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Plasmon modes of a massive Dirac plasma, and their superlattices
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We explore the collective density oscillations of a collection of charged massive Dirac particles, in one, two,
and three dimensions, and their one-dimensional (1D) superlattice. We calculate the long-wavelength limit of
the dynamical polarization function analytically, and use the random phase approximation to obtain the plasmon
dispersion. The density dependence of the long-wavelength plasmon frequency in massive Dirac systems is
found to be different compared to systems with parabolic and gapless Dirac dispersion. We also calculate the
long-wavelength plasmon dispersion of a 1D metamaterial made from 1D and 2D massive Dirac plasma. Our
analytical results will be useful for exploring the use of massive Dirac materials as electrostatically tunable
plasmonic metamaterials and can be experimentally verified by infrared spectroscopy, as in the case of graphene
[L. Ju et al., Nat. Nanotechnol. 6, 630 (2011)].
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I. INTRODUCTION

The collective density oscillations of electrons liquids,
i.e., plasmons, offer a powerful tool for exploring electron-
electron interaction effects in various systems [1,2] and have
also motivated several potential applications in optical meta-
materials, nanophotonic lasers and amplifiers, biochemical
sensing, and antennas transmitting and receiving light signals
at the nanoscale [3,4]. The collective modes of ordinary
(Schrödinger) electrons with parabolic dispersion [1,2,5]
including spin-orbit coupling [6] and spin polarization [7]
have been extensively studied in metals and doped semicon-
ductors. Since the discovery of graphene, there has been huge
interest in plasmons of Dirac materials and particularly in
graphene [8–14], as it offers a tunable plasmon spectrum via
electrostatic control of its carrier concentration and higher
plasmon lifetimes due to high mobility.

There have been several studies on plasmons in gapless two-
dimensional (2D) and three-dimensional (3D) Dirac systems
in the context of graphene [15–19], topological insulators
[20–22], Weyl semimetals [23], and in gapped 2D massive
Dirac systems [24] in the context of buckled honeycomb struc-
tures such as silicene [25–27]. In addition to this, plasmons in
periodic arrays of parabolic systems [28–31] and massless
Dirac plasma layers [32–34] have also been investigated. A
metamaterial made up of periodic graphene microribbon arrays
was used in Ref. [8] to demonstrate tunable terahertz plasmon
excitations in graphene. Comparatively, massive Dirac system
in various dimensions and its multilayers/superlattice have
been relatively less explored and consequently are the subject
of this paper.

In this paper, we study the plasmon frequency and its
density dependence for a massive Dirac plasma (MDP)
interacting via the long-range Coulomb interaction, in one,
two, and three dimensions. Additionally, we also calculate the
plasmon dispersion for metamaterials made of 1D nanoribbons
and 2D layers of MDP. The gapless Dirac systems were studied
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in Ref. [18], which serves as a check of all of our calculations
in the limit of the vanishing band gap. We find that while
the long-wavelength plasmon frequency in MDP is essentially
quantum mechanical in nature, with 1/

√
� appearing explicitly

in the plasmon dispersion as in the case of gapless Dirac
plasma (GDP), the scaling of the plasmon frequency with
density is different for MDP, GDP, and parabolic systems.
Note that in systems with nonrelativistic parabolic dispersion,
the long-wavelength plasmon frequency is “classical” and
quantum corrections (arising from the self-energy and vertex
corrections in the polarization function) show up only in
higher-order terms. The aim of this work is to illustrate the
key differences between the density dependences of plasmon
dispersions in one-, two-, and three-dimensional systems,
which arise due to the relativistic (Dirac) or nonrelativistic
(Schrödinger) nature of the electrons and due to the presence
of a finite gap in MDP.

This article is organized as follows: In Sec. II, we
introduce the random-phase approximation (RPA) “recipe” for
calculating the plasmon frequency and explicitly calculate the
long-wavelength limit of the dynamical polarization function
for MDP, GDP, and parabolic dispersion systems. This allows
us to obtain and discuss similarities and differences in the
long-wavelength plasmon frequencies in Sec. III. Next we
consider the plasmons arising in a periodic array of MDP
nanoribbons and layers in Sec. IV and compare the results with
GDP and parabolic dispersion systems. Finally, in Sec. V, we
summarize our findings.

