be shown in the form

�M [2]
α (kF,ω) =−

∑
s=±1

s
1

N

∑
νk′

(
1 − vα(k′)

vα(kF)

)
|Gν(kF,k′)|2

∑
s ′=±1

f b(ωνk′−kF ) + f (s ′ε(k′))
s(�ω + iη) + ε(kF,k′) + s ′�ωνk′−kF

≡−�
̃[2](kF,ω + iη) + �
̃[2](kF, − ω − iη), (41)

where 
̃[2](k,ω + iη) is given by Eq. (14) with |Gν(k,k′)|2
replaced by |G̃ν(k,k′)|2 ≡ [1 − vα(k′)/vα(k)]|Gν(k,k′)|2. A
similar relation holds between the electron-hole self-energy
	�(AB)

α (k,ω,ε) from Eq. (38) and 
(k,ω) from Eq. (11). For
a further analysis of the dynamical conductivity in Sec. VII,
it is useful also to introduce the auxiliary spectral function
Ã(k,ε) which is defined by Eq. (20) with 
(k,ω) replaced by

̃(k,ω).

C. ω-dependent memory function

The frequency-dependent memory function Mα(ω) is a
complex relaxation function in the hydrodynamic transport
equations [12,13,35]. In order to avoid Mori’s projection
operator technique to determine its structure, Götze and Wölfle
developed a slightly different method which is called here
the common memory-function method [36]. The resulting
memory function is closely related to the relaxation rate
�/τtr calculated by using the variational method [37]. In this

-P

2A 2A 2B1 2

α Jα -Pα Jα -Pα Jα

FIG. 6. Three (H ′
1)2 contributions to σ (2)

αα (ω), labeled by 2A1

(electron self-energy term), 2A2 (hole self-energy term), and 2B =
2B1 + 2B2 (vertex correction).

approach, the conductivity tensor is given by the generalized
Drude formula (33).

The memory-function conductivity formula (32) leads to
the same expression for σαα(ω), provided that Mα(k,ω) is
replaced with its average over the Fermi surface,

Mα(ω) = 1

nαα

1

V

∑
kσ

mv2
α(k)

(
− ∂n(k)

∂ε(k)

)
Mα(k,ω). (42)

In weakly interacting systems with nearly isotropic Fermi
surfaces, we can also write

Mα(ω) ≈ Mα(kF,ω), (43)

in the leading approximation. Mα(ω) can be defined in a
slightly different way by using the Drude form of σαα(ω),
Eq. (44). In this case, Mα(ω) represents the average of Mα(k,ω)
over all occupied states.

D. Drude representation of σαα(q,ω)

When the self-energy 	�(k,q,ω,ε) depends on the direc-
tion of q = qαêα , but not on its magnitude [≈ 	�α(k,ω,ε)],
then we can change the dummy variables in Eq. (37) in a way
explained in Appendix B. The resulting conductivity formula
represents the Drude representation of Eq. (37), and, together
with Eq. (38), is the third important result of the present
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paper:

σαα(ω) ≈ ie2

m

1

V

∑
kσ

γαα(k)
∫ ∞

−∞

dε

2π

A(k,ε)f (ε)

ω + 	�α(k,ω,ε)
. (44)

Here, γαα(k) = (m/�
2)∂2ε0(k)/∂k2

α is the dimensionless re-
ciprocal effective mass tensor.

The expression (44) is characterized by two different
damping energies. The first one, 
i(k,ω) in A(k,ε), describes
the width of the quasiparticle peak in the single-electron
spectral function, while the second one, �i

α(k,ω,ε), gives
the description of the relaxation processes in a way which
is consistent with the law of conservation of energy.

The factor [1 − vα(k′)/vα(k)] in Eqs. (38) and (40) is
of critical importance in understanding the electrical con-
ductivity. It makes the damping energy �i

α(k,ω,ε) different
from 
i(k,ω) − 
i(k+,ω+). It is responsible for the complete
cancellation of the contributions to �α(k,ω,ε) originating
from the q′ ≈ 0 scattering processes. It is found to be useful
for studying temperature dependencies of the electrical and the
thermal conductivity at low temperatures as well [38]. Most
importantly, it describes the way in which the singular q′ ≈ 0
long-range Coulomb interactions drop out of the transport
equations [39]. Similarly, the factor 1/[�ω + iη + s(ε − ε′) +
�ω′] takes care of the law of conservation of energy. Evidently,
in the memory-function conductivity formula, as well as in the
relaxation-time approximation, this law is satisfied only on
average [because ε in Eq. (38) is replaced by ε(k) in this case].

