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Magnetic thermal switch for heat management at the nanoscale
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In a multiterminal setup, when time-reversal symmetry is broken by a magnetic field, the heat flows can be
managed by designing a device with programmable Boolean behavior. We show that such a device can be used
to implement operations, such as on/off switching, reversal, selected splitting, and swap of the heat currents.
For each feature, the switching from one working condition to the other is obtained by inverting the magnetic
field. This offers interesting opportunities for conceiving a programmable setup, whose operation is controlled
by an external parameter (the magnetic field) without need to alter voltage and thermal biases applied to the
system. Our results, generic within the framework of linear response, are illustrated by means of a three-terminal
electronic interferometer model.
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I. INTRODUCTION

Heat management at the nanoscale is nowadays one
of the leading research topics in many different scientific
areas, including refrigeration and thermometry [1], coherent
caloritronics [2], thermoelectric energy conversion [3–9], and
information processing by utilizing phonons [10]. The over-
heating of microprocessor components is currently the most
limiting factor in the development of information technology
[11], which motivates the concern in finding alternative ways
to control and evacuate heat in such devices. Theoretical works
led to the possibility of controlling the heat currents and devise
heat diodes [12] and transistors [13]. First experimental imple-
mentations exploiting phononic [14–16], electronic [17–19],
or photonic [20] thermal currents were also reported.

It has been shown that the presence of a magnetic field
breaking time reversibility could in principle enhance the
efficiency of thermoelectric devices [21–25]. Interestingly
a magnetic field allows for the simultaneous presence of
reversible and irreversible heat currents [26,27]. Indeed, in
a generic multiterminal setup, we can split the heat current
J

Q
k , flowing from the kth terminal to the system, into the sum

of a reversible and an irreversible part, J
Q
k = J

Q(r)
k + J

Q(i)
k .

Although the reversible component changes sign by reversing
the magnetic field B, the irreversible component is invariant
under the inversion B → −B. Within the linear-response
regime, it can be shown [26,27] that only the irreversible part
of the current contributes to the entropy production. On the
other hand the reversible part vanishes for B = 0, whereas for
B �= 0 it becomes arbitrarily large, giving rise, among other
things, to the possibility of dissipationless transport, i.e., to a
thermal machine operating at the Carnot efficiency with finite
power output [23].

In this paper we take advantage of the presence of reversible
components of the heat currents to propose a magnetic thermal
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switch, a Boolean setup which allows the control of heat flow
by making use of an external magnetic field as a selector
of the working configuration. For a generic multiterminal
device operating in the linear-response regime, we show
that by properly tuning the voltage biases we can access
a broad spectrum of possible operating conditions, each of
these being defined in terms of the behavior of the heat
currents flowing through the system. Namely, it is possible to
design a programmable device for the management of heat
flows, allowing several Boolean features, such as selected
splitting, on/off switching, reversal, and swap of the heat
currents. For each feature, the magnetic field acts as a knob
selecting one of the two possible working conditions without
the need to modify the reservoirs parameters (temperatures and
electrochemical potentials): The switching from one working
condition to the other is obtained by inverting the direction of
the magnetic field.

A significant advantage of our approach is the absence of
temperature constraints: As long as the system operates in
linear response, our results hold. In particular, the method we
present is valid whether the heat is transported by electrons, by
phonons, or by both. Thus, remarkably, it constitutes a possible
way of manipulating phononic heat currents using a magnetic
field. From a practical point of view, the implementation of our
theoretical results would require a full characterization of the
Onsager matrix, the major difficulty being the measurement of
the heat currents at the nanoscale, a challenge for which, how-
ever, important advances have been recently reported [28,29].
Moreover, assuming the system in contact with regions having
finite thermal capacitance rather than with ideally infinite
reservoirs, the magnetic-field switching could be used to
control the temperatures of such regions, allowing for instance
the initialization of qubit states or the implementation of
thermal logic gate operations [10]. We finally remark that there
exists, in the literature, a variety of works on interferometer-
based systems which, under broken time-reversal symmetry,
would constitute natural physical realizations of our model
(see, for instance, Refs. [9,21,22,30–37]).
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The paper is structured as follows: In Sec. II we describe
the theoretical implementation of the magnetic thermal switch
for a general multiterminal setup. Then in Sec. III we present
some results of numerical simulations using an interferometer
in contact with three reservoirs as a toy model. Finally, we
draw our conclusions in Sec. IV. Details of the calculations
and the derivation of the scattering matrix of the interferometer
are gathered in the Appendices.