II. POLARIZATION FUNCTION

Within the RPA, the collective plasmon modes of an
electron system emerge as poles of the density-density
response functions (also called polarization function or the
Lindhard function) and coincide with the zeros of the complex
longitudinal “dielectric function” ε(q,ω), i.e.,

ε(q,ω) = 1 − vq�(q,ω) = 0, (1)

where vq is the Fourier transform of the Coulomb interaction
and � is the total noninteracting polarizability of the system.
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The Fourier transform of the Coulomb interaction v(r) =
e2/(κr), in the appropriate d-dimensional space, is given
by

vq = 4πe2

κq2
, d = 3, (2a)

= 2πe2

κq
, d = 2, (2b)

= 2e2

κ
K0(qa), d = 1, (2c)

where κ is the background-material-dependent dielectric
constant and K0 denotes the zeroth-order modified Bessel
function of the second kind. Note that in one dimension, the
length scale a characterizes the lateral confinement size (say,
radius of the 1D ribbon) and vq ≈ −2e2 ln(qa)/κ for qa � 1,
while vq = e2/(κq2a2) for qa � 1.

The polarization function for the massive Dirac material is
given by

�(q,ω) = gsgv

Ld

∑
k,λ,λ′

Fλ,λ′ (k,k′)
nF(λEk) − nF(λ′Ek′)

�ω + λEk − λ′Ek′ + iη
,

(3)

where k′ = k + q, λ,λ′ = ±1 denotes the conduction (par-
ticle) and valence (hole) bands, Ek = �vF|

√
k2 + (	/�vF)2|

with 2	 being the energy gap, nF(x) is the Fermi func-
tion and 2Fλ,λ′(k,k′) = 1 + λλ′[k · k′ + 	̃2]/(ẼkẼk′) is the
overlap function, with x̃ ≡ x/�vF. The factor gs(=2) is the
spin degeneracy factor and gv is the valley (or pseudospin)
degeneracy factor (e.g., gv = 2 for graphene and other Dirac
materials with honeycomb lattice structure). Given the general
relation �(q,−ω) = �(q,ω)∗ and the fact that the polarization
function depends only on the absolute value of the Fermi
energy εF, we only present the results for εF > 0 and ω > 0.
Furthermore, we work at zero temperature so that the Fermi
functions can be replaced by Heaviside step functions, i.e.,
nF(x) = �(εF − x).

Depending upon the placement of the Fermi energy εF, we
can split our polarization function into two parts, namely, the
intrinsic (εF < 	) and extrinsic (εF > 	) polarization:

�(q,ω) = −χ−
∞(q,ω) + χ−

εF
(q,ω) + χ+

εF
(q,ω)︸ ︷︷ ︸

= �0(q,ω) + θ (εF − 	)�1(q,ω), (4)

where

χ±
D (q,ω) = − gsgv

(2π )d

∫
ddk�(D2 − 	2 − k2)

×
(

1 ± k · k′ + 	̃2

ẼkẼk′

)

×
[

Ek ∓ Ek′

(�ω + iη)2 − (Ek ∓ Ek′)2

]
. (5)

Here the upper and lower signs correspond to intraband
and interband electron-hole transitions, respectively, and the
parameter D defines the integration limits via the � function.
Since we are interested in the long-wavelength (q → 0)
plasmon dispersion, we evaluate Eq. (3) in the dynamical limit

(q → 0 first and then ω → 0) to lowest order in q2/ω2, just
above the intraband particle-hole continuum.

