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Intrinsic charge and spin conductivities of doped graphene in the Fermi-liquid regime
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The experimental availability of ultra-high-mobility samples of graphene opens the possibility to realize and
study experimentally the “hydrodynamic” regime of the electron liquid. In this regime, the rate of electron-electron
collisions is extremely high and dominates over the electron-impurity and electron-phonon scattering rates, which
are therefore neglected. The system is brought to a local quasiequilibrium described by a set of smoothly varying
(in space and time) functions, i.e., the density, the velocity field, and the local temperature. In this paper, we
calculate the charge and spin conductivities of doped graphene due solely to electron-electron interactions. We
show that, in spite of the linear low-energy band dispersion, graphene behaves in a wide range of temperatures
as an effectively Galilean-invariant system: the charge conductivity diverges in the limit T → 0, while the spin
conductivity remains finite. These results pave the way to the description of charge transport in graphene in terms
of Navier-Stokes equations.
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I. INTRODUCTION

Graphene, a two-dimensional (2D) layer of carbon atoms
arranged in a honeycomb lattice, has attracted a great deal of
theoretical and experimental interest in the last few years [1–6].
Its properties, due to the gapless and linear low-energy band
dispersion, make it highly attractive for several practical
applications spanning the fields of optoelectronics, photon-
ics, nanoplasmonics, metrology, and energy generation and
storage [3,7–13]. At the same time, it still offers an extremely
interesting playground for fundamental science. As the quality
of samples continues to improve [14], new breakthroughs are
expected. Many-body interactions are indeed expected to play
a crucial role in the physics of ultra-high-mobility samples [6].

The transport properties of graphene are controlled by the
highly mobile electrons in the π (valence) and π� (conduction)
bands, which arise from the hybridization of the pz orbitals [1]
( ẑ denotes the direction orthogonal to the graphene plane). The
two bands touch with a linear dispersion at two inequivalent
points (K and K ′) at the corners of the hexagonal Brillouin
zone. For small energies, momenta, and doping concentrations,
it is possible to expand the tight-binding Hamiltonian around
these points in a k · p fashion [1]. The resulting low-energy
Hamiltonian describes massless Dirac fermions (MDFs) char-
acterized by the density-independent Fermi velocity vF which
is about 300 times smaller than the speed of light.

A high-mobility gas of free carriers can be created in
graphene by, e.g., electrostatic gating or chemical doping. We
assume these carriers to be in the “Fermi-liquid” regime [15].
The Fermi energy is thus εF = ±vFkF (energies are measured
from the Dirac point), where kF = √

2πn/Nv is the Fermi
wave vector, n is the excess carrier density, and Nv = 2 is
the valley degeneracy. The sign of εF depends on the type of
carriers (+ for electrons and − for holes). In what follows,
owing to the particle-hole symmetry of the low-energy MDF
model [1], we consider only samples doped with an excess
electron density.
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Most of the previous theoretical works on the transport
properties of doped graphene [5] considered samples in which
the transport is dominated by disorder effects, and in which
electron-electron interactions play a minor or no role. In
this paper instead, in view of the possibilities offered by
the experimentally available ultra-high-mobility samples [14],
we focus on the “intrinsic” transport regime. By intrinsic we
mean that the transport properties are solely determined by
electron-electron interactions, and disorder and phonons, as
well as finite-size effects, are considered to be irrelevant. In
this paper, we focus on two fundamental properties of doped
graphene, namely, the charge and spin conductivities. Let
us write these conductivities, at a finite frequency ω, in the
common form

σ (�)(ω) = Q2
�D�

−iω + 1/τ
(�)
tr

, (1)

where � = c for the charge conductivity, � = s for the spin
conductivity, Qc = e, and Qs = �. Here, τ

(c)
tr and τ

(s)
tr are

the transport relaxation times of charge and spin currents,
respectively, while Dc and Ds are the corresponding “Drude
weights.”

Any conductivity, associated with the transport of a
physical quantity, is, in general, affected by electron-electron
interactions. Both its “Drude weight” and its relaxation time
change when interactions are turned on. In fact, as it happens
for the quasiparticle lifetime (τ qp

ee ), also transport relaxation
times are limited by thermally activated electron-electron
scattering processes. Moreover, interactions renormalize the
quasiparticle properties as the Fermi velocity, and accordingly
the Drude weights. The self-energy corrections which “dress”
the interacting Fermi velocity v�

F are especially important
in graphene since its low-energy MDF Hamiltonian has an
infinite bandwidth [1,6]. Interactions between electrons at the
Fermi surface and states at large negative energies (in the
valence band) lead to a logarithmic divergence of v�

F [16]
as the system approaches the undoped regime. Furthermore,
electron-electron interactions are also responsible for “vertex
corrections” to the Drude weights, which are encoded in
the Landau parameters [15] F

a/s
n . Vertex corrections are
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usually small in a wide range of interaction strengths [15].
The full renormalization of the charge Drude weight takes
the form [15,17,18] Dc = D(0)

c v�
F(1 + F s

1 )/vF, while the spin
Drude weight becomes [19]Ds = D(0)

s v�
F(1 + F a

1 )/vF (see also
Appendix F).

Although this is a very general scheme, care must be
exerted when dealing with charge currents. In the case of a
parabolic band 2D electron gas (2DEG), for example, Galilean
invariance leads to a perfect cancellation between self-energy
and vertex corrections to the charge Drude weight. In formulas,
v�

F(1 + F s
1 ) = vF. For the same reason, the charge transport

time of a clean Galilean-invariant Fermi liquid is unaffected
by electron-electron interactions in the absence of umklapp
processes, and it is thus infinite as in the noninteracting case.
These facts show that electron-electron interactions, which
conserve the total momentum of the system at any scattering
event, are also inefficient in relaxing a homogeneous current.
In Galilean-invariant systems, the latter is indeed proportional
to the total momentum, which is a conserved quantity. At odds
with this, the spin current follows the “general rule” outlined
above and is relaxed by electron-electron interactions, which
can transfer momentum between the two spin populations,
giving rise to the phenomenon of the spin-Coulomb drag
[20–22].

Since graphene is not a Galilean-invariant system, charge
relaxation due to electron-electron interactions is not forbidden
a priori by any symmetry. In the low-energy MDF model,
indeed, the current and total momentum are not proportional to
each other. It is therefore not surprising that electron-electron
interactions affect the charge Drude weight of graphene in
a nontrivial way [17,18], i.e., the product v�

F(1 + F s
1 ) �= vF.

It has been shown that, to the first order in the strength of
electron-electron interactions [17], vertex corrections exactly
cancel the self-energy renormalization due to particle-particle
scattering at the Fermi surface, but do not affect the logarithmic
divergence of the Fermi velocity [17]. Moreover, while it is
clear that in a 2DEG the charge transport time is unaffected
by interactions, no conclusion can be drawn a priori for
graphene.

In this paper, we prove that at low temperature the charge
transport time is infinite, i.e., 1/τ

(c)
tr = 0+, while the spin

transport time τ
(s)
tr is limited by electron-electron interaction

and it is thus finite. As noted above, the relation between the
current and total momentum is highly nonlinear in graphene.
Is it thus somewhat surprising that the charge transport time is
not affected by electron-electron interactions, and that only the
Drude weight is renormalized. This result can be understood
as follows.

While the momentum k and velocity vλ = λvFk/|k| of a
quasiparticle are not directly proportional to each other, they
become approximately linearly related at low temperature
for any finite doping concentration. Indeed, in the limit of
kBT � εF, the dominant contribution to the transport comes
from electrons in a thin shell of size kBT around the Fermi
energy. All these quasiparticles have magnitude of momentum
equal to kF, and velocity v+ � vFk/kF, if the system is n

doped. This in turn implies that a linear relation is established
between the momentum and velocity of each quasiparticle
and, accordingly, between the current and total momentum of
the system. Since the latter is conserved, at low-temperature

electron-electron interactions cannot relax a homogeneous
current and doped graphene behaves as an effectively Galilean-
invariant system.

We stress that this argument applies only to the calculation
of the charge transport time and breaks down when one
considers the charge Drude weight. The latter has contributions
from virtual processes between all quasiparticle states, not only
those around the Fermi energy. Since these processes span all
the quasiparticle spectrum, the nonlinear relation between the
current and momentum operators becomes apparent and the
Drude weight gets renormalized.

The situation is completely different for the spin conductiv-
ity. In this case, electron-electron interactions (i) renormalize
the spin Drude weight and (ii) provide a finite transport time for
spin currents. While the former effect is expected to be small
in a wide range of values of the strength of electron-electron
interactions [19], the latter is large. The spin conductivity,
which was infinite in the noninteracting limit, turns out to be
finite in an interacting system. It thus offers a more powerful
probe of electron-electron interactions as compared with the
charge conductivity. The physics behind the spin conductivity
is intimately related to the phenomenon of spin-Coulomb drag.
When a pure spin-polarized current is injected into the system,
each spin component of the current exerts friction on the other
spin component via electron-electron interactions. The relative
velocity of the spin populations therefore decays in time, and
eventually vanishes unless an external driving field is present,
in which case it reaches a steady state. This in turn implies that
the spin conductivity must be finite. Our calculation shows that
typical values for the spin transport time range between 1 and
10 ps.

This paper is organized as follows. In Sec. II we define
the low-energy MDF model of graphene, and we set up
the all-order diagrammatic calculations needed to determine
the charge and spin conductivities. The main steps of the
calculation are given in Sec. III, which also presents the
main results of our paper, namely, the charge and spin
transport times. Our results are summarized in Sec. IV.
Appendixes A–F provide several technical details of the
calculation.

II. MODEL AND BASIC DEFINITIONS

We model graphene with the low-energy MDF Hamiltonian
(per valley flavor, hereafter � = 1) [1,6]

Ĥ =
∑
k,λ

εk,λψ̂
†
k,λ,σ ψ̂k,λ,σ + 1

2

∑
q

vq(n̂q n̂−q − n̂0), (2)

where ψk,λ,σ (ψ†
k,λ,σ ) destroys (creates) a particle with momen-

tum k and spin σ = ± in band λ = ±, εk,λ = λvFk, and vq =
2πe2/(εq) is the nonrelativistic Coulomb interaction. Here, ε

models the dielectric environment surrounding graphene and,
as a first approximation, it is the average of the dielectric
constants of media above (ε1) and below (ε2) the sheet, i.e.,
ε = (ε1 + ε2)/2. The strength of electron-electron interactions
is characterized by the density-independent “fine-structure
constant” of graphene (restoring �) αee = e2/(�εvF). Finally,
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FIG. 1. (a) The diagrammatic representation of the current-
current response function. The left dot is the bare vertex (0,α) (we
suppress the momentum-energy dependence for brevity), while the
solid double lines are Green’s functions dressed by the self-energy.
In the large-N limit (where N is the number of fermion flavors, 4 for
graphene) it corresponds to the GW self-energy, which is depicted in
panel (b). Wavy lines represent RPA screened interactions. Finally,
the triangle represents the vertex function β which is dressed by
e-e interactions and satisfies the Bethe-Salpeter equation in panel
(c). Note that the form of the irreducible interaction I is uniquely
determined by the choice of the self-energy, provided β must satisfy
the Ward identities [15] (see Fig. 2).

the density operator is

n̂q =
∑

k,σ,λ,λ′
Dλλ′(k−,k+)ψ̂†

k−,λ,σ ψ̂k+,λ′,σ , (3)

where we defined k± = k ± q/2, and the matrix element
of the density operator between the eigenstates of the bare
Hamiltonian is [1]

Dλλ′(k,k′) = ei(ϕk−ϕk′ )/2 + λλ′e−i(ϕk−ϕk′ )/2

2
. (4)

Here, ϕk is the angle between the momentum k and the x̂ axis.
The spin-resolved current operator of MDFs is

ĵ
(σ )
q =

∑
k,λ,λ′

Jλλ′(k−,k+)ψ̂†
k−,λ,σ ψ̂k+,λ′,σ , (5)

where Jλλ′(k,k′) ≡ [J (x)
λλ′ (k,k′),J (y)

λλ′ (k,k′)], and

J
(x)
λλ′ (k,k′) = vF

λ′ei(ϕk+ϕk′ )/2 + λe−i(ϕk+ϕk′ )/2

2
,

J
(y)
λλ′ (k,k′) = vF

λ′ei(ϕk+ϕk′ )/2 − λe−i(ϕk+ϕk′ )/2

2i
(6)

are the matrix elements of the current operator between the
eigenstates |k,λ〉 and |k′,λ′〉 of the system.