II. MAGNETIC THERMAL SWITCH

In this section we discuss how a magnetic thermal switch
can be implemented in a general multiterminal setup. Let
us consider a generic system in contact with n reservoirs at
temperatures Tk = T + �Tk and electrochemical potentials
μk = μ + �μk, T and μ being some equilibrium (reference)
values. Let Jk = (JN

k ,J
Q
k ) denote the particle (JN

k ) and heat
(JQ

k ) currents from the kth terminal to the system and
Xk = (Xμ

k ,XT
k ) = (�μk/T ,�Tk/T 2) the conjugated affini-

ties [38]. Within linear irreversible thermodynamics, the
fluxes J = (J1, . . . ,Jn−1)T and the conjugated affinities X =
(X1, . . . ,Xn−1)T are related as follows:

J = LX, (1)

where L is the Onsager matrix of kinetic coefficients [38] of di-
mension 2(n − 1) × 2(n − 1). Note that, due to the constraints
of particle and energy conservation, we can determine Jn from
the fluxes J1, . . . ,Jn−1. Moreover, we set the nth reservoir
as the reference one, with temperature T and electrochemical
potential μ. In the presence of a magnetic field B, time-reversal
symmetry is broken, and the Onsager matrix L in general
is not symmetric [23,24,38]. The currents can be separated
into reversible components (which change sign by reversing
B → −B) and irreversible components (which are invariant
with respect to the inversion B → −B) [26,27],

J(r) ≡ L(B) − LT (B)

2
X, J(i) ≡ L(B) + LT (B)

2
X. (2)

By virtue of the Onsager-Casimir relations Lij (−B) =
Lji(B) [38], these currents have the properties that J(r)(B) =
−J(r)(−B) and J(i)(B) = J(i)(−B). In general these properties
imply that J(B) = J(r)(B) + J(i)(B) �= J(r)(−B) + J(i)(−B) =
J(−B).

The idea of the present proposal is to set proper working
conditions that enforce a given target functional dependence
between the thermal currents evaluated at B and −B. For
instance we may ask the current J

Q
k (B) we get at the kth

contact to be equal to twice the current J
Q
k′ (−B) one would get

at the k′th contact when flipping the orientation of the magnetic
field. More generally, given a subset K of the n terminals of
the system, we will write our target functional dependence in
the form of a linear constraint,

J
Q
k (−B) =

n−1∑
k′=1

x
(target)
kk′ J

Q
k′ (B), ∀ k ∈ K, (3)

where x
(target)
kk′ is an assigned (n0 − 1) × (n − 1) real matrix

with n0 � n − 1 being the number of elements of K . This al-
lows us to define different Boolean working conditions which,
while maintaining constant all the other system parameters,

can be activated by simply operating on the relative orientation
of the device with respect to the external magnetic field:
Special instances of these devices are explicitly discussed in
the following subsections.

Once the Onsager matrix Lij (B) and the coefficients x
(target)
kk′

are given, one can satisfy Eq. (3) by properly tuning the
components of the affinity vector X. As a matter of fact, since
the conditions (3) are at most n − 1 and the total number of
the affinity parameters is 2(n − 1), we can fulfill the former
by only using half of the latter. In what follows we exploit this
freedom to fix the values of the thermal affinity components
{XT

k }’s on each of the reservoirs [39], whereas using the {Xμ

k }’s
to enforce the constraint (3). When n0 = n − 1, i.e., if we
impose constraints on the J

Q
k (−B)’s of all the terminals of the

system, the procedure has the limitation of making the device
operate only for certain precise values of the currents flowing
from each kth reservoir. Indeed, imposing n − 1 relations of
the form of Eq. (3) univocally determines all the {Xμ

k }’s and
hence, assuming fixed temperatures, all the J

Q
k (±B)’s. This

limitation is naturally overcome when n0 is strictly smaller
than n − 1. For instance, one may choose to impose only one
condition (i.e., n0 = 1) in order to leave all but one of the
{Xμ

k }’s unspecified. In particular, we could solve for X
μ

1 to
obtain

X
μ

1 = a2X
μ

2 + · · · + an−1X
μ

n−1 + f
(
XT

1 , . . . ,XT
n−1

)
, (4)

where ak are some functions of the Onsager matrix elements
Lij , whereas f (XT

1 , . . . ,XT
n−1) depends on the tempera-

tures and on Lij . Setting X
μ

1 = const, Eq. (4) defines a
(n − 2)-dimensional hypersurface in the space spanned by
(Xμ

2 , . . . ,X
μ

n−1). Assuming constant temperatures, varying the
electrochemical potentials along this surface allows changing
the values of the heat currents, without compromising the
working operation of the device. In this way, we use the
extra degrees of freedom given by the reservoirs with free
electrochemical potential to widen the operational range of
the device to many values of the heat currents [40].