It is straightforward to generalize the discussion of the ex-
pressions (38) and (44) to cover strongly interacting electronic
systems as well, but only if the quasiparticle pole in A(k,ε) is
clearly distinguished from the rest of this spectral function. In
this case, n(k) is associated with the coherent part of A(k,ε)
and can be approximated by ncoh(k)/α(k), with ncoh(k) ≈
f (k), where α(k) is the corresponding reduction factor usually
related to strong Mott correlations. Such formalism proves
useful in studies of the normal state ω ≈ 0 properties of
underdoped cuprates [11].

VI. RESIDUAL CONTRIBUTIONS

It is apparent that the expression (38) for the electron-hole
self-energy is incomplete, even in the weakly interacting H ′ =
H ′

1 case. The simplest way to see this is to consider weak
nonretarded interactions (H ′ = H ′

2) and compare the result
with the textbook expression for the (H ′

2)2 contributions to
�/τtr [37–39].

For H ′ = H ′
2, low-order perturbation theory for the mem-

ory function Mα(k,ω) starts with the (H ′
2)2 contributions,

because the (H ′
2)1 diagrams from Fig. 6 are already included

in 	εHF(k), and then, together with ε0(k), neglected in
the ω2 � q2

αv2
α(k) limit. The set of four mutually related

irreducible (H ′
2)2 contributions to σ (2)

αα (ω) is shown in Fig. 7.
The first two contributions are the 2A1 and 2B1 diagrams
from Fig. 5 in which [|Gν(k,k′)|2/N�]Dν(q′,ω) is replaced
by [|ϕ(q′)|2/V ]χ̃ (q′,ω). The 4C1 and 4D1 diagrams represent
a similar pair of contributions, which is missing in Fig. 5,
and which is characterized by the factor [vα(k′

+)/vα(k) −
vα(k′)/vα(k)]. When put together, these four diagrams result

4A1 4B1

4C1 4D1

-Pα Jα -Pα Jα

JαJα

-Pα -Pα

FIG. 7. The first set of four mutually related contributions to
σ (2)

αα (ω) that are proportional to (H ′
2)2 [or (H ′

1)4].

in the factor [vα(k) + vα(k′
+) − vα(k′) − vα(k+)] in

�M [4]
α (k,ω) =−

∑
k′q′σ ′

|ϕ(q′)|2
V 2

1

vα(k)
[vα(k) + vα(k′

+)

− vα(k′) − vα(k+)][f (ε(k′)) − f (ε(k′
+))]

×
∑
s=±1

f b(ω(k′
+,k′)) + f (ε(k+))

�ω + iη + sε(k,k′) + sε(k′+,k+)

(45)

[similarly for 	�[4]
α (k,ω,ε)]. This factor is responsible not

only for the complete cancellation of the q′ ≈ 0 forward
scattering processes, but also for a strong reduction of
the intensity of the normal backward scattering processes.
Therefore, in the absence of the scattering processes described
by H ′

1, the resistivity of weakly interacting electronic systems
comes predominantly from the umklapp backward scattering
processes by other electrons. This is of particular importance in
the two-dimensional systems because the number of thermally
activated intraband plasmons is proportional to f b(ωpl(q′)) ≈
kBT/�ωpl(q′), leading to significant temperature effects in

i(k,ω) and to less pronounced effects in �i

α(k,ω,ε).
A straightforward calculation gives similar expressions

for M [4]
α (k,ω) and 	�[4]

α (k,ω,ε) associated with the (H ′
1)4

diagrams in Fig. 7. The 4A1 and 4B1 contributions are already
included in Eq. (38), while the 4C1 and 4D1 contributions
represent the leading corrections. To calculate the latter
contributions, we must recognize the contributions in the
quantum transport equation (24) which are directly related
to the 4C1 and 4D1 diagrams, and recollect all diagrams in the
C and D series in a way illustrated in Fig. 8. The final result

C 1 D1

Jα

-Pα

Jα

-Pα

FIG. 8. The diagrammatic illustration of the 	�(CD)
α (k,ω,ε)

contributions to σ (2)
αα (ω).
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...