Figure 1 summarizes the all-order diagrammatic re-
summation needed to calculate the charge and spin conductiv-
ities [23,24], which are microscopically defined as [25]

σ
(c)
αβ = lim

ω→0

[
ie2

ω

∑
σσ ′

χ
j

(σ )
α j

(σ ′ )
β

(q = 0,ω)

]
, (7)

and

σ
(s)
αβ = lim

ω→0

[
i�2

ω

∑
σσ ′

σσ ′χ
j

(σ )
α j

(σ ′ )
β

(q = 0,ω)

]
. (8)

Here, χ
j

(σ )
α j

(σ ′ )
β

(q = 0,ω) is the proper spin-resolved current-

current linear response function [15] given by the diagram in
Fig. 1(a). Its analytical expression on the imaginary-frequency
axis reads as

χ
j

(σ )
α j

(σ ′ )
β

(q,iωm) = NvkBT
∑

k,λ,λ′

∑
εn

G
(σ )
λ (k−,iεn)

×
(0,σ )
λλ′,α(k−,k+)G(σ )

λ′ (k+,iεn + iωm)

×
(σσ ′)
λ′λ,β(k+,iεn + iωm,k−,iεn), (9)

where α,β = x,y denote the Cartesian components of the
vectors, Nv = 2 is the number of valleys, εn = (2n +
1)/β (ωm = 2m/β) are fermionic (bosonic) Matsubara fre-
quencies (n,m = 0, ± 1, ± 2, . . .), G

(σ )
λ (k,iεn) = [iεn + μ −

εk,λ − �
(σ )
λ (k,iεn)]−1 is the spin-resolved Green’s function

on the imaginary-frequency axis (here μ is the chemical
potential), and the bare current vertex determined by Eq. (5)
reads as


(0,σ )
λλ′,α(k−,k+) = J

(α)
λλ′ (k−,k+). (10)

The term in the last line of Eq. (9), namely 
(σσ ′)
λ′λ,β (k+,iεn +

iωm,k−,iεn), is the vertex function, which is dressed by
electron-electron interactions and satisfies the self-consistent
Bethe-Salpeter equation of Fig. 1(c) (see Sec. II B). We stress
that the choice of the self-energy, together with the requirement
of fulfilling the Ward identities, uniquely determines the
self-consistent Bethe-Salpeter equation satisfied by the vertex
function, i.e., the irreducible interaction I [15].

The GW self-energy shown in Fig. 1(b) reads as

�
(σ )
λ (k,iεn) = −kBT

∑
k′,λ′

∑
εn′

W (k′ − k,iεn′ − iεn)

×G
(σ )
λ′ (k′,iεn′ )Dλλ′(k,k′)Dλ′λ(k′,k). (11)

Here, W (q,i�m) is the screened electron-electron interaction,
represented in Fig. 1(b) by a wavy line. In the large-Nv limit,
this is given by

W (q,i�m) = vq

1 − vqχnn(q,i�m)
, (12)

where χnn(q,ω) is the proper density-density response func-
tion [15] of graphene. In principle, this should be calculated
in analogy to the current-current response function of Eq. (9),
i.e., it should contain dressed Green’s functions and vertex
function. However, to simplify our calculation we neglect the
vertex corrections to χnn(q,ω), which we define as

χnn(q,iωm) = NvkBT
∑

q ′,εn,σ ′

∑
λ′′,μ′′

G
(σ ′)
λ′′ (q ′,iεn)

×G
(σ ′)
μ′′ (q ′ + q,iεn + iωm)

×Dλ′′μ′′(q ′,q ′ + q)Dμ′′λ′′(q ′ + q,q ′). (13)

Note that the density vertices in Eq. (13) are not renormalized
by electron-electron interactions. This is essentially a large-N
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approximation for the self-energy. We are indeed summing the
diagrams with the largest number of particle-hole propagators,
dressing the Green’s function with self-energy insertions.

Naturally, by neglecting the vertex corrections in Eq. (13)
we are breaking the gauge-invariance relation between
the current-current and the density-density response func-
tions [15,26]. Therefore, one should not try to evaluate, e.g., the
charge conductivity from the term of order q2 in the small-q
expansion of Eq. (13): the result would indeed be finite (in
contrast to what we show in what follows) and completely
meaningless. Retaining the vertex corrections would be of
capital importance in this case.

In our calculation, however, Eq. (13) is used only to produce
an approximation for the single-particle self-energy. The latter
is then used to dress the Green’s functions that enter in the
expression for the current-current linear-response function,
which contains also the vertex corrections. The latter are
chosen in such a way that the Ward identities are satisfied.
Namely, the self-energy and the irreducible interactions I

FIG. 2. The diagrams that contribute to the irreducible interaction
I of Fig. 1.

(see Fig. 2) are chosen in a consistent way, and the form of the
latter is uniquely determined by the choice of the self-energy.
The choice of neglecting the vertex corrections in Eq. (13)
has of course a quantitative impact [27] on the final result (as
any other approximation). However, the result has the correct
qualitative behavior: for example, we obtain a diverging charge
conductivity in the absence of momentum-nonconserving
processes.

The dressed vertex satisfies the following self-consistent
Bethe-Salpeter equation [15]:


(σσ ′)
λ′λ,β(k+,iεn + iωm,k−,iεn) = δσσ ′

(0,σ )
λ′λ,β(k+,k−) +

∑
i=1,...,3


(i,σσ ′)
λ′λ,β (k+,iεn + iωm,k−,iεn). (14)

The three contributions 
(i,σσ ′)
λ′λ,β (k+,iεn + iωm,k−,iεn) (with i = 1, . . . ,3) correspond to the three diagrams in Fig. 2. They read

as


(1,2,σσ ′)
λ′λ,β (k+,iεn + iωm,k−,iεn) = −kBT

∑
k′,εn′

∑
μ,μ′,σ ′′

W
(1,2,σσ ′′)
λλ′μμ′ (k′,k,iεn′ − iεn)G(σ ′′)

μ′ (k′
+,iεn′ + iωm)

×G(σ ′′)
μ (k′

−,iεn′ )(σ ′′σ ′)
μ′μ,β (k′

+,iεn′ + iωm,k′
−,iεn′ ) (15)

and


(3,σσ ′)
λ′λ,β (k+,iεn + iωm,k−,iεn) = −kBT

∑
k′,εn′

∑
μ,μ′,σ ′′

W
(3,σσ ′′)
λλ′μμ′ (k′,k,iεn′ + iεn + iωm)G(σ ′′)

μ′ (k′
+,iεn′ + iωm)

×G(σ ′′)
μ (k′

−,iεn′ )(σ ′′σ ′)
μ′μ,β (k′

+,iεn′ + iωm,k′
−,iεn′ ). (16)

Here, we define

W
(1,σσ ′′)
λλ′μμ′ (k′,k,iωm) = δσσ ′′W (k − k′,iωm)Dλ′μ′(k+,k′

+)Dμλ(k′
−,k−) (17)

and

W
(2,σσ ′′)
λλ′μμ′ (k′,k,iεn′ − iεn) = NvkBT

∑
q ′,ωm′

∑
λ′′,μ′′

W (q ′,iωm′ )W (q ′ − q,iωm′ − iωm)Dλ′λ′′ (k+,k+ − q ′)Dλ′′λ(k+ − q ′,k−)

×Dμμ′′(k′
−,k′

+ − q ′)Dμ′′μ′(k′
+ − q ′,k′

+)G(σ )
λ′′ (k+ − q ′,iεn + iωm − iωm′ )

×G
(σ ′′)
μ′′ (k′

+ − q ′,iεn′ + iωm − iωm′ ), (18)

and finally

W
(3,σσ ′′)
λλ′μμ′ (k′,k,iεn′ + iεn + iωm) = NvkBT

∑
q ′,ωm′

∑
λ′′,μ′′

W (q ′,iωm′ )W (q ′ − q,iωm′ − iωm)

×Dλλ′′(k−,k− + q ′)Dλ′′λ′(k− + q ′,k+)Dμμ′′(k′
−,k′

+ − q ′)Dμ′′μ′(k′
+ − q ′,k′

+)

×G
(σ )
λ′′ (k− + q ′,iεn + iωm′)G(σ ′′)

μ′′ (k′
+ − q ′,iεn′ + iωm − iωm′ ). (19)

In what follows, we start from the evaluation of the self-energy
corrections, and of the quasiparticle lifetime at the Fermi

surface, and we then proceed to the calculation of the vertex
correction.
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A. Quasiparticle decay rate

In this section, we calculate the quasiparticle lifetime τ
qp
ee

at the Fermi energy, defined as

1

τ
qp
ee

= 2
∫ ∞

−∞
dε

∂nF(ε)

∂ε
Im[�(σ )

+ (k,ε+)]|k=kF, (20)

where the self-energy was defined in Eq. (11), and ε+ ≡ ε +
i0+. We focus on the imaginary part of the self-energy, which
controls the charge and spin relaxation times, and we disregard
its real part, which is responsible for the renormalization
of the Drude weights. In the spirit of Landau theory of
normal Fermi liquid, we take care of this approximation of
the diagrammatic calculation by replacing a posteriori the
noninteracting Drude weights with their interacting values.
A microscopic calculation of the charge Drude weight to the
first order in the strength of electron-electron interactions was
given in Ref. [17]. As shown in Appendix A, at low temperature
(kBT � εF) Eq. (20) becomes

1

τ ee
qp

= (kBT )2

3π

∫ 2kF(1−T̄ /2)

kFT̄

dq q|W (q,T̄ εF)|2

× Imχnn(q,T̄ εF)

T̄ εF
A(q, − T̄ εF), (21)

where the integration limits are due to Imχnn(q,T̄ εF), which
for small T̄ is finite only in the interval kFT̄ < q < 2kF(1 −
T̄ /2). Here, T̄ = ζkBT/εF, ζ = π/

√
5, and

A(q,ω) = − π

vF

∫ 2π

0
dϕqδ(|k − q| − k − ω/vF)

× 1 + cos(ϕk−q + ϕk)

2

∣∣∣∣
k=kF

= −4π

v2
F

kF − ω/vF√
4k2

Fq
2 − (

q2 − ω2/v2
F + 2kFω/vF

)2

×
(

1 − q2 − ω2/v2
F

4kF(kF − ω/vF)

)

×�

(
1 −

∣∣∣∣q2 − ω2/v2
F + 2kFω/vF

2kFq

∣∣∣∣
)

. (22)

Equation (21) describes, as shown in Fig. 3, the decay
(scattering) of a quasiparticle of momentum k to a state of
momentum k − q through the creation of an electron-hole
pair of total momentum q obtained by exciting a particle of
momentum k′′ − q to a state of momentum k′′. Such a process
is encoded in the density-density response function [28–32]
Imχnn(q,T̄ εF) and is depicted in Fig. 3. Notice that, since
all the initial and final states are on the Fermi surface, the
conservation of momentum implies that k and k′′ − q (and
thus k − q and k′′) are diametrically opposite. This fact will
be used in what follows to simplify the expressions of the
transport times (see Appendix E).