We mention at the outset that we will use the superscript
(p), (g), and (m) to refer to systems with parabolic, gapless
(or massless) Dirac, and massive Dirac systems, respectively.
Note that the electronic density for any d-dimensional system,
in terms of its Fermi wave vector, is given by

nd = gsgv

πd/2kF
d

2dπd�(1 + d/2)
, (6)

where �(x) is the Gamma function. However, the Fermi
wave vectors for parabolic, massive Dirac, and gapless Dirac
systems are expressed differently in terms of the Fermi energy
and are given by kF = √

2mεF/�, kF =
√

ε2
F − 	2/�vF, and

kF = εF/�vF, respectively.
For systems with parabolic dispersion (Ek = �

2k2/2mp),
Eq. (3) can be evaluated in the dynamical long-wavelength
limit, up to leading order in q just above the particle-hole
continuum, to obtain

�(p)(q,ω) ≈ nd

mp

q2

ω2
+ O

(
q4

ω4

)
. (7)

For massive Dirac systems, Ek = �vF

√
k2 + 	̃2 (where 	̃ =

	/�vF) in all dimensions, and the dynamical long-wavelength
limit of the Lindhard function, just above the particle-hole
continuum, is given by

�(m) ≈ gsgvvF

�(2π )d
πd/2

�(1 + d/2)

kd
F√

k2
F + 	̃2

q2

ω2
+ O

(
q4

ω4

)
. (8)

For massless Dirac systems such as graphene, 	 → 0 and
Ek = �vFk in all dimensions, and Eq. (8) reduces to

�(g)(q,ω) ≈ gsgvvFk
d−1
F

�(2π )d
πd/2

�(1 + d/2)

q2

ω2
+ O

(
q4

ω4

)
, (9)

which is consistent with Eq. (6) of Ref. [18]. We emphasize
here that even though the density dependence of the long-
wavelength limit of the polarization function for massless
and massive Dirac systems is different from that of the
parabolic systems, they can be rewritten in the same form as
Eq. (3),

�(m,g)(q,ω) ≈ nd

εF/v
2
F

q2

ω2
+ O

(
q4

ω4

)
. (10)

Note the similarity between Eqs. (7) and (10). This prompts
the following mapping: band mass in parabolic systems,
mp → md ≡ εF/v

2
F, density-dependent effective Dirac mass in

massive as well as massless Dirac systems (to be distinguished
from the band gap 	, which is occasionally also referred
to as mass). As a natural consequence, this correspondence
manifests itself in all of the subsequent calculations.

Physically, the Dirac mass is a dynamical collective mass
and is essential to explain inertial acceleration of the Dirac
plasma under application of an external electric field. In
fact, it has been insightfully defined as “plasmon mass” in
the context of graphene [19], and has also been recently
measured in graphene [10]. Note that md = εF/v

2
F is also

the cyclotron effective mass (mc) for Dirac systems [35],
which is typically defined as 2πmc = �

2dS(ε)/dε, where
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S(ε) = π (ε2 − 	2)/�
2v2

F denotes the area of a closed cy-
clotron orbit of massive Dirac electrons with energy ε. For
a system with a parabolic dispersion, the band mass, plasmon
mass, and cyclotron mass are identical, mp = mc.

Having obtained the long-wavelength limit of the dynam-
ical polarization function, we now proceed to calculate the
long-wavelength limit of the plasmon dispersion in the next
section.

III. PLASMON DISPERSION

Using Eqs. (7) and (2) in Eq. (1), the well-known long-
wavelength plasmon dispersion for systems with parabolic
dispersion [2,5], in one, two, and three dimensions, can be
easily obtained to be

ω
(p)
1 =

√
2e2n1

κmp
q
√

| ln(qa)| + O(q3), (11a)

ω
(p)
2 =

√
2πe2n2

κmp
q1/2 + O(q3/2), (11b)

ω
(p)
3 =

√
4πe2n3

κmp
+ O(q2). (11c)

An important point to note here is that for the first term in
Eq. (11), we can substitute mp → m, i.e., replace the effective
band mass by the classical mass of the particle, and the
quantum mechanical plasmon dispersion takes precisely the
same form as that of classical density oscillations in an electron
liquid [1,2,5]. Physically, this is a direct consequence of the
fact that the long-wavelength plasmons involve the motion
of the entire plasma, and to lowest order it does not depend
on the complex exchange and correlation effects that dress
the motion of an individual electron. It should be emphasized
that no such classical analog exists for Dirac systems and the
plasmon dispersion in Dirac systems is intrinsically quantum
mechanical in nature [18]. Note, however, that the higher-order
correction terms in Eq. (11) are fully quantum mechanical and
� explicitly appears in them.