FIG. 9. The first three (H ′
1)4 contributions to 
[4](k,ω).

for the electron-hole self-energy is the expression

	�α(k,ω,ε) ≈ 	�(AB)
α (k,ω,ε) + 	�(CD)

α (k,ω,ε). (46)

Equations (46) and (38), together with the expression for
	�(CD)

α (k,ω,ε), represent the result of high-order perturbation
theory for the electron-hole self-energy in weakly interacting
systems with H ′ = H ′

1.
There are two similar sets of irreducible (H ′

1)4 diagrams
in σ (2)

αα (ω). The first one is associated with the third diagram
in Fig. 9. This set is usually called the crossing diagrams.
These diagrams play an important role in standard theory of
the Anderson weak localization, but they are disregarded in the
present discussion of the relaxation processes. The second set
includes the second diagram in Fig. 9 and the corresponding
vertex corrections. These contributions are incorporated in the
present self-consistent Hartree-Fock scheme in the usual way,
through the renormalized single-electron Green’s function and
the reducible four-point interaction.

VII. COMPARISON WITH OTHER WORK

The variational treatment of the transport coefficients [37]
and the common memory-function method [36] are just two
widely used methods that are closely related to the electron-
hole self-energy conductivity formula (44). There is a rich
variety of similar conductivity formulas which are usually
used in the ab initio calculations. They can be divided into
two groups. The first group, corresponding to the case in
which 
i(k,ω) → η and �i

α(k,ω,ε) → � [23], was briefly
discussed in Ref. [12]. Let us now examine in some detail
the second group, which is characterized by �α(k,iνn,iωn) →

(k,iωn) − 
(k+,iωn+), corresponding to the second Kubo
formula for σαα(q,ω) with the vertex effects neglected. The
latter approach is most frequently encountered in the study of
strongly interacting low-dimensional electronic systems [15].
It has been used in early studies of σαα(ω) in graphene as
well [16,17].

A. Naive treatment of vertex effects

The difficulty of getting solution to the self-consistent
equation for the renormalized intraband current vertex function
usually leads to neglecting the vertex corrections in the second
Kubo formula for σαα(q,ω). In such approaches, the emphasis
is usually on the detailed numerical calculations of the spectral
function A(k,ε), rather than on the general requirements,
related, for example, to the charge continuity equation or the
Ward identity. The principal problem here is that the resulting
conductivity formulas overestimate the role of the scattering
from acoustic phonons [38] and, in the two-dimensional

systems, of the scattering from intraband plasmon modes. The
resulting conductivity formulas have serious deficiencies, in
the first place, in describing the temperature effects in the
low-frequency conductivity.

Nevertheless, we can use a similar idea to simplify the
conductivity formulas (37) and (44) by replacing A(k,ε) with
Ã(k,ε). In this way, we obtain much simpler expressions for
σαα(q,ω) with again only one damping function, 
̃i(k,ω).
However, the conductivity formulas obtained in this way treat
local charge conservation in the system satisfactorily, and they
are expected to give reasonable results in the usual Fermi liquid
regime (low temperatures and �ω → 0).

An alternative to the use of Eq. (44), with A(k,ε) replaced
by Ã(k,ε), is the approach based on Eqs. (31) and (8) with
G(k,iωn) → G̃(k,iωn) and 	�α(k,ω,ε) → 	�̃0

α(k,ω,ε). The
result is

σαα(q,ω) = i�e2

m

1

V

∑
kσ

mv2
α(k)

∫ ∞

−∞

dε

2π

∫ ∞

−∞

dε′

2π

× Ã(k,ε)Ã(k+,ε′)
ε(k+,k)

f (ε) − f (ε′)
�ω + iη + ε − ε′ . (47)

The real part of this function can be approximated by

Re{σαα(ω)} =�e2 1

V

∑
kσ

v2
α(k)