Numerical results obtained from Eq. (21) are shown in
Fig. 4. In passing, we recall that the GW quasiparticle
lifetime is also calculated in Refs. [33,34]. Contrary to
Eq. (21), the expressions given in Ref. [33] do not contain
any low-temperature approximation (see Appendix A for more

FIG. 3. A pictorial representation of double particle-hole excita-
tions that contribute, to lowest order in the strength of e-e interactions,
to the quasiparticle decay rate calculated in Sec. II A. Note that, since
all the states involved in the scattering process live at the Fermi
surface, the conservation of momentum constrains the initial states
k and k′′ − q to be diametrically opposed. The same happens to the
final states k − q and k′′.

details). In Figs. 5 and 6 we show a comparison between the
quasiparticle lifetime calculated from Eq. (21) and the “exact”
one computed in Ref. [33]. Note that the agreement is very
good in the chosen range of temperatures and densities.

FIG. 4. (Color online) (a) The quasiparticle lifetime of massless
Dirac fermions τ

qp
ee , as defined in Eq. (21), in units of picoseconds

and plotted as a function of the density n in units of 1012 cm−2 for
three values of the dimensionless coupling constant αee. In this plot
we fixed the temperature T = 300 K. (b) Same as in panel (a) but
shown as a function of temperature (in units of K) for a fixed excess
carrier density n = 1012 cm−2.
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FIG. 5. (Color online) A comparison between the quasiparticle
lifetime calculated from Eq. (21) and the one computed in Ref. [33].
In this figure the temperature is kept fixed at T = 300 K and the
quasiparticle lifetime is plotted in units of ps as a function of the
density (in units of 1012 cm−2). Panels (a)–(c) refer to the three
values of the coupling constant αee = 0.5, αee = 0.9, and αee = 2.2,
respectively.

B. Vertex function and the Bethe-Salpeter equation

In this section, we summarize the complicated calculation
of the vertex correction to the charge and spin conductivities.
The details of the derivation can be found in Appendixes B
and C.

The first step of the calculation is to analytically continue
Eq. (9) to real frequencies. We indeed recall that the charge
and spin conductivities are determined, according to Eqs. (7)
and (8), by the ω → 0 limit of the retarded spin-resolved
current-current response function calculated at q = 0. We
stress that the analytical continuation iωm → ω + i0+ must
be performed before the small-frequency limit.

After the analytical continuation to real frequencies [35],
the current-current response function of Eq. (9) contains prod-
ucts of advanced-advanced (schematically GAGA), retarded-
retarded (GRGR), and advanced-retarded (GAGR) Green’s
function. The first two contributions GAGA and GRGR have
poles on the same side of the complex plane. In the limit
εFτ

qp
ee � 1 we can neglect them [35] and retain only the

FIG. 6. (Color online) A comparison between the quasiparticle
lifetime calculated from Eq. (21) and the one computed in Ref. [33].
In this figure, the density is kept fixed at n = 1012 cm−2 and the
quasiparticle lifetime is plotted in units of ps as a function of
the temperature (measured in K). Panels (a)–(c) refer to the three
values of the coupling constant αee = 0.5, αee = 0.9, and αee = 2.2,
respectively.

“mixed” term GAGR. After some simple algebra, shown in
detail in Appendix B, Eq. (9) becomes

χ
j

(σ )
α j

(σ ′ )
β

(q,ω)

= −Nv

∑
k,λ,λ′

∫
dε

2πi
[nF(ε + ω) − nF(ε)]

×G
(A,σ )
λ (k−,ε)(0,σ )

λλ′,α(k−,k+)G(R,σ ′)
λ′ (k+,ε + ω)

×
(σσ ′)
λ′λ,β(k+,ε+ + ω,k−,ε−). (23)

We stress that Eq. (23) has been obtained by transforming the
sum over the Matsubara frequencies in an integral over the
branch cuts of the integrand, and by analytically continuing
iωm → ω + i0+. Moreover, we retained only the terms that
contained the product of an advanced and a retarded Green’s
function, and therefore the two energy arguments of the
dressed vertex belong to opposite halves of the complex plane.
In the Bethe-Salpeter equation for the dressed vertex we
set iεn → ε− and iεn + iωm → ε+ + ω. The calculation is
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quite lengthy, and is performed in Appendix C. Here, we report only the final form of the self-consistent Bethe-Salpeter
equation (14), i.e.,


(σσ ′)
λ′λ,β(k+,ε+ + ω,k−,ε−) = δσσ ′

(0,σ )
λ′λ,β(k+,k−) +

∑
i=1,...,3


(i,σσ ′)
λ′λ,β (k+,ε+ + ω,k−,ε−). (24)

Also in the derivation of Eq. (24) we retained only mixed terms of the form GAGR. In spite of this approximation, our calculation
yields a closed set of self-consistent equations. The terms {(i,σσ ′)

λ′λ,β (k+,ε+ + ω,k−,ε−),i = 1, . . . ,3} on the last line of Eq. (24)
read as


(1,σσ ′)
λ′λ,β (k+,ε+ + ω,k−,ε−) = 4Nv

∑
k′,q ′,σ ′′

∑
μ,μ′

∑
λ′′,μ′′

∫
dε′

2πi

∫
dω′

2πi
|W (k − k′,ε′ − ε)|2

× [nF(ε′) + nB(ε′ − ε)][nF(ω′ + ε′) − nF(ω′ + ε)]Im
[
G

(R,σ ′′)
λ′′ (q ′ − k,ω′ + ε)

]
× Im

[
G

(R,σ ′′)
μ′′ (q ′ − k′,ω′ + ε′)

]
Dλ′μ′(k+,k′

+)Dμλ(k′
−,k−)Dλ′′μ′′(q ′ − k,q ′ − k′)

×Dμ′′λ′′ (q ′ − k′,q ′ − k)G(R,σ )
μ′ (k′

+,ε′ + ω)G(A,σ )
μ (k′

−,ε′)(σσ ′)
μ′μ,β(k′

+,ε′
+ + ω,k′

−,ε′
−) (25)

and


(2,σσ ′)
λ′λ,β (k+,ε+ + ω,k−,ε−) = 4Nv

∑
k′,q ′,σ ′′

∑
μ,μ′

∑
λ′′,μ′′

∫
dε′

2πi

∫
dω′

2πi
W (q ′,ω′

+)W (q ′,ω′
− − ω)

× [nF(ε′) + nB(ε′ − ε)][nF(ω′ − ε − ω) − nF(ω′ − ε′ − ω)]

× Im
[
G

(R,σ )
λ′′ (k+ − q ′,ε + ω − ω′)

]
Im

[
G

(R,σ ′′)
μ′′ (k′

+ − q ′,ε′ + ω − ω′)
]

×Dλ′λ′′ (k+,k+ − q ′)Dλ′′λ(k+ − q ′,k−)Dμμ′′(k′
−,k′

+ − q ′)Dμ′′μ′(k′
+ − q ′,k′

+)

×G
(R,σ ′′)
μ′ (k′

+,ε′ + ω)G(A,σ ′′)
μ (k′

−,ε′)(σ ′′σ ′)
μ′μ,β (k′

+,ε′
+ + ω,k′

−,ε′
−), (26)

and finally


(3,σσ ′)
λ′λ,β (k+,ε+ + ω,k−,ε−) = −4Nv

∑
k′,q ′,σ ′′

∑
μ,μ′

∑
λ′′,μ′′

∫
dε′

2πi

∫
dω′

2πi
W (q ′,ω′

+)W (q ′,ω′
− − ω)

× [nF(ε′) + nB(ε′ + ε)][nF(ω′ + ε) − nF(ω′ − ε′ − ω)]Im
[
G

(R,σ )
λ′′ (k− + q ′,ε + ω′)

]
× Im

[
G

(R,σ ′′)
μ′′ (k′

+ − q ′,ε′ + ω − ω′)
]
Dλλ′′(k−,k− + q ′)Dλ′′λ′(k− + q ′,k+)

×Dμμ′′(k′
−,k′

+ − q ′)Dμ′′μ′(k′
+ − q ′,k′

+)G(R,σ ′′)
μ′ (k′

+,ε′ + ω)G(A,σ ′′)
μ (k′

−,ε′)

×
(σ ′′σ ′)
μ′μ,β (k′

+,ε+ + ω,k′
−,ε′

−). (27)

Equations (23)–(27), together with the inverse quasiparticle
lifetime defined in Eq. (21), constitute a closed set of
equations that can be used to determine the retarded spin-
resolved current-current response function in the limit vFq �
ω,(τ qp

ee )−1 � εF. This calculation is performed in the next
section.

III. CHARGE AND SPIN CONDUCTIVITIES OF
GRAPHENE IN THE FERMI-LIQUID REGIME

In this section, we present the derivation of the charge and
spin conductivities of graphene. We start from Eqs. (23)–(27),
where we set q = 0 and we take the limit ω → 0. To O(ω),
Eq. (23) becomes

χ
j

(σ )
α j

(σ ′ )
β

(q = 0,ω) = ωNv

∑
k,λ,λ′

∫
dε

2πi

(
−∂nF(ε)

∂ε

)

×G
(A,σ )
λ (k,ε)(0,σ )

λλ′,α(k,k)G(R,σ )
λ′ (k,ε+ω)

×
(σσ ′)
λ′λ,β(k,ε+ + ω,k,ε−). (28)

The limit ω → 0 is understood in this equation. We observe
that the function −∂nF(ε)/∂ε is peaked around ε = 0 and
tends to a δ function in the low-temperature limit εFτ

qp
ee � 1.

We thus evaluate all the other functions on the right-hand side
of Eq. (28) at ε = 0, with the exception of 

(σσ ′)
λ′λ,β(k,ε+,k,ε−),

which requires further care. As it will become clear in what
follows, the latter contains Fermi and Bose factors which
depend on ε and that combine with ∂nF(ε)/∂ε in Eq. (28)
to yield the correct transport times. Missing this step would
lead to a noncancellation between the self-energy and vertex
corrections in the charge channel. In the limit ω → 0 we also
approximate

G
(A,σ )
λ (k,0)G(R,σ )

λ′ (k,ω) � − 2iδλλ′

ω + i/τ
qp
ee

Im
[
G

(R,σ )
λ (k,0)

]
.

(29)

In so doing, we neglect the incoherent part of the Green’s
function, i.e., the part of G that is not included in the
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quasiparticle-pole approximation. Herein lies our Fermi-
liquid approximation. At low temperature, Im[G(R)

λ (k,0)] is
a Lorentzian strongly peaked around εk,λ = εF and with a
width proportional to the quasiparticle decay rate. This implies
that k ∼ kF and λ = λ′ = +. For εFτ

qp
ee � 1, the transport is

dominated by states that lie in a thin shell of thickness � kBT

around the Fermi energy [15].
At the same level of approximation, the dressed vertex

function satisfies the following Bethe-Salpeter equation (see
also Appendix D):


(σσ ′)
++,β (k,ω+,k,0−) = δσσ ′

(0,σ )
++,β (k,k) − 4iNv(kBT )2

3
(
ω + i/τ

qp
ee

) ∑
k′,q ′,σ ′′

|W (q ′,0)|2Im[G(R,σ ′′)
+ (k′,0)]Im[G(R,σ )

+ (k − q ′,0)]

× Im[G(R,σ ′′)
+ (q ′ − k′,0)]D++(k,k − q ′)D++(k − q ′,k)D++(k′,k′ − q ′)D++(k′ − q ′,k′)

× [


(σσ ′)
++,β (k − q ′,ω+,k − q ′,0−) + 

(σ ′′σ ′)
++,β (k′,ω+,k′,0−) − 

(σ ′′σ ′)
++,β (k′ − q ′,ω+,k′ − q ′,0−)

]
. (30)

Here, the limits k = kF and ω → 0 are understood. To arrive at
Eq. (30) we have used the fact that in the low-temperature limit
the momenta k′, k − q ′, and k′ − q ′ are all pinned at the Fermi
surface, i.e., |k′| = |k − q ′| = |k′ − q ′| = |k| = kF, and that
the corresponding quasiparticles live in the conduction band
(recall that the system is n doped). As shown in Appendix D,
we have carried out the integrations over energy arguments
by noting that the solution of Eq. (30) must eventually be
introduced into Eq. (28). After the integration, the sum on the
right-hand side of Eq. (30) acquired the factor 4

3 , and some
of the functions inside it were evaluated at an energy equal
to ε̄ [defined in Eq. (A14)], rather than at 0. This second
effect has been ignored in writing Eq. (30). Indeed, keeping
track of the small difference between ε̄ and 0 was crucial to
get a finite quasiparticle lifetime τ

qp
ee . However, as we show in

what follows, the charge transport time is always infinite while
the spin transport time is always finite, no matter what the
value of ε̄ is. Therefore, in both cases no error is produced by
replacing ε̄ � 0 in the calculation of the transport times, at least

to the leading order in the low-temperature expansion. Note
that Eq. (30) is a closed self-consistent equation for the dressed
vertex with all momentum and energy arguments pinned at the
Fermi surface.