For systems with massive Dirac dispersion, using Eqs. (8)
and (2) in Eq. (1), the q → 0 limit of the plasmon dispersion
is given by

ω
(m)
1 =

√
2ge2vF

�κπ
q
√

K0(qa)

(
ε2

F − 	2
)1/4

ε
1/2
F

+ O(q3), (12a)

ω
(m)
2 =

√
ge2

2κ�2

√
ε2

F − 	2

εF
q1/2 + O(q3/2), (12b)

ω
(m)
3 =

√
2ge2

3πκ�3vF

(
ε2

F − 	2
)3/4

ε
1/2
F

+ O(q2), (12c)

where we have defined g ≡ gsgv . Note that 2D massive
Dirac plasma was also studied in Ref. [24], which reported
an expression similar to Eq. (12b). For the limiting case of

	 → 0, Eq. (12) leads to

ω
(g)
1 =

√
2ge2vF

�κπ
q
√

K0(qa) + O(q3), (13a)

ω
(g)
2 =

√
ge2εF

2κ�2
q1/2 + O(q3/2), (13b)

ω
(g)
3 =

√
2ge2ε2

F

3πκ�3vF
+ O(q2). (13c)

Equation (13) reproduces the results for the gapless Dirac
plasma reported in Ref. [18]. One important similarity between
Eqs. (11)–(13) is the same functional dependence of the
plasmon frequency on the wave vector q. This is a direct con-
sequence of the physical requirement that the long-wavelength
plasmon dispersion must satisfy particle conservation (or con-
tinuity equation). One important difference between parabolic
and Dirac systems is that while the long-wavelength limit
of plasmon dispersion in parabolic systems is essentially
“classical” in nature, the plasmon dispersion in GDP and MDP
is essentially quantum mechanical, as evidenced by the explicit
appearance of � in Eqs. (12) and (13).

The long-wavelength dependence of the dynamical po-
larization function is the same for parabolic systems, GDP,
and MDP: � ∝ q2/ω2; however, the proportionality constant
has a different density dependence for various systems.
For parabolic systems, �(p) ∝ nd , for gapless Dirac sys-
tems, �(g) ∝ n

1−1/d

d , and for massive Dirac systems, �(m) ∝
nd/(n2/d

d + αd	̃
2)1/2, where αd = (g/π )2,g/4π,(g/6π2)2/3

in one, two, and three dimensions, respectively. As a con-
sequence, the density dependence of the long-wavelength
plasmon frequency for MDP is completely different compared
to GDP and parabolic dispersion systems. As seen from
Eq. (11), the plasmon frequency for a parabolic dispersion
system is proportional to

√
nd in all dimensions. However,

for GDP, the plasmon dispersion follows ω
(g)
d ∝ √

nd/n
1/2d

d

behavior, and for the one-dimensional case, the plasmon mode
is completely independent of the density. For the MDP case, the
density dependence completely changes due to the presence
of gap and takes the form ω

(m)
d ∝ √

nd/(n2/d

d + αd	̃
2)1/4,

where αd = (g/π )2,g/4π,(g/6π2)2/3, in one, two, and three
dimensions, respectively. Note that in one dimension, the
plasmon frequency in GDP is independent of the density,
whereas for MDP the plasmon frequency of MDP has an
explicit dependence on n1, as evident from Eq. (12a).

Similar to the case of the long-wavelength polarization
function in Eq. (10), the plasmon frequencies in the q → 0
limit in GDP and MDP can also be rewritten in the form
similar to Eq. (11) for parabolic systems,

ω
(m,g)
1 =

√
2e2n1

κmd
q
√

K0(qa) + O(q3), (14a)

ω
(m,g)
2 =

√
2πe2n2

κmd
q1/2 + O(q3/2), (14b)

ω
(m,g)
3 =

√
4πe2n3

κmd
+ O(q2). (14c)
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We emphasize again that even though the density dependence
of plasmon frequencies in the long-wavelength limit in the
GDP and MDP is different from that of the parabolic systems,
the frequencies can be rewritten in the same form using the
density-dependent effective Dirac mass (or, equivalently, the
cyclotron mass). However, we note that this simplicity is
deceptive, since for parabolic systems the band mass mp

and density nd can also be treated as classical independent
variables, but for Dirac systems md is density dependent via
the Fermi energy in a purely quantum mechanical way.