∫ ∞

−∞

dε

2π

1

2
Ã(k,ε)Ã(k,ε + �ω)

× f (ε) − f (ε + �ω)

�ω
. (48)

The well-known result for the real part of the dynamical
conductivity, obtained by using the second Kubo formula
for σαα(ω) with the vertex corrections neglected [14], cor-
responds to Eq. (48), with Ã(k,ε)Ã(k,ε + �ω) replaced by
A(k,ε)A(k,ε + �ω). This means that the conclusions of the
ab initio studies of the dynamical conductivity in strongly
interacting systems based on the second Kubo formula can
be made more convincing if the complete cancellation of
the q ≈ 0 forward scattering processes and a significant
reduction of the normal backward scattering processes dis-
cussed above are taken into account by the redefinition of
the coupling functions |Gν(k,k′)|2 and |ϕ(q)|2 in the single-
electron self-energy 
(k,iωn) in a way suggested by Eqs. (40)
and (45).

B. Relation to Fermi liquids

The most important difference between the present ap-
proach and the common form of the second Kubo formula
is their relation to the Landau-Silin transport equations and
to the resulting expression for the conductivity tensor [40].
The simplest way to see this difference is to recall the
corresponding expressions for the current-current correlation
function. In the first case, παα(q,ω) is described in terms of the
direct contributions, Eq. (36), and, as a result, we obtain the
memory-function conductivity formula simply by replacing
	�α(k,ω,ε) by Mα(k,ω). The standard Fermi liquid result
corresponds to the replacements Mα(k,ω) → Mα(ω) → i/τtr

[39]. Therefore here we have the one-to-one correspondence
of the conductivity formulas (37) and (44) with the standard
transport theory. On the other hand, in the second case,
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παα(q,ω) is shown in terms of the indirect processes in Eq. (29)
and the idea to simplify the corresponding expression for
σαα(q,ω) by 	�α(k,ω,ε) → Mα(k,ω) does not work here. In
simple electronic systems, the second approach gives indeed
the same result as the standard transport theory, but there is no
direct correspondence between the two procedures [14].

C. Elementary excitations

One important consequence of this one-to-one correspon-
dence is that the structure of the λ2 term in Eq. (44)
can help us to identify all elementary excitations which
participate in the damping effects in the conductivity tensor
(and in other response functions). In the Landau damping
regime, the damping is associated with the creation of one
electron-hole pair such that �ω ≈ ε(k+,k). The processes
included in Eq. (38) correspond to the creation of one electron-
hole pair plus one phonon, resulting in �ω ≈ ε(k′,k) ± �ωνq′ .
The processes shown in Fig. 7 illustrate the creation of two
electron-hole pairs with �ω ≈ ε(k′,k) + ε(k+,k′

+). Finally,
higher order corrections to 	�α(k,ω,ε) are expected to
produce more complicated real excitations in the system. The
intraband plasmon modes are just an example.

VIII. DAMPING OF DIRAC PLASMONS

At the level of approximation used in Sec. III D, the memory
function M

op
α (kF,ω) from Eq. (41) is largely unaffected

by vertex corrections. The expressions (37) and (44) for
the conductivity tensor can be simplified now by replacing
�α(k,ω,ε) by Mα(ω) and 
i(k,ω) by η, where Mα(ω) ≈
M

op
α (kF,ω) + δMα(ω),

Mop
α (kF,ω) = 
̃op(kF,−ω − iη) − 
̃op(kF,ω + iη), (49)

and δMi
α(ω) = ã + |�ω|b̃, resulting in the generalized Drude

formula

σ intra
αα (ω) ≈ σdc

αα

[
ω + Mr

α(ω) − iMi
α(ω)

]
iMi

α(0)[
ω + Mr

α(ω)
]2 + [

Mi
α(ω)

]2 . (50)

In this section, the index intra is explicitly written, for clarity.
The real and imaginary parts of M

op
α (kF,ω) are shown in

Fig. 10. Notice that the memory function possesses particle-
hole symmetry, i.e., Mr

α(−ω) = −Mr
α(ω) and Mi

α(−ω)} =
Mi

α(ω), in agreement with the analytical properties of the
response function σ intra