We now solve Eq. (30) with standard methods [35]. We first
reduce it to an algebraic equation with the following ansatz:


(σσ ′)
++,β (k,ω+,k,0−) = γσσ ′(ω)(0,σ ′)

++,β (k,k), (31)

and we then solve it for γσσ ′(ω). Note that at the Fermi surface


(0,σ ′)
++,β (k,k) = vF k̂β . A further simplification comes from the

fact that the Green’s functions on the right-hand side of Eq. (30)
are independent of spin. We suppress their spin dependence in
what follows.

Let us first consider the Bethe-Salpeter equation (30) in
the charge channel. To obtain the dressed charge vertex, after
having introduced the ansatz (31) into Eq. (30), we sum over
the spin index σ . After some algebra, we obtain

[γ+σ ′(ω) + γ−σ ′(ω)](0,σ ′)
++,β(k,k) = 

(0,σ ′)
++,β (k,k) − 8iNv(kBT )2

3
(
ω + i/τ

qp
ee

) [γ+σ ′(ω) + γ−σ ′(ω)]
∑
k′,q ′

|W (q ′,0)|2Im[G(R)
+ (k′,0)]

× Im[G(R)
+ (k − q ′,0)]Im[G(R)

+ (q ′ − k′,0)]D++(k,k − q ′)D++(k − q ′,k)D++(k′,k′ − q ′)

×D++(k′ − q ′,k′)
[


(0,σ ′)
++,β (k − q ′,k − q ′) + 

(0,σ ′)
++,β (k′,k′) − 

(0,σ ′)
++,β (k′ − q ′,k′ − q ′)

]
. (32)

The term in square brackets on the last line of Eq. (32) can be manipulated to give

̃σ ′(k,k′,q ′) ≡ 
(0,σ ′)
++,β (k − q ′,k − q ′) + 

(0,σ ′)
++,β (k′,k′) − 

(0,σ ′)
++,β (k′ − q ′,k′ − q ′)

= kβ − q ′
β

kF
+ k′

β

kF
+ k′

β − q ′
β

kF

= 
(0,σ ′)
++,β (k,k), (33)

where we used that |k′| = |k − q ′| = |k′ − q ′| = |k| = kF. Let us now consider Eq. (30) in the spin channel. In this case, we
first multiply by σ and then we sum over the spin index σ . We get

[γ+σ ′(ω) − γ−σ ′(ω)](0,σ ′)
++,β(k,k) = σ ′(0,σ ′)

++,β (k,k) − 8iNv(kBT )2

3
(
ω + i/τ

qp
ee

) [γ+σ ′(ω) − γ−σ ′(ω)]
∑
k′,q ′

|W (q ′,0)|2

× Im[G(R)
+ (k′,0)]Im[G(R)

+ (k − q ′,0)]Im[G(R)
+ (q ′ − k′,0)]D++(k,k − q ′)

×D++(k − q ′,k)D++(k′,k′ − q ′)D++(k′ − q ′,k′)(0,σ ′)
++,β (k − q ′,k − q ′). (34)
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Equations (32) and (34) control the vertex renormalization
in the charge and spin channels, respectively. Note that the
former depends only on the variable γ+σ ′(ω) + γ−σ ′(ω), while
the latter depends only on γ+σ ′(ω) − γ−σ ′(ω), and that they are
thus independent of each other. The spin and charge channels
are thus decoupled in an unpolarized system.

We are now in the position to solve Eqs. (32)–(34). We
project them along the direction of 

(0,σ ′)
++,β (k,k) = vF k̂β and,

after some straightforward algebraic manipulations, we find

γ+σ ′(ω) + γ−σ ′(ω) = ω + i/τ
qp
ee

ω + iη
(35)

and

γ+σ ′(ω) − γ−σ ′(ω) = σ ′ ω + i/τ
qp
ee

ω + i/τ
(s)
tr

. (36)

We recall that the quasiparticle lifetime at the Fermi surface
τ

qp
ee is defined in Eq. (21) and it is explicitly calculated in Fig. 4.

In Eq. (36), we defined

1

τ
(s)
tr

= −8

3
Nv(kBT )2

∑
k′,q ′

|W (q ′,0)|2Im[G(R)
+ (k − q ′,0)]

× Im[G(R)
+ (k′,0)]Im[G(R)

+ (q ′ − k′,0)]

×D++(k,k − q ′)D++(k − q ′,k)

×D++(k′,k′ − q ′)D++(k′ − q ′,k′)

× [1 − cos(ϕk − ϕk−q ′)]. (37)

The calculation of Eq. (37) is performed in Appendix E.
Numerical results for τ

(s)
tr are shown in Fig. 7. Note that

the matrix element on the last line of Eq. (37) exactly
cancels the logarithmically diverging contribution from small-
momentum transfer processes, which are known to dominate
the quasiparticle decay rate [33]. Therefore, the spin transport
time scales as τ

(s)
tr ∼ T −2, in the limit of low temperature,

without logarithmic-in-temperature corrections.
We substitute Eqs. (31), with γσσ ′(ω) defined in Eqs. (35)

and (36), back into the definition of the spin-resolved current-
current response function of Eq. (28). From this we then
compute the charge and spin conductivities, according to the
definitions given in Eqs. (7) and (8). After some lengthy but
straightforward algebra we get (we restore � in the following
expressions)

σ
(c)
αβ (ω) = Nv

e2

�

∑
k,λ,λ′

∫
dε

2π

(
−∂nF(ε)

∂ε

)
G

(A)
λ (k,ε)

×
(0)
λ,λ′,α(k,k)G(R)

λ′ (k,ε + ω)(0)
λ′λ,β(k,k)

×
∑

σ,σ ′=±
γσσ ′(ω)

= δαβ

e2D(0)
c

−iω + η
. (38)

In Eq. (38), we defined the noninteracting charge Drude weight
D(0)

c = NvεF/(2π�
2). Note that in this equation the quasipar-

ticle lifetime disappears as a consequence of a cancellation
that occurs between the product of the two Green’s functions,
approximated as in Eq. (29), and the vertex correction (35).

FIG. 7. (Color online) (a) The spin transport time of massless
Dirac fermions τ

(s)
tr , as defined in Eq. (37), in units of picoseconds

and plotted as a function of the density n in units of 1012 cm−2 for
three values of the dimensionless coupling constant αee. In this plot,
we fixed the temperature T = 300 K. (b) Same as in (a) but shown
as a function of temperature (in units of K) for a fixed excess carrier
density n = 1012 cm−2.

Equation (38) shows that the real part of the dc charge
conductivity of interacting graphene is infinite. Moreover, the
weight of the low-frequency Drude peak coincides with the
noninteracting one. As discussed in Sec. II A, our theory
does not capture the renormalization of the Drude weight
due to electron-electron interactions [6,17,18] since we have
neglected the contribution of the real part of the one-body
self-energy. Such contribution can be taken into account by
replacing

D(0)
c → Dc ≡ Nv

2π�2

(
1 + F s

1

)
v�

FkF. (39)

Note that electron-electron interactions affect the Drude
weight in a twofold way. On one hand, the bare Fermi velocity
is replaced by its interacting counterpart v�

F, which embeds
the self-energy corrections at the single-particle level. On the
other hand, electron-electron interactions provide also “vertex
corrections” to two-body properties. In the case of the charge
conductivity, these are encoded in the Landau parameter [15]
F s

1 . Both the self-energy and vertex corrections to the charge
Drude weight have been calculated to the first order in the
strength of electron-electron interactions in Ref. [17].

Our calculations show that doped graphene at low tem-
perature behaves as an effectively Galilean-invariant system.
Indeed, if graphene is doped and the temperature is sufficiently
low, the velocity and momentum of the current-carrying
states, i.e., the quasiparticles at the Fermi surface, are linearly
related via the Fermi wave vector kF. This in turn implies
that the current carried by such states is proportional to
their total momentum. As in a parabolic-band electron gas,
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electron-electron interactions conserve the total momentum
and are thus inefficient in relaxing the current carried by
quasiparticles at the Fermi surface. We emphasize that this
conclusion is reached for doped graphene. As the doping
level decreases at a given temperature the momentum-velocity
relation can no longer be linearized and the behavior of the
conductivities must be reconsidered. This is in all likelihood
the reason why pristine (undoped) graphene exhibits a finite
charge conductivity, as opposed to the infinite conductivity
discussed here.

Following steps analogous to those taken in the derivation
of Eq. (38), we get the spin conductivity

σ
(s)
αβ (ω) = Nv�

∑
k,λ,λ′

∫
dε

2π

(
−∂nF(ε)

∂ε

)
G

(A)
λ (k,ε)

×
(0,α)
λ,λ′ (k,k)G(R)

λ′ (k,ε)(0,β)
λ′λ (k,k)

×
∑

σ,σ ′=±
σσ ′γσσ ′(kF)

= δαβ

�
2D(0)

s

−iω + 1/τ
(s)
tr

, (40)

where the noninteracting spin-Drude weight D(0)
s coincides

with D(0)
c . Again, our result misses the renormalization of

the spin-Drude weight, which is calculated in Ref. [19] for
a parabolic-band electron gas and in Appendix F for graphene
and reads as

Ds ≡ 1 + F a
1

1 + F s
1

Dc. (41)

As it happens in a 2DEG, this renormalization is expected
to be small also in graphene, for typical carrier densities
and in a broad range of values of the coupling constant
αee. The finiteness of the relaxation rate is thus by far the
largest effect of electron-electron interactions on the spin
transport in graphene. The spin conductivity becomes finite
when particle-particle interactions are turned on, even in a
perfectly clean and infinite system, and scales as ∼ T −2 in
the dc limit (ω → 0). Finally, we can calculate the spin-drag
transresistivity [22] ρ↑↓ in the limit kBT � εF, according to the
definition ρ↑↓ = −[τ (s)

tr Ds/e
2]−1. Neglecting the Fermi-liquid

renormalization of the Drude weight, for kBT/εF = 0.1 and
for a coupling constant αee = 2.2 we get |ρ↑↓| ∼ 54�. As a
comparison [22], in a 2DEG with rs = αee and same ratio
kBT/εF, |ρ↑↓| ∼ 200�.

IV. SUMMARY AND CONCLUSIONS

In this paper, we have calculated two fundamental transport
properties of doped graphene, the charge and spin con-
ductivities, in the “hydrodynamic” regime of the electron
liquid [36] [see Eqs. (38) and (40)]. In this regime, the rate
of electron-electron collisions is extremely high, and the other
scattering mechanisms, such as electron-phonon or electron-
impurity interactions, are negligible [37,38]. Electron-electron
collisions bring the system to a state of local quasiequilibrium,
which is described by a set of smoothly varying (in space and
time) functions, i.e., the density, the velocity field, and the local
temperature [39]. Such intriguing regime is rarely relevant

in solids [36] since momentum-nonconserving processes
dominate the charge transport. Very low temperatures and
clean samples are needed to expose it in experiments.

Graphene stands out, among known materials, as the
ultimate hydrodynamic material. Ultra-high-quality samples
of graphene deposited on hexagonal boron nitride, which can
be produced by standard techniques, are indeed virtually free
of long- and short-range impurities and of charge inhomo-
geneities [14]. This, combined with the linear band dispersion
and the lattice stiffness [40], yields a fairly large temperature
window in which the hydrodynamic regime can be realized.
Indeed, due to the high lattice stiffness, scattering with in-plane
acoustic phonons becomes relevant only at temperatures of the
order of the room temperature [41].