IV. PLASMONS IN METAMATERIALS MADE OF MASSIVE
DIRAC PLASMA, RIBBON, AND LAYER ARRAYS

In this section, we consider collective density excitations
in metamaterials (periodic arrays) of massive Dirac plasma
systems. In particular, we consider a stacking of identical
1D massive Dirac plasma nanoribbons (or quantum wires)
placed parallel to each other in a plane, and a periodic array
of parallel 2D massive Dirac plasma sheets. Similar systems
made of parabolic dispersion and gapless Dirac plasma
have been theoretically investigated earlier [18,28–30,33]
and experimentally demonstrated for graphene [8,9,11]. To
describe the collective modes of such superstructures, we need
to include the inter-ribbon or interlayer Coulomb interactions,
which leads to a coupling of all the layers due to the long-range
nature of Coulomb interactions. Assuming no wave-function
overlap between any consecutive layers or nanoribbons, the
collective modes of such superlattices, within RPA, are given
by the zeros of the determinant of the general dielectric matrix
of the superlattice, whose elements are given by

εll′ = δll′ − vll′ (q,k)�l′ (q,ω), (15)

where �l(q,ω) = �(q,ω) is the bare density-density response
function of each nanoribbon or layer whose long-wavelength
limit is given in Eq. (8). In Eq. (15), vll′(q,k) is the repulsive
Coulomb interaction between the l and l′ nanoribbon or layer
in the periodic array which is given by

vll′ = 2πe2

κq
e−qb|l−l′ |, d = 2, (16a)

vll′ = 2e2

κ
[δll′K0(qa) + (1 − δll′)K0(qb|l − l′|)], d = 1,

(16b)

where b is the superlattice spacing.
Assuming a periodic boundary conditions for the 1D

superlattice, the eigenvalues of the general dielectric matrix in
Eq. (15) are given by 1 − vq�(q,ω)Sd (q,k), where Sd (q,k) =
v−1

q

∑
l′ vll′e

−ik(l−l′)b is the form factor for the 1D superlattice
formed from a d-dimensional plasma, and k is to be interpreted
as a new wave vector arising from the periodicity of the infinite
superlattice array and |k| < π/b. For definiteness, we take the
1D MDP wire array to be along the x axis (q = qx) and k = qy

to be along the superlattice direction of the y axis. For the 2D
MDP layer superlattice, we consider it to lie in the x − y

plane and the wave vector k = qz to be along the superlattice
direction—the z axis. The dimensionless form factors can now

be evaluated and are given by

S1 = 1 + 2

K0(qa)

∞∑
n=1

K0(nqb) cos(nqyb), (17a)

S2 =
∞∑

n=−∞
e−q|n|b−iqznb = sinh(qb)

cosh(qb) − cos(qzb)
. (17b)

Note that for qz = 0, as q → 0, S2 → q. The plasmon bands
for the 1D superlattice, i.e., ω

(p,m,g)
ds composed of Schrödinger

electrons, MDP, and GDP, are now explicitly given by the zeros
of the eigenvalues of the general dielectric matrix in Eq. (15),

1 − vq�(q,ω)Sd (q,k) = 0. (18)

However, in the long-wavelength dynamical limit (q → 0),
� ∝ q2/ω2 for parabolic, massive Dirac, and gapless Dirac
systems in all dimensions and, consequently, Eq. (18) simpli-
fies to give

ω
(p,m,g)
ds = ω

(p,m,g)
d S

1/2
d , (19)

where the form factor Sd is explicitly given in Eq. (17). We
emphasize that Eq. (19) is very general and it describes the
long-wavelength plasmon dispersion for a 1D superlattice
made of parabolic, massive Dirac, or gapless Dirac systems
(for both ribbons and layers). The plasmon bands for a
superlattice of 1D MDP nanoribbons and 2D MDP layers
is displayed in Figs. 1(a) and 1(b), respectively, against the
backdrop of the particle-hole continuum.