αα (ω). It is also interesting to notice that
the corresponding contribution to the band mass enhancement
factor mb

α(ω)/m = [1 + λα(ω)] at ω = 0 is λ
op
α (ω = 0) ≈ 0.38

[here λα(ω) = Mr
α(ω)/ω = λ

op
α (ω) + δλα(ω)]. Consequently,

the effective number of charge carriers neff
αα and the damping

energy �α in the ordinary Drude formula

σ intra
αα (ω) ≈ ie2neff

αα

m(ω + i�α)
, (51)

which is a reasonable approximation for σ intra
αα (ω) from Eq. (50)

for energies �ω  �Mi
α(0), are neff

αα = nintra
αα /[1 + λα(0)] and

�α = Mi
α(0)/[1 + λα(0)].

The function Re{σ intra
αα (q,ω)}/σ dc

αα is illustrated in Fig. 11
for q ≈ 0. Here, σdc

αα = [e2nintra
αα /mMi

α(0)] = (e2neff
αα/m�α) is

the dc conductivity in the generalized Drude model. The figure
illustrates the transfer of the conductivity spectral weight over

-1 -0.5 0 0.5 1
energy (eV)
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-50

0

50
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R
e{

M
αop

} 
(m
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)
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0
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Im
{M

αop
} 

(m
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)

EF = 1.35 eV

0.45 eV

1.35 eV
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FIG. 10. (Color online) The real part (solid lines) and the imagi-
nary part (dashed lines) of the memory function Mop

α (kF,ω), Eq. (49),
for t = 2.52 eV, EF = 0.45,1.35 eV, |G̃op|2 = 0.2 eV2, �ωop = 0.2
eV, η = �
i = 20 meV, and T = 30 K. Here, Re{Mop

α (kF,0)} = 0.

the relevant energy scale �ωLOq′ with increasing the electron-
phonon coupling constant [16,17]. The result is typical of
the weakly interacting electron-phonon systems. The main
frequency-dependent effects in σαα(q,ω) for frequencies ω ≈
ωLOq′ are thus related to the four processes from Fig. 5 in
which one electron-hole pair is created in combination with
one in-plane optical phonon. A more realistic description of
the dynamical conductivity at ω ≈ ωLOq′ follows after using
realistic phonon dispersions, the k-dependent electron-phonon
coupling functions, and the k-dependent memory function.
The main effect is the suppression of the maximum in Fig. 11
at ω ≈ ωop and a more precise description of the high-energy
conductivity.

We can use this form of the memory function Mα(ω) to
describe the dependence on frequency of the position and

0 0.1 0.2 0.3 0.4
energy (eV)

0

0.01

0.02

0.03

0.04

0.05

0.06

R
e{

σ xx
in

tra
} 

/ σ
xx

dc

Eq. (50)
Eq. (51)

0 0.01 0.02 0.03
energy (eV)

0

0.5

1

R
e{

σ xx
in

tra
} 

/ σ
xx

dc

FIG. 11. (Color online) Solid line: the real part of the intraband
conductivity (50) for EF = 0.45 eV. The parameters are the same as
in Fig. 10, with δMi

α(ω) = ã + |�ω|b̃ and ã = 0.01 eV, b̃ = 0.015.
Dashed line: the result of the relaxation-time approximation, Eq. (51),
for ��α = 14 meV.
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the shape of the intraband plasmon peak in the energy loss
function −Im{1/ε(q,ω)} as well. In the heavily doped case
with �ω < EF, the effects of the interband electron-hole
excitations are small [12,23] and their contribution to the
longitudinal dielectric function ε(q,ω) can be approximated
by a real constant ε̃∞. In this case, we can write

ε(q,ω) ≈ ε̃∞ − 2πq

ω2

(
e2

m
nintra

αα (q) + π intra
αα (q,ω)

)
(52)

(here, q = qαêα again). The inverse of ε(q,ω) is given by

1

ε(q,ω)
= ω2/ε̃∞

ω2 − ω2
pl(q,ω) + iω�pl(q,ω)

, (53)

where

ω2
pl(q,ω) ≈ ω

2πq

ε̃∞
Im

[
σ intra

αα (q,ω)
]

= 2πq

ε̃∞

(
e2

m
nintra

αα (q) + Re
[
π intra

αα (q,ω)
])

≡ [
ω0

pl(q)
]2 + 	ω2

pl(q,ω),

ω�pl(q,ω) ≈ ω
2πq

ε̃∞
Re

[
σ intra

αα (q,ω)
] =−2πq

ε̃∞
Im

[
π intra

αα (q,ω)
]
.