A. Heat current multiplier

In general, we may design a system in which the heat
current in the kth terminal becomes a fraction or a multiple of
the original value when the magnetic field is reversed, which
corresponds to having a diagonal matrix x

(target)
kk′ = δkk′xk in

Eq. (3): J
Q
k (−B) = xkJ

Q
k (B). Specifying a value for xk makes

the system operate as a Boolean heat current multiplier in
which the two (Boolean) configurations correspond to an
upward or a downward magnetic field. A schematic of such an
operation for a three-terminal device is shown in Fig. 1(a).

1. On/off switch

Let us consider the specific case of a heat current multiplier
in which xk = 0: The device behaves as an on/off switch
for the kth terminal, which means J

Q
k (−B) = J

Q(r)
k (−B) +

J
Q(i)
k (−B) = 0, whereas J

Q
k (B) = J

Q(r)
k (B) + J

Q(i)
k (B) �= 0.

It is then clear that J
Q(i)
k (B) and J

Q(r)
k (B) have the same

magnitude and the same sign and add up giving a finite current,
whereas the two terms cancel out upon magnetic-field reversal,
resulting in a vanishing heat current. This principle could be
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FIG. 1. (Color online) Examples of operational principles for a
three-terminal magnetic thermal switch. The different panels illustrate
the heat current (a) multiplier, (b) selector, (c) reversal, and (d) swap
configurations, respectively. The working operation is selected by
choosing either +B or −B. Solid (dashed) lines correspond to
J Q(+B)[J Q(−B)], whereas black (red) lines refer to currents flowing
from terminal 1(2). Notice that in panel (a) lines of different
thicknesses have been used to emphasize the increase/decrease of the
heat currents magnitude before and after the magnetic-field reversal.

used, for instance, to implement a n-terminal selector for the
heat path in which an upward magnetic field allows the flow
of heat through l channels while blocking it into the remaining
(n − l) ones and vice versa by reversing B → −B. A schematic
of such an operation for a three-terminal device is shown in
Fig. 1(b).

2. Fully reversible heat

Another interesting configuration is obtained by setting
xk = −1 in which case the heat current is fully reversible [41]
(JQ(i)

k = 0). As an application, one could conceive a de-
vice in which the heat currents flowing through some (or
all) the channels simultaneously flip their sign upon reversing
the magnetic field. This, among other things, would offer
the possibility of switching from a “refrigerator” mode for
a specific reservoir to a “thermal engine” one by simply using
the external magnetic field without needing to modify the
gradients in the reservoirs. A schematic of such an operation
for a three-terminal device is shown in Fig. 1(c). Note that,
by analogous considerations, xk = 1 corresponds to the case
of fully irreversible heat currents, which is however much less
interesting because in this situation reversing the magnetic
field has no effect.

B. Heat current swap

The matrix x
(target)
kk′ which defines our target (3) does not

need to be diagonal. For instance let us consider the case
where x

(target)
kk′ = x

(target)
k′k = 1 and x

(target)
kk = x

(target)
k′k′ = 0, which

implements a heat current swap between reservoirs k and k′.
This configuration couples heat currents flowing from different
terminals, whereas in the previous ones the conditions were
imposed on each single reservoir independently. Such a choice

for x
(target)
kk′ results in having J

Q
k (B) = J

Q
k′ (−B) and J

Q
k′ (B) =

J
Q
k (−B), i.e., the two heat currents are swapped by reversing

the magnetic field, as pictorially shown in Fig. 1(d) for a three-
terminal case. Besides, we notice that in this situation the
reversible and irreversible components of the heat currents
satisfy the conditions: J

Q(i)
k = J

Q(i)
k′ and J

Q(r)
k = −J

Q(r)
k′ .

It is worth stressing that in a generic multiterminal setup
different working conditions can coexist: For instance, some
channels can be configured as heat current selectors, whereas
others may operate as multipliers, make heat reversal, or swap.