For ribbons and layers of parabolic systems, the superlattice
plasmon dispersion at the upper band edge (k = 0) is given by

ω
(p)
1s (q; qy = 0) =

(
2πñ2e

2q

κmp

)1/2

, (20a)

ω
(p)
2s (q; qz = 0) =

(
4πñ3e

2

κmp

)1/2

, (20b)

with ñ2 = n1
b

and ñ3 = n2
b

. Note that in Eq. (20), the d-
dimensional superlattice plasmon at the band edge (k = 0)
has exactly the same form as the corresponding (d + 1)-
dimensional bulk plasmon [see Eqs. (11a) and (11b)] with
the effective densities being ñ3 = n2/b and ñ2 = n1/b.
This is consistent physically since the d-dimensional su-
perlattice loses its discrete periodicity at the band edge
(k = 0) and effectively becomes a (d + 1)-dimensional
system.

In the case of superlattice structures made of MDP, the
q → 0 plasmon dispersion at the band edge (k = 0) is

ω
(m)
1s (q; qy = 0) =

√
2ge2vFq

�κb

(
ε2

F − 	2
)1/4

ε
1/2
F

, (21a)

ω
(m)
2s (q; qz = 0) =

√
ge2

�2κb

√
ε2

F − 	2

εF
. (21b)
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FIG. 1. (Color online) (a) The long-wavelength plasmon disper-
sion for 1D and 2D MDP against the backdrop of the 1D particle-hole
continuum (the gray shaded region). The green shaded region marks
the plasmon band formed in the 1D superlattice of the 1D MDP [the
lower boundary is for qy = π/b and the upper boundary is for qy = 0
in Eq. (19)]. (b) The long-wavelength plasmon dispersion for 2D and
3D MDP, with the green shaded region marking the plasmon band
formed in the 1D superlattice of the 2D MDP (the lower boundary
is for qz = π/b and the upper boundary is for qz = 0). The gray
shaded region in (b) depicts the particle-hole continuum of 2D and 3D
massive plasma. Note that as in the parabolic case, the electron-hole
continuum in 1D differs from the 2D and 3D case because there are no
excitations at finite q and low ω even for massive and massless Dirac
fermions. In both panels, we have defined �vFk0 ≡ εF and used the
following parameters: 	/εF = 0.4, ge2/(2�κvF) = 2, ak0 = 0.25,
and bk0 = 2.

These, in the limit 	 → 0, give the corresponding expres-
sions for the GDP:

ω
(g)
1s (q; qy = 0) =

(
2ge2vFq

�κb

)1/2

, (22a)

ω
(g)
2s (q; qz = 0) =

(
e2gεF

�2κb

)1/2

. (22b)

The physically appealing correspondence between the d-
dimensional superlattice at the band edge and (d + 1)-
dimensional bulk system does not happen for MDP as well
as for GDP. From Eqs. (21a) and (21b), it is clear that at
the band edge, ω

(m,g)
1s (q; qy = 0) = ω

(m,g)
2 with the intuitive

substitution ñ2 = n1/b and ω
(m,g)
2s (q; qz = 0) = ω

(m,g)
3 with

ñ3 = n2/b. This is a direct consequence of different density
dependence of the polarization function [see Eqs. (8) and (9)]
in massive and massless Dirac systems as compared to
systems with a parabolic dispersion relation [see Eq. (7)].
However, the 2D superlattice plasmon dispersion would map
to the corresponding plasmon dispersion for 3D massive
Dirac plasma ω

(m)
2s (q; qz = 0,n2) → ω

(m)
3 (q,ñ3) if, rather than

the intuitive definition ñ3 = n2/b, we have the following
correspondence of densities in 3D and 2D massive systems:(

ñ3b

n2

)2

= (6π2ñ3g
−1)2/3 + 	̃2

4πn2g−1 + 	̃2
. (23)

In the 	 → 0 limit, Eq. (23) leads to the corresponding
relation GDP, i.e., ñ3 = (9πg/16)1/4(n2/b

2)3/4, which was
first derived in Ref. [18]. For the 1D superlattice, the
gapless Dirac plasma frequency ω

(g)
1s does not depend on

the carrier density at all, and hence massive Dirac plasma
frequency differs here in this aspect. For 1D massive Dirac
plasma, the superlattice plasmon frequency at the band
edge would agree with the 2D massive plasma frequency,
i.e., ω

(m)
1s (q; qy = 0,n1) → ω

(m)
2 (q,ñ2), only if we have the

following relation between the densities ñ2 and n1:(
ñ2b

n1

)2

= 4πñ2g + g2	̃2

π2n2
1 + g2	̃2

. (24)

In the 	 → 0 limit, Eq. (24) reproduces the corresponding
relation GDP, i.e., ñ2 = 4g/πb2.