(54)

Equations (53) and (54) show that, for frequencies ω ≈
ω0

pl(q), the function −Im[1/ε(q,ω)] can be understood as a
typical boson spectral function in which the frequency ω0

pl(q)
plays the role of the bare boson frequency and π intra

αα (q,ω) is
the corresponding self-energy. In the relaxation-time approx-
imation studied in Ref. [12], there is no dramatic change of
the shape of the intraband plasmon peak for ωpl(q) ≈ ωLOq′ .
In the generalized Drude model (50), on the other hand, the
change in the shape of this peak reflects the steplike increase

0.05 0.1 0.15 0.2 0.25 0.3
energy (eV)

0

5

10

15

20

-I
m

{1
/ε

}

qxa0=0.001
0.002
0.003
0.004

FIG. 12. (Color online) The energy loss function −Im{1/ε(q,ω)}
as a function of the wave vector q = (qx,0), for qxa0 = 0.001, EF =
0.4 eV, ε̃∞ = 1, and for �ω close to the energy of the in-plane optical
phonons. The conductivity is given by Eq. (50). The parameters are
the same as in Fig. 11. The wave vector qx increases with the step
	qxa0 = 0.00025 up to qxa0 = 0.004. a0 is the Bohr radius.

of Im{Mop
α (ω)} from Fig. 10 at �ω ≈ ωop. Figure 12 shows

the dependence of −Im{1/ε(q,ω)} on q, for EF = 0.4 eV.
The result is characterized by the increase in full width at
half maximum from the value ≈20 meV below the energy
�ωop = 0.2 eV to the value ≈30 meV above this energy. This
is in reasonably good agreement with experiment [7]. We defer
a detailed discussion of the effects illustrated in Figs. 10–12
to Ref. [10].

IX. CONCLUSION

In this work, we have derived the longitudinal dynam-
ical conductivity tensor in a general weakly interacting
electron-phonon system. Starting with the general form of
the self-consistent Bethe-Salpeter equations for the auxiliary
electron-hole propagators, we have formulated perturbation
theory for calculating the longitudinal conductivity tensor in
powers of the completely irreducible four-point interaction. In
this way, we determine the Boltzmann and the Drude spectral
representations of the dynamical conductivity in weakly inter-
acting electron-phonon systems and find the structure of the
corresponding electron-hole self-energy. We have explained
the relation between the electron-hole self-energy and the ω-
and k-dependent memory function, and rederived the general
Drude conductivity formula.

The results are applied to heavily doped graphene, which
is the prototype of weakly interacting single-band electron-
phonon systems. We have calculated the single-electron
spectral function for EF = 1.35 eV, the dynamical conductivity
for EF = 0.45 eV, and the energy loss function for EF = 0.4
eV in a model in which the scattering by in-plane optical
phonons is treated in the leading approximation and all other
scattering channels are taken into account phenomenologi-
cally. The results are found to be in good agreement with
experiment. The explicit treatment of the interband scattering
processes in the intraband channel and a detailed description
of the interband conductivity will be given in a future
presentation [10].
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APPENDIX A: COUPLING TO IN-PLANE
OPTICAL PHONONS AND TO ELECTROMAGNETIC

FIELDS IN GRAPHENE

In simple electronic systems with covalent bonding the
conduction electrons couple to phonon modes through the
variation of the amplitude of bond energies [41]. Similarly,
the coupling to the external vector potential is described
by a gauge-invariant tight-binding minimal substitution, i.e.,
through the variation of the phase of the same bond ener-
gies [34].