III. SIMPLE MODEL

In order to illustrate the effects discussed in the previous
section, we study a simple noninteracting model consisting
of a three-terminal interferometer sketched in Fig. 2. We
assume for simplicity low temperatures so that electrons are
the only heat carriers. Under these conditions, the electronic
transport through the device is coherent, which allows us to
follow a scattering approach [42]. The system consists of an
interference loop, for example, made by two clean wires and
connected to three electronic reservoirs with temperatures Tk

and electrochemical potentials μk (k = 1,2,3). A magnetic
field B orthogonal to the interferometer plane generates a
magnetic flux � piercing the loop, which will be the relevant
parameter in the following discussion (from here on, we will
assume � to be expressed in units of h/2e). A scattering region
Ss is inserted into channel 1, having the effect of breaking
the particle-hole symmetry E → −E (having set μ = 0 as
the reference zero energy) in order to have finite nondiagonal
Onsager coefficients. The specific choice of such scatterer is
not important for the present discussion as it does not alter the
results at a qualitative level. Further details on the computation
of the scattering matrix of this system are given in Appendix A.
Following the notation of the previous section, we set reservoir
3 as the reference one ({μ3,T3} ≡ {μ,T }), and we express the
particle and heat currents flowing from the other two reservoirs

Φ
L+

L−

Ss

FIG. 2. (Color online) Sketch of the three-terminal magnetic
thermal switch studied numerically: an electronic interferometer,
pierced by a magnetic flux � and in contact with three reservoirs
at different temperatures Tk and electrochemical potentials μk (k =
1,2,3). The scattering region Ss inside channel 1 breaks the particle-
hole symmetry. L+ and L− are the interference paths and must be
different in order to observe interference at the end of the device.
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via the following 4 × 4 linear system [43]:

⎛
⎜⎜⎝

JN
1

J
Q
1

JN
2

J
Q
2

⎞
⎟⎟⎠ =

⎛
⎜⎝

L11 L12 L13 L14

L21 L22 L23 L24

L31 L32 L33 L34

L41 L42 L43 L44

⎞
⎟⎠

⎛
⎜⎜⎜⎝

X
μ

1

XT
1

X
μ

2

XT
2

⎞
⎟⎟⎟⎠. (5)

The coefficients Lij are functions of the magnetic flux �

and therefore of the applied magnetic field B. Their explicit
expressions are given by Eqs. (B1), derived in Appendix B.
The reversible (r) and irreversible (i) components of the heat
currents J

Q
1 and J

Q
2 are [44] as follows:

J
Q(r)
1 = L23 − L32

2
X

μ

2 + L24 − L42

2
XT

2 ,

J
Q(i)
1 = L21X

μ

1 + L22X
T
1 + L23 + L32

2
X

μ

2 + L24 + L42

2
XT

2 ,

(6)

J
Q(r)
2 = L41 − L14

2
X

μ

1 + L42 − L24

2
XT

1 ,

J
Q(i)
2 = L41 + L14

2
X

μ

1 + L42 + L24

2
XT

1 +L43X
μ

2 +L44X
T
2 .

Once the Lij coefficients for a given magnetic flux �0 are
calculated, for fixed XT

1,2 different Boolean working conditions
can be achieved by tuning the electrochemical potentials (and
hence X

μ

1,2) in order to impose Eq. (3) in both channels 1 and
2. Then, the switch is realized by reversing the magnetic field
B → −B, and hence the flux �0 → −�0. In order to illustrate
the effects outlined in the previous section, we focus here be-
low on the same four working conditions by properly choosing
the values of x

(target)
kk′ appearing in Eq. (3). The numerical results

are summarized in Fig. 3: Notice that both the heat (symbols)
and the particle (dashed lines) currents are shown to stress that
they are not constrained to follow the same behaviors.

(a) Heat current multiplier (x1,x2) = (1/2,2). In this case
the heat currents satisfy

J
Q
1 (−B) = 1

2
J

Q
1 (+B),

(7)
J

Q
2 (−B) = 2J

Q
2 (+B),

that is, by reversing the magnetic field J
Q
1 is halved whereas

J
Q
2 is doubled. Under these conditions, by using Eqs. (3)

and (7), it is straightforward to see that the reversible and
irreversible components of the heat currents are related via
J

Q(i)
1 (B) = 3J

Q(r)
1 (B) and J

Q(i)
2 (B) = −3J

Q(r)
2 (B). The behav-

ior of the heat currents flowing through the interferometer as
a function of the magnetic flux in this configuration is shown
in Fig. 3(a) for the interferometer described above.