Our calculations show that, while the spin conductivity
is finite and limited by electron-electron interactions, the
homogeneous charge conductivity is infinite as for an inter-
acting 2DEG. The latter result stems from the fact that, at
low temperature, doped graphene behaves as an effectively
Galilean-invariant system, and paves the way to the description
of charge transport in graphene in terms of Navier-Stokes equa-
tions. The relaxation of inhomogeneous current distributions is
controlled by the viscosities of the electron liquid in graphene,
which will be given in a forthcoming publication.

As the doping level decreases and graphene approaches
the undoped regime, the momentum-velocity relation can no
longer be linearized. Thus, not only the Drude weight gets
renormalized, but also the charge transport time becomes
finite because of electron-electron interactions [42]. This in
turn implies that, in this regime, the evolution of the charge
current is described by a “generalized” set of Navier-Stokes
equations which contain also a relaxation term for the charge
current. To describe the transport in the undoped regime,
the author of Ref. [43] introduces the equations of motion
of three macroscopic currents, i.e., the charge, energy, and
“quasiparticle-imbalance” currents [43]. In the doped regime,
the three currents coincide [43] and the relaxation rate of the
charge current due to electron-electron interactions vanishes.
Thus, the transport can be described by taking into account
only the charge current, whose evolution is described by
the standard Navier-Stokes equation of Galilean-invariant
systems.
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APPENDIX A: CALCULATION OF THE QUASIPARTICLE
LIFETIME

Before deriving the quasiparticle lifetime, let us recall
Eqs. (11)–(13) which define the GW self-energy. They read as

�
(σ )
λ (k,iεn) = −kBT

∑
k′,λ′

∑
εn′

W (k′ − k,iεn′ − iεn)

×G
(σ )
λ′ (k′,iεn′ )Dλλ′(k,k′)Dλ′λ(k′,k) (A1)
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and

W (q,i�m) = vq

1 − vqχnn(q,i�m)
, (A2)

and finally

χnn(q,iωm) = NvkBT
∑

q ′,εn,σ ′

∑
λ′′,μ′′

G
(σ ′)
λ′′ (q ′,iεn)

×G
(σ ′)
μ′′ (q ′ + q,iεn + iωm)

×Dλ′′μ′′(q ′,q ′ + q)Dμ′′λ′′(q ′ + q,q ′). (A3)

We first consider Eq. (A1), and we analytically continue
it to real frequencies. We thus define f�(iεn′ − iεn,iεn′ ) such
that

�(σ )(k,iεn) ≡ −kBT
∑
εn′

f�(iεn′ − iεn,iεn′ )

=
∮
C

dz

2πi
nF(z)f�(z − iεn,z). (A4)

The contourC in the complex plane encircles all the poles of the
Fermi function nF(z) = [exp(βz) + 1]−1, and leaves outside
the branch cuts of f�(z − iεn,z), which are parallel to the
real axis and pass through z = 0,iεn. Deforming the contour
of integration to encircle the branch cuts of f�(z − iεn,z),
and taking the limit iεn → ε + iη we obtain the retarded self-
energy [15]

�(σ )(k,ε+) =
∫ ∞

−∞

dε′

2πi
{[nF(ε′) + nB(ε′ − ε)]

× [f�(ε′
− − ε,ε′

+) − f�(ε′
+ − ε,ε′

+)]

+ nF(ε′)[f�(ε′
− − ε,ε′

−) − f�(ε′
+ − ε,ε′

+)]}.
(A5)

Here, ε± = ε ± iη. The term in the last line of Eq. (A5) is
purely real since it is multiplied by the imaginary unit. We
thus get

1

τ
qp
ee

= −2
∫ ∞

−∞
dε

∫ ∞

−∞

dε′

π

∂nF(ε)

∂ε
[nF(ε′) + nB(ε′ − ε)]

×
∑

k′,λ,λ′
ImG(σ )(k′,ε′

+)ImW (k − k′,ε′
+ − ε)

×Dλλ′(k,k′)Dλ′λ(k′,k). (A6)

Here, we understand that |k| = kF. The imaginary part of the
screened interaction reads as

ImW (q,ω+) = |W (q,ω+)|2Imχnn(q,ω+). (A7)

The analytical continuation of χnn(q,iωm) defined in Eq. (A3)
can be performed in analogy with that of the self-energy. We
thus define

χnn(q,iωm) = kBT
∑
εn

fχ (iεn + iωm,iεn)

= −
∮
C′

dz

2πi
nF(z)fχ (z + iωm,z). (A8)

Also, the contour C ′ encircles only the poles of the Fermi
function and leaves outside the branch cuts of fχ (z + iωn,z),
which are parallel to the real axis and pass through z =
0, − iωm. Deforming the contour of integration to encircle
the branch cuts of fχ (z + iωn,z), and taking the limit iωm →
ω + iη we get

χnn(q,ω+) = −
∫ ∞

−∞

dε′′

2πi
{[nF(ε′′ + ω) − nF(ε′′)][f (ε′′

+ + ω,ε′′
−) − f (ε′′

− + ω,ε′′
−)] + nF(ε′′)[f (ε′′

+ + ω,ε′′
+) − f (ε′′

− + ω,ε′′
−)]}.

(A9)

Again, the last term gives no contribution to the imaginary part, which becomes

Imχnn(q,ω+) = −Nv

∑
q ′,σ ′,
λ′′,μ′′

∫
dε′′

π
[nF(ε′′) − nF(ε′′ + ω)]ImG

(σ ′)
λ′′ (q ′,ε′′

+)

× ImG
(σ ′)
μ′′ (q ′ + q,ε′′

+ + ω)Dλ′′μ′′(q ′,q ′ + q)Dμ′′λ′′ (q ′ + q,q ′). (A10)

We put Eq. (A10) into Eq. (A7) and then back into Eq. (A6), and we get

1

τ
qp
ee

= 2Nv

∑
k′,q ′,σ ′

∑
λ,λ′,
λ′′,μ′′

∫ ∞

−∞
dε

∫ ∞

−∞

dε′

π

∫ ∞

−∞

dε′′

π

∂nF(ε)

∂ε
[nF(ε′) + nB(ε′ − ε)][nF(ε′′ + ε) − nF(ε′′ + ε′)]

× |W (k − k′,ε′
+)|2ImG(σ )(k′,ε′

+)ImG
(σ ′)
λ′′ (q ′ − k,ε′′

+ + ε)ImG
(σ ′)
μ′′ (q ′ − k′,ε′′ + ε′

+)Dλλ′(k,k′)Dλ′λ(k′,k)

×Dλ′′μ′′(q ′ − k,q ′ − k′)Dμ′′λ′′(q ′ − k′,q ′ − k). (A11)

We now use the fact that

N = ∂nF(ε)

∂ε
[nF(ε′) + nB(ε′ − ε)][nF(ε′′ + ε) − nF(ε′′ + ε′)]

= ∂nB(ε′′)
∂ε′′ [nF(ε + ε′′) − nF(ε)][nF(ε′ + ε′′) − nF(ε′)] → ε′′2 ∂nB(ε′′)

∂ε′′
∂nF(ε)

∂ε

∂nF(ε′)
∂ε′ . (A12)
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In evaluating an integral of the form

I =
∫ ∞

−∞
dε′′ ∂nB(ε′′)

∂ε′′ ε′′2f (ε′′), (A13)

where f (ε′′) is some smooth function of its argument, we
exploit the fact that the weighting function ε′′2∂nB(ε′′)/∂ε′′ is
strongly peaked at ε′′ = 0 and its width scales with k2

BT 2/εF.
This does not mean, however, that one can simply replace
f (ε′′) by f (0). Such a crude approximation would introduce
a spurious divergence in the quasiparticle decay rate because
it spoils the subtle cancellation between two infinities which
occur (i) in the phase space of the collinear scattering [44,45]
and (ii) in the screening of e-e interactions. Both divergences
are connected to the linear-in-momentum energy dispersion of
massless Dirac fermions. The cancellation occurs as long as
the argument of the function f (ε) is finite. To take this into
account, we approximate

∫ ∞

−∞
dε′′ ∂nB(ε′′)

∂ε′′ ε′′2f (ε′′) = −2π2(kBT )2

3
f (ε̄) + O(T 4) ,

(A14)

where ε̄ can be estimated as

ε̄ = 1

2

√
− 3

2π2(kBT )2

∫ +∞

−∞
dε ε4

∂nB(ε)

∂ε
= T̄ εF . (A15)

Here, we have defined T̄ = ζkBT/εF and ζ = π/
√

5. The
factor −3/[2π2(kBT )2] normalizes the weight of the function
ε2∂nB(ε)/∂ε to one. We have thus taken ε̄ to be half of
the variance of the distribution ε2∂nB(ε)/∂ε. Equation (A14)
shows the crucial approximation that distinguishes our results
for the quasiparticle lifetime from those of Ref. [33]. There the
authors, although starting from the same GW approximation
for the self-energy and deriving an expression equivalent to
Eq. (A11), did not approximate the final result according to
Eq. (A14). The latter allows us to reduce the number of numer-
ical integrations to be performed. With this approximation, we
finally get the quasiparticle lifetime at the Fermi surface:

1

τ
qp
ee

= −4

3
Nv(kBT )2

∑
k′,q ′,σ ′

|W (k − k′,ε̄+)|2

× ImG
(σ )
+ (k′,ε̄+)ImG

(σ ′)
+ (q ′ − k,0+)

× ImG
(σ ′)
+ (q ′ − k′,ε̄+)D++(k,k′)D++(k′,k)

×D++(q ′ − k,q ′ − k′)D++(q ′ − k′,q ′ − k). (A16)

Shifting k′ → k − q ′′ and q ′ → k − k′′ we get

1

τ
qp
ee

= −4

3
Nv(kBT )2

∑
k′′,q ′′,σ ′

|W (q ′′,ε̄+)|2

× ImG
(σ )
+ (k − q ′′,ε̄+)ImG

(σ ′)
+ (k′′ − q ′′,ε̄+)

× ImG
(σ ′)
+ (k′′,0+)D++(k,k − q ′′)D++(k − q ′′,k)

×D++(k′′,k′′ − q ′′)D++(k′′ − q ′′,k′′), (A17)

which can be recasted into the following Fermi-golden-rule
form:

1

τ ee
qp

= 4π

3
(kBT )2

∑
q

|W (q,ε̄)|2 Imχnn(q,ε̄)

ε̄

× Im[G(R,σ )
+ (k − q,− ε̄)]

1 + cos(ϕk − q − ϕk)

2
.

(A18)

Note that in these equations we do not sum over the spin index
σ . Since the system is spin unpolarized, the lifetimes at the
Fermi surface of the two spin populations coincide.

APPENDIX B: ANALYTICAL CONTINUATION OF THE
RESPONSE FUNCTION

To analytically continue iωm → ω + iη in Eq. (9) we define
the function f (iε,iε + iω) such that

χ
j

(σ )
α j

(σ ′ )
β

(q,iωm) ≡ kBT
∑
εn

f (iεn,iεn + iωm)

= −
∮

dz

2πi
nF(z)f (z,z + iωm), (B1)

where we suppress for brevity all its momentum dependence.
The contour of integration in Eq. (B1) is chosen in such a
way as to encircle all the poles of nF(z) and to exclude all
the branch cuts of f (z,z + iωm), which occur for Im(z) = 0
and Im(z + iωm) = 0. We transform the contour integration in
an integration over the branch cuts and we then perform the
analytical continuation iωm → ω + iη. We get

χ
j

(σ )
α j

(σ ′ )
β

(q,ω) = −
∫

dε

2πi
{[nF(ε + ω) − nF(ε)]

× [f (ε−,ε+ + ω) − f (ε−,ε− + ω)] + nF(ε)

× [f (ε+,ε+ + ω) − f (ε−,ε− + ω)]}. (B2)

Here, ε± = ε ± iη. After the analytical continuation,
G

(σ )
λ (k,ε+) = G

(R,σ )
λ (k,ε) and G

(σ )
λ (k,ε−) = G

(A,σ )
λ (k,ε).