In graphene, these two coupling Hamiltonians, together
with the bare electronic Hamiltonian H el

0 , can be obtained by
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a1

a2

r1
r2

r3
t1

t2

t3
B

A

2

FIG. 13. The relevant vectors in the honeycomb lattice in
graphene. The tj ≡ t̃(R̄,rj ) represent three hopping integrals between
neighboring 2pz orbitals. Two different carbon sites in the unit cell
are labeled by A and B.

replacing the bond energy t(R̄,rj ) in H el
0 by

t̃(R̄,rj ) = [t + δt(R̄,rj )]ei�(R̄,rj ) (A1)

(R̄ = Rn + rj /2 is the position of the bond in question and the
rj are the relative positions of three first neighbors, as shown
in Fig. 13). We can write now

H̃ el
0 =−

∑
nσ

3∑
j=1

[t̃(R̄,rj )c†Bnjσ cAnσ + H.c.]

≡−
∑
Rδσ

[t̃R+δRb†σ (R + δ)aσ (R) + H.c.]

≈ H el
0 + H ′

1 + H ext
1 + H ext

2 , (A2)

with [12,20,21,42]

δt(R̄,rj ) = ∂t(R̄,rj )

∂rj

· (
uB

νnj − uA
νn

)
,

�(R̄,rj ) = e

�c
rj · Aext(R̄). (A3)

The operator c
†
Anσ creates an electron at the site A at the

position Rn and c
†
Bnjσ creates an electron at the site B at the

position Rn + rj . The expression in the second row of Eq. (A2)
represents the standard notation for H̃ el

0 [9,16].
In the representation of the delocalized orbitals {lk} the four

terms in Eq. (A2) can be shown in the following forms:

H el
0 =

∑
ll′

∑
kσ

H l′l
0 (k)c†l′kσ clkσ ,

H ′
1 =

∑
νq

gν√
N

uνq

∑
ll′

∑
kσ

ql′l
ν (k+,k)c†l′k+qσ clkσ ,

H ext
1 =−1

c

∑
qα

Aext
α (q)

∑
ll′

∑
kσ

J l′l
α (k+,k)c†l′k+q′σ clkσ ,

H ext
2 = e2

2mc2

∑
qq′αβ

Aext
α (q − q′)Aext

β (q′)

×
∑
ll′

∑
kσ

γ l′l
αβ(k+,k; 2)c†l′k+q′σ clkσ , (A4)

with uνq = uA
νq = −uB

νq and uνq = uA
νq = uB

νq for the optical
and acoustic phonons, respectively, and gν = ∂t/∂rj . As usual,

the index l = A,B labels two different 2pz orbitals on two
carbon sites in the unit cell.

In the common nearest-neighbor tight-binding approxima-
tion, with the overlap parameter s set equal to zero, the matrix
elements in Eqs. (A4) are given by the well-known expressions

HBA
0 (k) = t(k) =−t

3∑
j=1

e−ik·rj , (A5)

and

qBA
ν (k+,k) =− 1

aCC

3∑
j=1

eν
q · rj e−i(k+q/2)·rj

× 1

uνq

(
uA

νqe
−iq·rj /2 − uB

νqe
iq·rj /2

)
,

J BA
α (k+,k) = ite

�

3∑
j=1

rjαe−i(k+q/2)·rj = e

�

∂t(k + q/2)

∂kα

,

γ BA
αβ (k+,k; 2) = mt

�2

3∑
j=1

rjαrjβe−i(k+q/2)·rj = m

�2

∂2t(k+q/2)

∂kα∂kβ

.

(A6)

The change to the diagonal {sk} representation is straight-
forward. For example, the bare electron dispersions in Eq. (2)
in the main text are ε0

π∗,π (k) + μ = ±|t(k)| with

|t(k)| = ±t

√
3 + 2 cos kxa + 4 cos

kxa

2
cos

√
3kya

2
. (A7)

Similarly, the intraband electron-phonon coupling functions
and the intra- and interband current vertices are given,
respectively, by

Gss
ν (k′,k) =

√(
�g2

ν/2Mνωνq′
)
qss

ν (k′,k),
(A8)

qss
ν (k′,k) =

∑
ll′

ql′l
ν (k′,k)Uk′(l′,s)U ∗

k (l,s),

and

J ss ′
α (k′,k) =

∑
ll′

J l′l
α (k′,k) Uk′ (l′,s)U ∗

k (l,s ′), (A9)

with s,s ′ ∈ {π,π∗}. The transformation matrix elements
Uk(l,s) are given by [9,12](

Uk(A,π∗) Uk(A,π )
Uk(B,π∗) Uk(B,π )

)
= 1√

2

(
1 1

e−iθk −e−iθk

)
. (A10)

The auxiliary phase θk is defined by tan θk = ti(k)/tr (k), with
tr (k) and ti(k) being the real and the imaginary parts of t(k).