Due to the presence of gap in massive Dirac systems, the
density dependence as well as the band-edge plasmon at k = 0
differs from the usual parabolic as well as the massless Dirac
systems. This is because of the fact that the density dependence
of the polarizability of massive Dirac systems is completely
different compared to massless Dirac and parabolic dispersion
systems, as shown in Eqs. (8).

Finally, we note that as in the case of bulk plasmons, in
Eqs. (14a)–(14c), the superlattice plasmon frequencies for
Dirac systems can be expressed in the same form as for systems
with parabolic dispersion relation. Expressing the numerator
in Eqs. (21a)–(25a) in terms of density and the denominator
in terms of the cyclotron mass of massive Dirac particles
md = εF/v

2
F, we have

ω
(m,g)
1s (q; qy = 0) =

(
2πñ2e

2q

κmd

)1/2

, (25a)

ω
(m,g)
2s (q; qz = 0) =

(
4πñ3e

2

κmd

)1/2

. (25b)

V. SUMMARY AND CONCLUSION

In this paper, we have obtained the long-wavelength
plasmon frequency for massive Dirac particles in various
dimensions and their 1D superlattice, and compared it with the
corresponding results for plasmons in parabolic systems and
gapless Dirac systems. As expected, factors of 1/

√
� explicitly

appear even in the leading-order term in the long-wavelength
plasmon dispersion of MDP and GDP, highlighting their
intrinsically nonclassical and quantum nature.

To summarize, we find that the long-wavelength limit of the
dynamical density response function, while having the same
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dependence for q and ω, i.e., � ∝ q2/ω2 for parabolic as
well as Dirac systems, has a different dependence on density.
This different density dependence also gets manifested in the
long-wavelength plasmon dispersion and we find that for mas-
sive Dirac systems, ω

(m)
d ∝ √

nd/(n2/d

d + αd	̃
2)1/4, while for

gapless Dirac systems, ω(g) ∝ √
nd/n

1/2d

d , and for parabolic
systems, ω(p) ∝ √

nd , in d-dimensional systems. Additionally,
we note that a beautiful similarity emerges between all three
systems if we use the density-dependent effective Dirac mass
(or cyclotron mass) for GDP and MDP, md = εF/v

2
F, to express

the long-wavelength plasmon dispersion for all systems in all
dimensions: ω(p,g,m) ∝ √

nd/mp/d. This density dependence
of the plasmon frequency may be used to distinguish between
various types of systems (parabolic, GDP, and MDP) and their
effective dimensionality. Alternatively, the long-wavelength
plasmon dispersion may be used to determine the dynamical
collective mass of various Dirac systems [10].

We have also calculated the plasmon dispersion in a 1D
superlattice made of nanoribbons and layers of MDP, and find
that while the q dependence is similar to that of parabolic
superlattice, the density dependence is completely different.
Note that our results for the 3D plasmons of MDP, 2D layers,

and multilayers, as well as 1D ribbons and multiribbon arrays
can be tested using electron scattering, light scattering, or
infrared spectroscopy for ribbons and layers made of silicene,
transition-metal dichalcogenides, and other materials which
have a dispersion similar to that of massive or gapped Dirac
spectrum at low energies.

Finally, we note that we have not included in our calculation
the effect of dielectric mismatch, which may lead to the
dielectric constant appearing in the expression of the Coulomb
interaction κ to be wave-vector dependent. This can be easily
included in our calculations according to Ref. [36]. However,
we believe that the long-wavelength plasmon dispersion, as
discussed in this paper, would not be impacted by this, even
though the dielectric mismatch may change the plasmon
dispersion for finite wave vectors.
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