Here, G
(A,σ )
λ (k,ε) [G(R,σ )

λ (k,ε)] represents the advanced
(retarded) Green’s function.

Note that the square brackets in the last line of Eq. (B2)
contain a purely imaginary quantity, which (being divided
by the imaginary unit) gives a purely real contribution
to χ

j
(σ )
α j

(σ ′ )
β

(q,ω). Note also that f (ε−,ε+ + ω) contains the

product of a retarded and an advanced Green’s function,
whereas in f (ε−,ε− + ω) and f (ε+,ε+ + ω) both Green’s
functions are either advanced or retarded. The last two
functions [f (ε−,ε− + ω) and f (ε+,ε+ + ω)] have all the poles
on the same side of the complex plane. Note, however, that as
usual [35], we can exploit this property only performing the
integral over the band energies. We thus get that f (ε−,ε+ + ω)
gives the dominant contribution when εFτ

qp
ee � 1. Since we are

interested in the Fermi-liquid regime, in what follows we will
retain only this term. Equation (B2) thus becomes

χ
j

(σ )
α j

(σ ′ )
β

(q,ω) = −Nv

∑
k,λ,λ′

∫
dε

2πi
[nF(ε + ω) − nF(ε)]G(A,σ )

λ

× (k−,ε)(0,σ )
λλ′,α(k−,k+)G(R,σ )

λ′ (k+,ε + ω)

×
(σσ ′)
λ′λ,β(k+,ε+ + ω,k−,ε−), (B3)

which coincides with Eq. (23).
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APPENDIX C: ANALYTICAL CONTINUATION OF THE BETHE-SALPETER EQUATION

In this section, we guide the reader through the long and complicated calculation of the vertex correction to the charge and
spin conductivities. We analytically continue the three contributions 

(i,σσ ′)
λ′λ,β (k+,iεn + iωm,k−,iεn) (i = 1, . . . ,3), defined in

Eqs. (15)–(19) to real frequencies. In the Fermi-liquid regime we consider only the dominant contribution to the dressed vertex,
to be used in combination with the product of the retarded and advanced Green’s functions that appears in Eq. (B3). From this
we see that the analytic continuation of 

(i,σσ ′)
λ′λ,β (k+,iεn + iωm,k−,iεn) is done with the prescriptions iωm → ω+, iεn → ε−,

iεn + iωm → ε+ + ω.

1. Analytical continuation of Eq. (15)

We define the function g(iεn′ ,iεn′ + iωm,iεn′ − iεn) such that

(1,2)(k+,iεn + iωm,k−,iεn) ≡ −kBT
∑
εn′

g(iεn′ ,iεn′ + iωm,iεn′ − iεn) =
∮

dz

2πi
nF(z)g(z,z + iωm,z − iεn). (C1)

Here and in what follows, we suppress for brevity all the spin, band, and spatial indices of the dressed vertex. As usual, we
transform the sum over the poles of nF(z) in an integration over the branch cuts of g(z,z + iωm,z − iεn). We then perform the
analytic continuations with the prescription iωm → ω+, iεn → ε−, iεn + iωm → ε+ + ω. After some lengthy but straightforward
algebra we get

(1,2)(k+,ε+ + ω,k−,ε−) =
∫

dε′

2πi
{nF(ε′)[g(ε′

+,ε′
+ + ω,ε′

+ − ε) − g(ε′
−,ε′

+ + ω,ε′
+ − ε)] + nF(ε′)[g(ε′

− − ω,ε′
+,ε′

− − ε − ω)

− g(ε′
− − ω,ε′

−,ε′
− − ε − ω)] − nB(ε′)[g(ε′

− + ε,ε′
+ + ε + ω,ε′

+) − g(ε′
− + ε,ε′

+ + ε + ω,ε′
−)]}.

(C2)

We now shift ε′ → ε′ + ω in the third and fourth lines of Eq. (C2). We note that we can safely take the limit ω → 0 in nF(ε′ + ω).
Note also that g(ε′

+,ε′
+ + ω,ε′

+ − ε) and g(ε′
− − ω,ε′

−,ε′
− − ε − ω) have the poles on the same side of the complex plane, and

therefore can be neglected [35] in the limit of εFτ
qp
ee � 1. Shifting ε′ → ε′ + ε in the last two lines of Eq. (C2) we readily obtain

(1,2)(k+,ε+ + ω,k−,ε−) =
∑
k′,σ ′′

∑
μ,μ′

∫
dε′

2πi

[
W

(1,2,σσ ′′)
λλ′μμ′ (k′,k,ε′

− − ε) − W
(1,2,σσ ′′)
λλ′μμ′ (k′,k,ε′

+ − ε)
]

× [nF(ε′) + nB(ε′ − ε)]G(R,σ ′′)
μ′ (k′

+,ε′ + ω)G(A,σ ′′)
μ (k′

−,ε′)(σ ′′σ ′)
μ′μ,β (k′

+,ε′
+ + ω,k′

−,ε′
−). (C3)

It remains to determine W
(1,2,σσ ′′)
λλ′μμ′ (k′,k,ε′

± − ε). Equation (C3) implies that we have to analytically continue the functions W (1,2)

with the prescription iεn′ → ε′
− and iεn′ + iωm → ε′

+ + ω.

a. Analytical continuation of Eq. (17)

We now perform the analytical continuation of Eq. (17) with the prescription iωm → ω+, iεn → ε−, iεn + iωm → ε+ +
ω, iεn′ → ε′

−, and iεn′ + iωm → ε′
+ + ω. As shown in Eq. (C3), we need to calculate the function W

(1,σσ ′′)
λλ′μμ′ (k,k′,ε′

− − ε) −
W

(1,σσ ′′)
λλ′μμ′ (k,k′,ε′

+ − ε), which reads as

W
(1,σσ ′′)
λλ′μμ′ (k,k′,ε′

− − ε) − W
(1,σσ ′′)
λλ′μμ′ (k,k′,ε′

+ − ε)

= δσσ ′′[W (k − k′,ε′
− − ε) − W (k − k′,ε′

+ − ε)]Dλ′μ′(k+,k′
+)Dμλ(k′

−,k−)

= −2iδσσ ′′ Im[W (k − k′,ε′
+ − ε)]Dλ′μ′(k+,k′

+)Dμλ(k′
−,k−)

= −2iδσσ ′′ |W (k − k′,ε′ − ε)|2Im
[
χ (0)

nn (k − k′,ε′
+ − ε)

]
Dλ′μ′(k+,k′

+)Dμλ(k′
−,k−). (C4)

The imaginary part of the density-density response function was given in Eq. (A10). After some straightforward manipulation,
we get

Im[χnn(k − k′,ε′
+ − ε)] = 2Nv

∑
q ′,σ ′′′

∑
λ′′,μ′′

∫
dω′

2π
[nF(ω′ + ε′) − nF(ω′ + ε)]

× Im
[
G

(R,σ ′′′)
λ′′ (q ′ − k,ω′ + ε)

]
Im

[
G

(R,σ ′′′)
μ′′ (q ′ − k′,ω′ + ε′)

]
×Dλ′′μ′′(q ′ − k,q ′ − k′)Dμ′′λ′′(q ′ − k′,q ′ − k). (C5)
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Putting Eq. (C5) into Eq. (C4) we finally find

W
(1,σσ ′′)
λλ′μμ′ (k,k′,ε′

− − ε) − W
(1,σσ ′′)
λλ′μμ′ (k,k′,ε′

+ − ε)

= 4Nvδσσ ′′ |W (k − k′,ε′ − ε)|2
∑
q ′,σ ′′′

∑
λ′′,μ′′

∫
dω′

2πi
[nF(ω′ + ε′) − nF(ω′ + ε)]Im

[
G

(R,σ ′′′)
λ′′ (q ′ − k,ω′ + ε)

]

× Im
[
G

(R,σ ′′′)
μ′′ (q ′ − k′,ω′ + ε′)

]
Dλ′μ′(k+,k′

+)Dμλ(k′
−,k−)Dλ′′μ′′(q ′ − k,q ′ − k′)Dμ′′λ′′(q ′ − k′,q ′ − k). (C6)

b. Analytical continuation of Eq. (18)

We now turn to the analytical continuation of Eq. (18) with the prescription iωm → ω+, iεn → ε−, iεn + iωm → ε+ + ω,
iεn′ → ε′

−, and iεn′ + iωm → ε′
+ + ω. This time we define

W
(2,σσ ′′)
λλ′μμ′ (k′,k,iεn′ − iεn) ≡

∮
dz

2πi
nB(z)w2(z,z − iωm,iεn + iωm − z,iεn′ + iωm − z). (C7)

Integrating over the branch cuts of w2(z,z − iωm,iεn + iωm − z,iεn′ + iωm − z), and performing the analytical continuations as
stated before, we get

W
(2,σσ ′′)
λλ′μμ′ (k′,k,ε′

± − ε) =
∫

dω′

2πi
{nB(ω′)[w2(ω′

+,ω′
− − ω,ε + ω − ω′

−,ε′ + ω − ω′
−)

−w2(ω′
−,ω′

− − ω,ε + ω − ω′
−,ε′ + ω − ω′

−)] + nB(ω′)[w2(ω′
+ + ω,ω′

+,ε − ω′
+,ε′ − ω′

+)

−w2(ω′
+ + ω,ω′

−,ε − ω′
+,ε′ − ω′

+)] − nF(ω′)[w2(ω′
+ + ε + ω,ω′

− + ε, − ω′
+,ε′ − ε − ω′

∓)

−w2(ω′
+ + ε + ω,ω′

− + ε,− ω′
−,ε′ − ε − ω′

∓)] − nF(ω′)[w2(ω′
+ + ε′ + ω,ω′

− + ε′,ε − ε′ − ω′
±,− ω′

+)

−w2(ω′
+ + ε′ + ω,ω′

− + ε′,ε − ε′ − ω′
±, − ω′

−)]}. (C8)

Note that the terms on the right-hand side of Eq. (C8) proportional to nB(ω′) are identical in both W
(2,σσ ′′)
λλ′μμ′ (k′,k,ε′

± − ε) and thus
vanish when the difference is taken. We thus neglect them in what follows. Equation (C8) reduces to

W
(2,σσ ′′)
λλ′μμ′ (k′,k,ε′

± − ε) = −
∫

dω′

2πi
{nF(ω′ − ε − ω)[w2(ω′

+,ω′
− − ω,ε + ω − ω′

+,ε′ + ω − ω′
∓)

−w2(ω′
+,ω′

− − ω,ε + ω − ω′
−,ε′ + ω − ω′

∓)] + nF(ω′ − ε′ − ω)

× [w2(ω′
+ + ,ω′

− − ω,ε + ω − ω′
±,ε′ + ω − ω′

+) − w2(ω′
+,ω′

− − ω,ε + ω − ω′
±,ε′ + ω − ω′

−)]}.
(C9)

Finally,

W
(2,σσ ′′)
λλ′μμ′ (ε′

− − ε) − W
(2,σσ ′′)
λλ′μμ′ (ε′

+ − ε)

=
∫

dω′

2πi
[nF(ω′ − ε − ω) − nF(ω′ − ε′ − ω)][w2(ω′

+,ω′
− − ω,ε + ω − ω′

+,ε′ + ω − ω′
−)

−w2(ω′
+,ω′

− − ω,ε + ω − ω′
−,ε′ + ω − ω′

−) − w2(ω′
+,ω′

− − ω,ε + ω − ω′
+,ε′ + ω − ω′

+)

+w2(ω′
+,ω′

− − ω,ε + ω − ω′
−,ε′ + ω − ω′

+)]

= 4Nv

∑
q ′,λ′′,μ′′

∫
dω′

2πi
W (q ′,ω′

+)W (q ′,ω′
− − ω)[nF(ω′ − ε − ω) − nF(ω′ − ε′ − ω)]