APPENDIX B: ELECTRON-HOLE SELF-ENERGY
APPROXIMATION

After simple algebraic manipulations with Eq. (24), which
include the interchange of variables k iωn � k′ iωm in the last
term on the right-hand side of the equation, we obtain the
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integral equation for �0
α̃(k,k+,iωn,iωn+) of the form∑

kσ

Jα(k,k+)
∑
iωn

�0
α̃(k,k+,iωn,iωn+)

=
∑
kσ

∑
iωn

{G(k+,iωn+) − G(k,iωn)

�[i�νn + ε(k,k+)]
Jα(k,k+)Pα(k+,k)

−
[
Jα(k,k+)

�	
(k,iωn) − �	
(k+,iωn+)

i�νn + ε(k,k+)

+
∑
k′σ ′

Jα(k′,k′
+)

1

β�

∑
iωm

G(k′,iωm) − G(k′
+,iωm+)

i�νn + ε(k′,k′+)

×	U (k′
+,k,k+,k′,iωm+,iωn,iωn+,iωm)

]
×�0

α̃(k,k+,iωn,iωn+)

}
. (B1)

It is easily seen that the simplest form of �0
α̃(k,k+,iωn,iωn+)

that satisfies this integral equation is the solution of the
ordinary self-consistent equation

[i�νn + ε(k,k+) +�	�(k,k+,iωn,iωn+)]

×�0
α̃(k,k+,iωn,iωn+)

≈ 1

�
[G(k+,iωn+) − G(k,iωn)]Pα(k+,k), (B2)

where

�	�(k,k+,iωn,iωn+)

≈ �	
(k,iωn) − �	
(k+,iωn+)

+
∑
k′σ ′

1

β�

∑
iωm

[G(k′,iωm) − G(k′
+,iωm+)]

Jα(k′,k′
+)

Jα(k,k+)

×	U (k′
+,k,k+,k′,iωm+,iωn,iωn+,iωm) (B3)

represents the retarded part of the intraband electron-hole self-
energy.

We now insert Jα(k,k+) ≈ evα(k) and −Pα(k+,k) ≈
pα(−q) in the expression for παα̃(q,iνn), Eq. (23), where
vα(k) = (1/�)∂ε0(k)/∂kα is again the bare electron group
velocity and pα(−q) = ie/qα is the intraband dipole vertex
function, and set ε(k,k+) in the denominator equal to zero.
The result is

σαα(q,iνn) = 1

V

∑
kσ

1

β�

∑
iωn

evα(k)pα(−q)

i�νn + �	�(k,k+,iωn,iωn+)

× [G(k,iωn) − G(k+,iωn+)]. (B4)

Finally, after using the replacement k + q → k in the second
term, we obtain

σαα(q,iνn) ≈ 1

V

∑
kσ

1

β�

∑
iωn

e[vα(k) − vα(k − q)]

×pα(−q)
G(k,iωn)

i�νn + �	�(k,k+,iωn,iωn+)
, (B5)

with

e[vα(k) − vα(k − q)]pα(−q) ≈ ie2

�

∂2ε0(k)

∂k2
α

= ie2
�

m
γαα(k).

(B6)

Equations (B4) and (B5) are the electron-hole self-energy
expressions for the intraband conductivity tensor σαα(q,iνn).
The former one represents the Boltzmann representation of
σαα(q,iνn) and the latter one the Drude representation. In
the case in which the dependence of 	�(k,k+,iωn,iωn+)
on the internal frequency iωn can be simplified in the way
explained in Sec. V B, the analytically continued form of the
expression (B4) reduces to the memory-function conductivity
formula (32). The expressions (37) and (44) represent, re-
spectively, the spectral representations of the expressions (B4)
and (B5).
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