(b) Heat path selector (x1,1/x2) = (0,0). In this case the
heat currents satisfy J

Q
1 (B) �= 0, J

Q
2 (B) = 0 and J

Q
1 (−B) =

0, J
Q
2 (−B) �= 0, i.e., for an upward magnetic field, heat

transfer is allowed between the system and reservoir 1 while
being blocked between the system and reservoir 2. This
situation is reversed by changing B → −B (�0 → −�0).
Furthermore, according to Eqs. (3) and (7), the reversible and
irreversible components of the heat currents are related via
J

Q(i)
1 (B) = J

Q(r)
1 (B) and J

Q(i)
2 (B) = −J

Q(r)
2 (B). The behavior

of J
Q
1 and J

Q
2 is shown in Fig. 3(b).
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FIG. 3. (Color online) Working operations of the three-terminal
magnetic thermal switch discussed in the text. The heat currents
through channels 1 (black squares) and 2 (red circles) are shown as
a function of the magnetic flux � enclosed in the interferometer. For
completeness, the particle currents (black and red dashed lines) are
also shown to emphasize that they do not follow the same behaviors
as the heat currents. (a) Heat current multiplier: By reversing � from
�0 = −π/2 to −�0 = +π/2, J

Q

1 is halved whereas J
Q

2 is doubled.
(b) Heat path selector: For �0 = −π/2, J

Q

1 is finite whereas J
Q

2

is blocked. The situation is opposite by reversing � to −�0.
(c) Heat current reversal: By reversing � from −π/2 to +π/2, the
signs of both J

Q

1 and J
Q

2 flip. (d) Heat current swap: By reversing
� from −3π/4 to +3π/4, the values of J

Q

1 and J
Q

2 are inter-
changed. The parameters are kBT = 1, μ = 0, XT

1 = 0.025, XT
2 =

0.01 [except in (c), where XT
1 = −0.005 and XT

2 = 0.005] and
the difference between the interference paths in the upper/lower
interferometer arms is �(kL) ≡ k(L+ − L−) = π/2. Dotted blue
lines are guides to the eye at J Q = 0, whereas gray lines highlight
the magnetic flux values � = ±�0 selecting the two Boolean
configurations.
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(c) Heat current reversal (x1,x2) = (−1, − 1). In this case
the heat currents are purely reversible, that is, JQ(i)

1 = J
Q(i)
2 =

0. Reversing the magnetic flux through the interferometer
makes them simultaneously change their sign. The behavior of
J

Q
1 and J

Q
2 is shown in Fig. 3(c). Note that at �0 = −π/2 both

J
Q
1 (black squares) and JN

1 (black dashed line) are positive.
This, together with the fact that Xμ

1 > 0 in this case, means that
the system is acting as a local refrigerator [45] for reservoir
1, exploiting a positive �μ1 to extract heat from a cold bath
(XT

1 < 0). Conversely, at � = −�0 = π/2, both J
Q
1 and JN

1
have changed their signs: The system is now performing work
driving particles against �μ1, thus operating as a thermal
engine. Notice that the same reasoning does not hold for
reservoir 2 in which, upon reversing the magnetic flux, the
sign of J

Q
2 flips whereas that of JN

2 does not.
(d) Heat current swap (x12,x21) = (1,1). The heat currents

satisfy J
Q
1 (B) = J

Q
2 (−B) and J

Q
2 (B) = J

Q
1 (−B), that is, the

two heat currents are swapped by reversing the magnetic field.
Furthermore, according to Eqs. (3) and (7), the reversible and
irreversible components of the heat currents are related via
J

Q(i)
1 (B) = J

Q(i)
2 (B) and J

Q(r)
1 (B) = −J

Q(r)
2 (B). The behavior

of J
Q
1 and J

Q
2 is shown in Fig. 3(d).