× Im
[
G

(R,σ )
λ′′ (k+ − q ′,ε + ω − ω′)

]
Im[G(R,σ ′′)

μ′′ (k′
+ − q ′,ε′ + ω − ω′)]

×Dλ′λ′′ (k+,k+ − q ′)Dλ′′λ(k+ − q ′,k−)Dμμ′′(k′
−,k′

+ − q ′)Dμ′′μ′(k′
+ − q ′,k′

+). (C10)

We can now take the limit vFq � ω � εF, and we get

W
(2,σσ ′′)
λλ′μμ′ (ε′

− − ε) − W
(2,σσ ′′)
λλ′μμ′ (ε′

+ − ε) = 4Nv

∑
q ′,λ′′,μ′′

∫
dω′

2πi
|W (q ′,ω′)|2[nF(ω′ − ε) − nF(ω′ − ε′)]

× Im
[
G

(R,σ )
λ′′ (k − q ′,ε − ω′)

]
Im

[
G

(R,σ ′′)
μ′′ (k′ − q ′,ε′ − ω′)

]
×Dλ′λ′′(k,k − q ′)Dλ′′λ(k − q ′,k)Dμμ′′(k′,k′ − q ′)Dμ′′μ′(k′ − q ′,k′). (C11)
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2. Analytical continuation of Eq. (16)

We define h(iεn′ ,iεn′ + iωm,iεn′ + iεn + iωm) such that

(3)(k+,iεn + iωm,k−,iεn) ≡ −kBT
∑
εn′

h(iεn′ ,iεn′ + iωm,iεn′ + iεn + iωm)

=
∮

dz

2πi
nF(z)h(z,z + iωm,z + iεn + iωm). (C12)

Here and in what follows, we suppress for brevity all the spin, band, and spatial indices. To perform the analytical continuation
we first transform the sum over the poles of nF(z) in an integration over the branch cuts of h(z,z + iωm,z + iεn + iωm). We then
analytically continue the result, according to the prescription iωm → ω+, iεn → ε−, iεn + iωm → ε+ + ω. After some lengthy
algebra we get

(3)(k+,ε+ + ω,k−,ε−) =
∫

dε′

2πi
{nF(ε′)[h(ε′

+,ε′
+ + ω,ε′

+ + ε + ω) − h(ε′
−,ε′

+ + ω,ε′
+ + ε + ω)]

+ nF(ε′)[h(ε′
− − ω,ε′

+,ε′
− + ε) − h(ε′

− − ω,ε′
−,ε′

− + ε)]

− nB(ε′)[h(ε′
− − ε − ω,ε′

+ − ε,ε′
+) − h(ε′

− − ε − ω,ε′
+ − ε,ε′

−)]}. (C13)

We now shift ε′ → ε′ + ω in the third and fourth lines of Eq. (C13), and we take the limit ω → 0 in nF(ε′ + ω). We note
that h(ε′

+,ε′
+ + ω,ε′

+ + ε + ω) and h(ε′
− − ω,ε′

−,ε′
− + ε) have the poles on the same side of the complex plane, and can be

neglected in the limit εFτ
qp
ee � 1. We then shift ε′ → ε′ + ε + ω in the last two lines of Eq. (C13), and we take the limit ω → 0

in nB(ε′ + ε + ω). After these manipulations, Eq. (C13) becomes

(3)(k+,ε+ + ω,k−,ε−) =
∑
k′,σ ′′

∑
μ,μ′

∫
dε′

2πi

[
W

(3,σσ ′′)
λλ′μμ′ (k,k′,ε′

− + ε) − W
(3,σσ ′′)
λλ′μμ′ (k,k′,ε′

+ + ε)
]

× [nF(ε′) + nB(ε′ + ε)]G(R,σ ′′)
μ′ (k′

+,ε′ + ω)G(A,σ ′′)
μ (k′

−,ε′)(σ ′′σ ′)
μ′μ,β (k′

+,ε+ + ω,k′
−,ε′

−). (C14)

It only remains to determine W
(3,σσ ′′)
λλ′μμ′ (k′ − k,ε′

± − ε), defined in Eq. (19). Equation (C14) implies that we have to analytically
continue the functions W (3) for iεn′ → ε′

− and iεn′ + iωm → ε′
+ + ω.

a. Analytical continuation of Eq. (19)

We now turn to the analytical continuation of Eq. (19) with the prescription iωm → ω+, iεn → ε−, iεn + iωm → ε+ + ω,
iεn′ → ε′

−, and iεn′ + iωm → ε′
+ + ω. We define

W
(3,σσ ′′)
λλ′μμ′ (k′,k,iεn′ + iεn + iωm) ≡

∮
dz

2πi
nB(z)w3(z,z − iωm,iεn + z,iεn′ + iωm − z). (C15)

Integrating over the branch cuts of w3(z,z − iωm,iεn + z,iεn′ + iωm − z), and performing the analytical continuations according
to the prescriptions stated before, we get

W
(3,σσ ′′)
λλ′μμ′ (k′,k,ε′

± + ε + ω) =
∫

dω′

2πi
{nB(ω′)[w3(ω′

+,ω′
− − ω,ω′

− + ε,ε′ + ω − ω′
−) − w3(ω′

−,ω′
− − ω,ω′

− + ε,ε′ + ω − ω′
−)]

+ nB(ω′)[w3(ω′
+ + ω,ω′

+,ω′
+ + ε + ω,ε′ − ω′

+) − w3(ω′
+ + ω,ω′

−,ω′
+ + ε + ω,ε′ − ω′

+)]

− nF(ω′)[w3(ω′
+ − ε,ω′

− − ε − ω,ω′
+,ε′ + ε + ω − ω′

∓)

−w3(ω′
+ − ε,ω′

− − ε − ω,ω′
−,ε′ + ε + ω − ω′

∓)] − nF(ω′)

× [w3(ω′
+ + ε′ + ω,ω′

− + ε′,ω′
± + ε + ε′ + ω, − ω′

+)

−w3(ω′
+ + ε′ + ω,ω′

− + ε′,ω′
± + ε + ε′ + ω, − ω′

−)]}. (C16)

Note that the terms on the right-hand side of Eq. (C16) proportional to nB(ω′) are identical in both W
(3,σσ ′′)
λλ′μμ′ (k′,k,ε′

± − ε) and
thus vanish when the difference is taken. We thus neglect these terms in what follows. Equation (C16) reduces to

W
(3,σσ ′′)
λλ′μμ′ (k′,k,ε′

± + ε + ω) = −
∫

dω′

2πi
{nF(ω′ + ε)[w3(ω′

+,ω′
− − ω,ω′

+ + ε,ε′ + ω − ω′
∓)

−w3(ω′
+,ω′

− − ω,ω′
− + ε,ε′ + ω − ω′

∓)] + nF(ω′ − ε′ − ω)[w3(ω′
+,ω′

− − ω,ω′
± + ε,ε′ + ω − ω′

+)

−w3(ω′
+,ω′

− − ω,ω′
± + ε,ε′ + ω − ω′

−)]}. (C17)
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Finally, substituting Eq. (19) into (C17) we get

W
(3,σσ ′′)
λλ′μμ′ (ε′

− + ε + ω) − W
(3,σσ ′′)
λλ′μμ′ (ε′

+ + ε + ω)

=
∫

dω′

2πi
[nF(ω′ + ε) − nF(ω′ − ε′ − ω)][w3(ω′

+,ω′
− − ω,ω′

+ + ε,ε′ + ω − ω′
−)

−w3(ω′
+,ω′

−,ω′
− + ε,ε′ + ω − ω′

−) − w3(ω′
+,ω′

− − ω,ω′
+ + ε,ε′ + ω − ω′

+) + w3(ω′
+,ω′

− − ω,ω′
− + ε,ε′ + ω − ω′

+)]

= −4Nv

∑
q ′

∑
λ′′,μ′′

∫
dω′

2πi
W (q ′,ω′

+)W (q ′,ω′
− − ω)[nF(ω′ + ε) − nF(ω′ − ε′ − ω)]Im

[
G

(R,σ )
λ′′ (k− + q ′,ε + ω′)

]

× Im
[
G

(R,σ ′′)
μ′′ (k′

+ − q ′,ε′ + ω − ω′)
]
Dλλ′′(k−,k− + q ′)Dλ′′λ′(k− + q ′,k+)Dμμ′′(k′

−,k′
+ − q ′)Dμ′′μ′(k′

+ − q ′,k′
+). (C18)

Taking the limit vFq � ω � εF, Eq. (C18) becomes

W
(3,σσ ′′)
λλ′μμ′ (ε′

− + ε) − W
(3,σσ ′′)
λλ′μμ′ (ε′

+ + ε)

= −4Nv

∑
q ′,σ ′′

∑
λ′′,μ′′

∫
dω′

2πi

∣∣W (q ′,ω′)
∣∣2

[nF(ω′ + ε) − nF(ω′ − ε′)]Im
[
G

(R,σ )
λ′′ (k + q ′,ε + ω′)

]

× Im
[
G

(R,σ ′′)
μ′′ (k′ − q ′,ε′ − ω′)

]
Dλλ′′(k,k + q ′)Dλ′′λ′(k + q ′,k)Dμμ′′(k′,k′ − q ′)Dμ′′μ′(k′ − q ′,k′). (C19)

APPENDIX D: DERIVATION OF THE BETHE-SALPETER EQUATION IN THE CHARGE AND SPIN CHANNEL

Using Eq. (29) in Eqs. (25)–(27) we get


(1,σσ ′)
λλ,β (k,ε+ + ω,k,ε−) = − 8iNv

ω + i/τ
qp
ee

∑
k′,q ′,σ ′′

∑
μ,μ′′,λ′′

∫
dε′

2πi

∫
dω′

2πi
[nF(ε′) + nB(ε′ − ε)]

× [nF(ω′ + ε′) − nF(ω′ + ε)]|W (k − k′,ε′ − ε)|2 Im
[
G

(R,σ ′′)
λ′′ (q ′ − k,ω′ + ε)

]
Im

[
G(R,σ )

μ (k′,ε′)
]

× Im
[
G

(R,σ ′′)
μ′′ (q ′ − k′,ω′ + ε′)

]
Dλμ(k,k′)Dμλ(k′,k)Dλ′′μ′′(q ′ − k,q ′ − k′)

×Dμ′′λ′′ (q ′ − k′,q ′ − k)(σσ ′)
μμ,β(k′,ε′

+ + ω,k′,ε′
−) (D1)

and


(2,σσ ′)
λλ,β (k,ε+ + ω,k,ε−) = − 8iNv

ω + i/τ
qp
ee

∑
k′,q ′,σ ′′

∑
μ,λ′′,μ′′

∫
dε′

2πi

∫
dω′

2πi
[nF(ε′) + nB(ε′ − ε)]

× [nF(ω′ − ε) − nF(ω′ − ε′)]|W (q ′,ω′)|2 Im
[
G

(R,σ ′′)
μ′′ (k′ − q ′,ε′ − ω′)

]
Im

[
G(R,σ ′′)

μ (k′,ε′)
]

× Im
[
G

(R,σ )
λ′′ (k − q ′,ε − ω′)

]
Dλλ′′(k,k − q ′)Dλ′′λ(k − q ′,k)Dμμ′′(k′,k′ − q ′)Dμ′′μ(k′ − q ′,k′)

×
(σ ′′σ ′)
μμ,β (k′,ε′

+ + ω,k′,ε′
−), (D2)

and finally


(3,σσ ′)
λλ,β (k,ε+ + ω,k,ε−) = 8iNv

ω + i/τ
qp
ee

∑
k′,q ′,σ ′′

∑
μ,λ′′,μ′′

∫
dε′

2πi

∫
dω′

2πi
[nF(ε′) + nB(ε′ + ε)]

× [nF(ω′ + ε) − nF(ω′ − ε′)]|W (q ′,ω′)|2 Im[G(R,σ )
λ′′ (k + q ′,ω′ + ε)]Im

[
G(R,σ ′′)