IV. CONCLUSIONS

In this article we have shown that a magnetic thermal switch
can be implemented within the framework of linear response,
taking advantage of the generic existence of reversible heat
currents when time-reversal symmetry is broken. Such a device
could allow the implementation of several Boolean features,
such as on/off switching, reversal, selected splitting, and swap
of the heat currents. For each feature, the switching from one
working condition to the other is obtained by inverting the
direction of an applied magnetic field. Quite interestingly,
it is possible to change the operating mode of the device
(from a power generator to a refrigerator) with respect to one
of the reservoirs by inverting the external driving parameter,
i.e., the magnetic field, at fixed electrochemical potentials and
temperatures of the reservoirs.

A further advantage of our magnetic switch would arise in
the perspective of conceiving a more complex programmable
system made of (for instance) an array of N simpler subsys-
tems. These may be set up to operate in a variety of independent
configurations but always defined in terms of conditions of
the form Eq. (3). We could imagine designing an array of
N elements that are all initialized in the same state (say, for
upward magnetic field B) but that upon reversing B → −B go
to (possibly all different) final states. We stress once more that
acting on a single parameter—the magnetic field—would be
enough to achieve this operation and to reinitialize them in a
subsequent moment, if needed.

Note that, although we have illustrated the magnetic thermal
switch for a low-temperature interferometer model with the
heat carried by the electrons, the mechanism discussed in
this paper is generic for any system with the time-reversal
symmetry broken by a magnetic field. A magnetic thermal
switch could be in principle implemented also when both
fermionic and bosonic reservoirs are present. Indeed, as shown
in Ref. [46] due to the electron-phonon coupling the Onsager

kinetic coefficients connecting the phononic heat currents
from the bosonic reservoirs to the affinities for the fermionic
terminals, in general, are not even functions of the magnetic
field. As a consequence, the phononic heat current generally
exhibits a reversible component, and our theory can be applied.
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APPENDIX A: MODELING THE INTERFEROMETER

In this section we outline the procedure followed to compute
the scattering matrix of our interferometric system. We start
by considering an interferometer realized by connecting two
four-arm beam splitters via two clean wires (see Fig. 4). For
simplicity, we assume the beam splitters to be identical and
symmetric, that means, each one is described by a scattering
matrix of the form

Sbs =

⎛
⎜⎝

r11 t12 t13 t14

t21 r22 t23 t24

t31 t32 r33 t34

t41 t42 t43 r44

⎞
⎟⎠

=

⎛
⎜⎜⎝

0 1/
√

2 1/
√

2 0
1/

√
2 0 0 1/

√
2

1/
√

2 0 0 −1/
√

2
0 1/

√
2 −1/

√
2 0

⎞
⎟⎟⎠. (A1)

Φ
L+

L−

S
s

1 2

4 3

5 6

7
8

R1
R2

R3

FIG. 4. (Color online) Sketch of the system used to model the
interferometer discussed in Sec. III. Two identical four-arm beam
splitters are connected via two clean electronic waveguides of lengths
L+ and L−, forming an interference loop which is pierced by a
magnetic flux �. A scatterer Ss is inserted into arm 1 in order to
break the particle-hole symmetry. The numbers from 1 to 8 refer to
the arms of the beam splitters and label the transmission and reflection
amplitudes tij and rij (in particular, channel 4 is assumed to be totally
reflective). The system is connected to three electronic reservoirs
R1, R2, and R3.
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The matrix Sbs describes a 50:50 beam splitter of electron
waves for which all the reflection terms are zero and such
that particles entering through one arm can be transmitted
into two of the other three with equal probability one half.
According to the notation of Fig. 4, we have to compose
the scattering matrices of the two individual beam splitters
with the free propagation phase terms associated with the
two interference paths. These terms are products of both the
geometric (Aharonov-Bohm) phase and the dynamical phase
exponentials,

f25 = f +
g f +

d , f38 = (f −
g )∗f −

d ,
(A2)

f52 = (f +
g )∗f +

d , f83 = f −
g f −

d ,

where f +
g f −

g = exp{i�}, f ±
d = exp{ikL±}, the ± signs de-

note the upper (+) and lower (−) interference arms of
lengths L±, the complex conjugation accounts for the electron
traveling direction, � denotes the magnetic flux enclosed in the
interferometer, and k is the Fermi wave vector. For simplicity
we neglect the energy dependence of the free propagations.
The resulting scattering matrix describes the propagation
among channels 1, 4, 6, and 7 and reads