μ (k′,ε′)
]

× Im
[
G

(R,σ ′′)
μ′′ (k′ − q ′,ε′ − ω′)

]
Dλλ′′(k,k + q ′)Dλ′′λ(k + q ′,k)Dμμ′′(k′,k′ − q ′)Dμ′′μ(k′ − q ′,k′)

×
(σ ′′σ ′)
μμ,β (k′,ε′

+ + ω,k′,ε′
−). (D3)

In these equations, the limit ω → 0 is understood. Equations (D1)–(D3) should be plugged into Eq. (24) and then back into
Eq. (B3) taken in the limit ω → 0. The latter is given in Eq. (28), and can be further approximated as

χ
j

(σ )
α j

(σ ′ )
β

(q = 0,ω) → −ω
2iNv

ω + iτ
qp
ee

∑
k

∫
dε

2πi

∂nF(ε)

∂ε
Im[G(R,σ )

+ (k,0)](0,σ )
++,α(k,k)(σσ ′)

++,β (k,ε+ + ω,k,ε−). (D4)

To obtain this expression we used Eq. (29), together with the fact that the derivative of the Fermi function is peaked in ε = 0,
and that Im[G(R,σ )

λ (k,0)] constrains |k| = kF and λ = +. We now approximate Eqs. (D1)–(D3) by noting that the combination
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of Fermi and Bose functions constrains ε ∼ ε′ ∼ ω′ ∼ 0. We thus get


(1,σσ ′)
++,β (k,ε+ + ω,k,ε−) = − 8iNv

ω + i/τ
qp
ee

∑
k′,q ′,σ ′′

∫
dε′

2πi

∫
dω′

2πi
[nF(ε′) + nB(ε′ − ε)]

× [nF(ω′ + ε′) − nF(ω′ + ε)]|W (q ′,ε̄)|2 Im[G(R,σ )
+ (k − q ′,0)] Im[G(R,σ ′′)

+ (k′,ε̄)]

× Im[G(R,σ ′′)
+ (q ′ − k′,ε̄)]D++(k,k − q ′)D++(k − q ′,k)D++(k′,k′ − q ′)D++(k′ − q ′,k′)

×
(σσ ′)
++,β (k − q ′,ω+,k − q ′,0−), (D5)

and


(2,σσ ′)
++,β (k,ε+ + ω,k,ε−) = − 8iNv

ω + i/τ
qp
ee

∑
k′,q ′,σ ′′

∫
dε′

2πi

∫
dω′

2πi
[nF(ε′) + nB(ε′ − ε)]

× [nF(ω′ + ε′) − nF(ω′ + ε)]|W (q ′,ε̄)|2 Im[G(R,σ ′′)
+ (k′ − q ′,ε̄)] Im[G(R,σ ′′)

+ (k′,ε̄)]

× Im[G(R,σ )
+ (k − q ′,0)]D++(k,k − q ′)D++(k − q ′,k)D++(k′,k′ − q ′)D++(k′ − q ′,k′)

×
(σ ′′σ ′)
++,β (k′,ω+,k′,0−), (D6)

and finally


(3,σσ ′)
++,β (k,ε+ + ω,k,ε−) = 8iNv

ω + i/τ
qp
ee

∑
k′,q ′,σ ′′

∫
dε′

2πi

∫
dω′

2πi
[nF(ε′) + nB(ε′ − ε)]

× [nF(ω′ + ε′) − nF(ω′ + ε)]|W (q ′,ε̄)|2 Im[G(R,σ )
+ (k − q ′,0)] Im[G(R,σ ′′)

+ (k′ − q ′,ε̄)]

×�m[G(R,σ ′′)
+ (k′,ε̄)]D++(k,k − q ′)D++(k − q ′,k)D++(k′ − q ′,k′)D++(k′,k′ − q ′)

×
(σ ′′σ ′)
++,β (k′ − q ′,ω+,k′ − q ′,0−). (D7)

We shifted k′ → k − q ′ and q ′ → k − k′ in Eq. (D5), ω′ → −ω′ in Eq. (D6), and ε′ → −ε′, k′ → k′ − q ′, and q ′ → −q ′ in
Eq. (D7). Moreover, we used that the imaginary parts of the Green’s functions constrain their momentum argument to the Fermi
surface and the band indices to be all equal to “+.” Putting everything together,

3∑
i=1


(i,σσ ′)
++,β (k,ω+,k,0−) = − 8iNv

ω + i/τ
qp
ee

∑
k′,q ′,σ ′′

|W (q ′,ε̄)|2
∫

dε′

2πi

∫
dω′

2πi
[nF(ε′) + nB(ε′ − ε)]

× [nF(ω′ + ε′) − nF(ω′ + ε)] Im[G(R,σ ′′)
+ (k′,ε̄)] Im[G(R,σ )

+ (k − q ′,0)]Im[G(R,σ ′′)
+ (q ′ − k′,ε̄)]

×D++(k,k − q ′)D++(k − q ′,k)D++(k′,k′ − q ′)D++(k′ − q ′,k′)

× [(σσ ′)
++,β (k − q ′,ω+,k − q ′,0−) + 

(σ ′′σ ′)
++,β (k′,ω+,k′,0−) − 

(σ ′′σ ′)
++,β (k′ − q ′,ω+,k′ − q ′,0−)].

(D8)

Plugging Eq. (D8) back into Eq. (24), and performing the integration over ε with the weighting function −∂nF(ε)/(∂ε), we
immediately get the self-consistent Bethe-Salpeter equation (30).

APPENDIX E: SPIN TRANSPORT TIME

The spin transport time defined in Eq. (37), which we recall
here for completeness, reads as

1

τ
(s)
tr

= −8

3
Nv(kBT )2

∑
k′,q ′

|W (q ′,0)|2 Im[G(R)
+ (k − q ′,0)]

× Im[G(R)
+ (k′,0)]Im[G(R)

+ (q ′ − k′,0)]

×D++(k,k − q ′)D++(k − q ′,k)D++(k′,k′ − q ′)

×D++(k′ − q ′,k′)[1 − cos(ϕk − ϕk−q ′)]. (E1)

In the low-temperature limit, the three Green’s functions on
the right-hand side of Eq. (E1) can be approximated by δ

functions, which constrain

cos(ϕk − ϕq ′ ) = q ′

2kF
,

(E2)

cos(ϕk′ − ϕq ′ ) = q ′

2kF

and thus 1 − cos(ϕk − ϕk−q ′) = q ′2/(2k2
F). The Coulomb in-

teraction forces us to disregard the solution of the three δ

functions with q ′ = 0.
Note that Eq. (E1) describes the simultaneous scattering

of a particle from the state k to the state k − q ′, both at the
Fermi surface, and the creation of a particle-hole pair with
total momentum q ′. According to Fig. 3, the angles between k
and k − q ′, and k′ and k′ − q ′, are identical. This implies that
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D++(k,k − q ′) = D++(k′,k′ − q ′). Moreover,

D++(k,k − q ′)D++(k − q ′,k) = 1 −
(

q ′

2kF

)2

. (E3)

Putting everything together we get

1

τ
(s)
tr

= −16

3
Nv(kBT )2

∑
k′,q ′

|W (q ′,0)|2 Im[G(R)
+ (k − q ′,0)]

× Im[G(R)
+ (k′,0)]Im[G(R)

+ (q ′ − k′,0)]

×
[

1 −
(

q ′

2kF

)2
]2 (

q ′

2kF

)2

. (E4)

Shifting ϕk′ → ϕk′ + ϕk and ϕq ′ → ϕq ′ + ϕk, we immedi-
ately see that the three δ functions are solved by ϕq ′ =
± arccos[q ′/(2kF)] and ϕk′ = 0,2ϕq ′ . All these solutions give
identical contributions. Summing all of them we finally get

1

τ
(s)
tr

= Nv(kBT )2

3πv2
FεF

∫ 2kF

0
dq ′q ′|W (q ′,0)|2

[
1 −

(
q ′

2kF

)2
]

= 2πNv

3

α2
ee(kBT )2

�εF

[
3(2Nvαee − 1)

+ 4
(
1 − 3N2

v α2
ee

)
arccoth(1 + 2Nvαee)

]
. (E5)

Here, we used that for 0 < q ′ < 2kF W (q ′,0) reduces to
the Thomas-Fermi interaction, with qTF = 2NvαeekF as the
screening wave vector. In the limit αee → 0, we get

1

τ
(s)
tr

→ −4πNv

3

(kBT )2

�εF
α2

ee ln(Nvαee). (E6)

The logarithmic dependence on the coupling constant αee is
due to the Thomas-Fermi screening.

APPENDIX F: SPIN VELOCITY

We now show a brief derivation of the renormalization of
the spin Drude weight of Eq. (41), based on Landau theory
of normal Fermi liquids. The derivation closely follows that
of Ref. [19]. The question we answer in this appendix is as
follows: What is the spin current carried by a quasiparticle? We
thus consider a state in which a quasiparticle with momentum
p and spin up is added to the system. The adiabatically
turned-on electron-electron interactions dress the quasiparticle
and renormalize the spin current it carries. We consider the
expectation value of the spin current operator ĵ s = ĵ↑ − ĵ↓
on this state. In analogy with the charge current, we know that
the spin current is proportional to the unit vector p̂. However,
the constant of proportionality, namely the spin velocity vs, is
to be determined. We define vs as

〈 p, ↑ | ĵ s| p, ↑〉 = vs p̂, (F1)

where | p, ↑〉 denotes the full many-body state with the extra
quasiparticle with momentum p and spin up.

We now connect the phenomenological theory of Landau to
the microscopic model. Since we are interested in properties
at the Fermi surface, we will consider in what follows the

following one-band model of graphene:

Ĥ =
∑

i

vFpi + 1

2

∑
j �=i

V (r i − rj ), (F2)

where i and j label particles in conduction band. The inter-
action with states in the valence band provides the well-
known logarithmic divergence [16] of the renormalized Fermi
velocity v�

F. We now imagine to perform the following unitary
transformation:

Û = exp

[
i
∑

i

τ̂zq · r̂ i

]
, (F3)

on the Hamiltonian of Eq. (F2). In Eq. (F3), we introduced
the Pauli matrix τ̂z which acts on the spin degree of freedom.
Clearly, the transformation Û commutes with the interaction
Hamiltonian since it contains only the position operator r̂ i . To
first order in q it induces the change in energy �E = ĵ s · q.
For the state | p, ↑〉, with the extra quasiparticle of momentum
p and spin up we thus get

�E = vs p̂ · q. (F4)

On the other hand, we may consider the variation of
energy due to the shift generated by the unitary transformation
of Eq. (F3) on the phenomenological energy functional of
Landau’s theory of normal Fermi liquids [15]. Shifting the
momentum of spin-up (-down) particles by q (−q) we get

�E = v�
F p̂ · q −

∑
p′,τ

f p↑, p′τ τq · ∇ p′n0,τ ( p′)

= v�
F

(
1 + F a

1

)
p̂ · q, (F5)

where f pσ, p′τ is the Landau interaction function [15] and
n0,τ ( p′) is the equilibrium distribution function of quasiparti-
cles. Note that if p and p′ are both at the Fermi surface, f pσ, p′τ
is a function only of the difference between the angles of p
and p′, i.e., f pσ, p′τ = fστ (ϕ p − ϕ p′). The Landau parameters
F�

n , with � = a,s, are defined as [15]

F�
n = kF

2πv�
F

∫
dθ

2π
[f↑↑(θ ) ± f↑↓(θ )] cos2(θ ), (F6)

where the plus (minus) sign in square brackets on the right-
hand side of Eq. (F6) holds for � = s (� = a).

A direct comparison of Eq. (F4) with Eq. (F5) immediately
gives

vs = v�
F

(
1 + F a

1

)
. (F7)

We obtain the renormalization of the spin Drude weight by
replacing vs in lieu of the bare Fermi velocity vF in its
noninteracting expression.
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