S
(1)
i =

⎛
⎜⎝

0 0 t16 t17

0 0 t46 t47

t61 t64 0 0
t71 t74 0 0

⎞
⎟⎠, (A3)

where the various coefficients tpq account for the different
possible paths along which particles can travel from p to q,

t16 = t12f25t56 + t13f38t86, t17 = t12f25t57 + t13f38t87,

t46 = t42f25t56 + t43f38t86, t47 = t42f25t57 + t43f38t87,

t61 = t65f52t21 + t68f83t31, t71 = t75f52t21 + t78f83t31,

t64 = t65f52t24 + t68f83t34, t74 = t75f52t24 + t78f83t34. (A4)

Now, since we are interested in a three-terminal configuration,
we impose that one of the channels (say, channel 4) behaves
as a purely reflective mirror characterized by a reflection
amplitude r = −1. The interferometer scattering matrix thus
reduces to a 3 × 3 matrix,

S
(2)
i =

⎛
⎝r ′

11 t ′16 t ′17
t ′61 r ′

66 t ′67
t ′71 t ′76 r ′

77

⎞
⎠ =

⎛
⎝ 0 t16 t17

t61 t64rt46 t64rt47

t71 t74rt46 t74rt47

⎞
⎠.

(A5)
Finally, in order to break the particle-hole symmetry, we insert
in channel 1 an energy-dependent scattering region, described
by a scattering matrix,

Ss =
(

ρ iτ

iτ ρ

)
, (A6)

where ρ,τ � 0 and such that

τ =
{

1, if E > 0
0, elsewhere, (A7)

with ρ2 = 1 − τ 2. This energy step would naturally be
implemented using a well-tuned electronic constriction, such
as a quantum point contact [47]. The final expression for the

scattering matrix of the whole system is as follows:

S =
⎛
⎝r ′′

11 t ′′16 t ′′17
t ′′61 r ′′

66 t ′′67
t ′′71 t ′′76 r ′′

77

⎞
⎠

=
⎛
⎝ ρ iτ t ′16 iτ t ′17

iτ t ′61 r ′
66 + t ′61ρt ′16 t ′67 + t61ρt ′17

iτ t ′71 t ′76 + t ′71ρt ′16 r ′
77 + t71ρt ′17

⎞
⎠. (A8)

It is worth observing that, having initialized all the rpq and
tpq in Eq. (A1), the remaining (relevant) free parameters in
the scattering matrix above are the difference between the
paths in the upper/lower interference arms �L = L+ − L−
and the magnetic flux enclosed in the interferometer loop �

[see Eq. (A2)].

APPENDIX B: CALCULATION OF THE ONSAGER
COEFFICIENTS

We set, for simplicity, channel 7 (see Fig. 4) as the lead
connected to the reference reservoir. Moreover, we set the
relative dynamical phase k �L = π/2 in order to maximize
the effect of the sign flip of B. Using the Landauer-Büttiker
formalism [48,49] and the scattering coefficients from Ap-
pendix A, we compute the Onsager coefficients,

L11 = T

∫
dE(−∂Ef )τ 2,

L12 = T

∫
dE E(−∂Ef )τ 2 = L21,

L22 = T

∫
dE E2(−∂Ef )τ 2,

L33 = T

∫
dE(−∂Ef )

[
1 − 1

4
cos2 �(1 + ρ)2

]
,

L34 = T

∫
dE E(−∂Ef )

[
1 − 1

4
cos2 �(1 + ρ)2

]
= L43,

L44 = T

∫
dE E2(−∂Ef )

[
1 − 1

4
cos2 �(1 + ρ)2

]
,

L13 = T

∫
dE(−∂Ef )

[
− 1

2
τ 2(1 + sin �)

]
,

L14 = T

∫
dE E(−∂Ef )

[
− 1

2
τ 2(1 + sin �)

]
= L23,

L24 = T

∫
dE E2(−∂Ef )

[
− 1

2
τ 2(1 + sin �)

]
,

L31 = T

∫
dE(−∂Ef )

[
− 1

2
τ 2(1 − sin �)

]
,

L41 = T

∫
dE E(−∂Ef )

[
− 1

2
τ 2(1 − sin �)

]
= L32,

L42 = T

∫
dE E2(−∂Ef )

[
− 1

2
τ 2(1 − sin �)

]
, (B1)

where f = [exp{E/kBT } + 1]−1 is the equilibrium Fermi
distribution at temperature T and μ = 0.

205420-6



MAGNETIC THERMAL SWITCH FOR HEAT MANAGEMENT . . . PHYSICAL REVIEW B 91, 205420 (2015)
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