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Understanding the interaction between cavity photons and electronic nanocircuits is crucial for the development
of mesoscopic quantum electrodynamics (QED). One has to combine ingredients from atomic cavity QED,
such as orbital degrees of freedom, with tunneling physics and strong cavity field inhomogeneities, specific to
superconducting circuit QED. It is therefore necessary to introduce a formalism which bridges between these
two domains. We develop a general method based on a photonic pseudopotential to describe the electric coupling
between electrons in a nanocircuit and cavity photons. In this picture, photons can induce simultaneously orbital
energy shifts, tunneling, and local orbital transitions. We study in detail the elementary example of a single
quantum dot with a single normal metal reservoir, coupled to a cavity. Photon-induced tunneling terms lead
to a nonuniversal relation between the cavity frequency pull and the damping pull. Our formalism can also be
applied to multiple quantum dot circuits, molecular circuits, quantum point contacts, metallic tunnel junctions,
and superconducting nanostructures enclosing Andreev bound states or Majorana bound states, for instance.
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I. INTRODUCTION

Cavity quantum electrodynamics (cavity QED) enables
the study of the interaction between light and matter at the
most elementary level, thanks to the achievement of a strong
coupling between a single atom and a single photon trapped
in a microwave or optical cavity [1]. This paradigm has been
recently brought into superconducting circuits: artificial atoms
consisting of two-level superconducting circuits have been
coupled to superconducting cavities [2,3], in the context of
circuit QED. These experiments provide an ideal playground
to test the basic laws of quantum mechanics because they
can be described in terms of simple models such as the
Jaynes-Cummings Hamiltonian. However, such models con-
ceal essential physical differences between cavity and circuit
QED. On the one hand, the coupling between isolated atoms
and cavity photons mainly occurs due to the sensitivity of the
atom electric dipole to the cavity electric field. This coupling
depends on microscopic details since the atomic dipole is set
by the structure of the atom electronic orbitals. Furthermore,
one can generally perform the “electric-dipole approximation”
which assumes that the cavity field varies little on the scale
of the atomic system [4]. On the other hand, the behavior of
submicronic superconducting circuits is essentially insensitive
to microscopic details due to the rigidity of the superconduct-
ing phase [5]. For instance, the behavior of a superconducting
charge qubit can be described with one macroscopic variable,
i.e., the total charge of a superconducting island [6,7]. This
charge can vary due to the Josephson coupling between the
island and an external superconducting reservoir. The coupling
between the superconducting charge qubit and the cavity is
usually described in terms of a capacitive coupling between
the superconducting island and the cavity central conductor. As
aresult, the chemical potential of the superconducting island is
shifted proportionally to the cavity electric potential [8]. This
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picture implies strong inhomogeneities of the photonic electric
field on the scale of the superconducting qubit, in contrast to
what is generally considered in atomic cavity QED for a single
atom.

Recent technological progress is enabling the development
of a new type of experiment where nanocircuits based on car-
bon nanotubes, semiconducting nanowires, two-dimensional
electron gases, or graphene are coupled to coplanar microwave
cavities [9-20]. This paves the way for the development of
“mesoscopic QED,” adenomination introduced in a pioneering
theoretical work [21]. Mesoscopic QED opens many pos-
sibilities because nanoconductors can be tunnel-coupled to
various types of fermionic reservoirs such as normal metals,
ferromagnets [22], or superconductors [23], in a large variety
of geometries. So far, theoretical studies on mesoscopic QED
have mainly focused on quantum dot circuits [21,24-42].
Several configurations have been suggested to reach the
strong-coupling regime between an electronic spin and cavity
photons [24-28], or more generally, to develop quantum
computing schemes [43-51]. Mesoscopic QED also tackles
problems which go beyond the mechanics of closed two-level
systems coupled to cavities, usually considered in cavity or
circuit QED. The interaction between electronic transport and
the light-matter interaction leads to a rich phenomenology
[21,30-41,52,53]. Besides, coplanar cavities could be used
as a powerful probe to reveal some exotic properties of
hybrid nanocircuits, such as the existence of topological
superconducting phases [54], Majorana quasiparticle modes
[43-51,55], or spin entanglement in a Cooper pair beam
splitter [40,41]. On the experimental side, pioneering works
have focused on mesoscopic rings [56] and metallic tunnel
junctions [57]. More recently, experiments have been per-
formed with single quantum dots [9,10] and double quantum
dots (DQDs) [11-20] with normal metal reservoirs. Reaching
the strong-coupling regime between the charge states of a
DQD and a cavity is still a challenge [58]. Nevertheless,
interesting resonance phenomena have already been observed
[11-15,17]. Several experiments have also provided evidence
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for a modification of the cavity behavior by finite bias transport
through a DQD [17,19], including a maser effect [20].

These recent developments call for a full description of
the coupling between a hybrid nanocircuit and cavity photons.
One question naturally arises: Is mesoscopic QED closer to
atomic cavity QED or superconducting circuit QED? What
are the specificities of the coupling between a nanocircuit and
a cavity? So far, most theoretical works have considered a
capacitive coupling between the nanocircuit and the cavity
central conductor, by analogy with circuit QED [27,29,30,32—
39,42,53,55]. This approach implies a coarse-grained electric
description of the nanocircuit, and a concentration of the non-
homogeneous photonic electric field inside some capacitive
elements. A few works have considered a direct coupling
between the motion of electrons trapped in the nanoconductors
and the bare cavity electric field, which is assumed to be
constant on the scale of the nanocircuit [24-26,40,51]. This
is reminiscent of the descriptions used in cavity QED [4]. In
this article, we introduce a description of mesoscopic QED
which bridges between these two approaches. We use a model
which focuses on conduction electrons tunneling between the
different elements of a nanocircuit. The tunneling electrons
occupy quasilocalized orbitals in each nanocircuit element,
which recalls the atomic orbital degree of freedom of cavity
QED. However, there also exist collective plasmonic modes
in the nanocircuit, which can screen at least partially the
cavity fields. We use a gauge-invariant mesoscopic QED
Hamiltonian which accounts for the nonuniform screening
of the cavity fields inside the nanocircuit, and for the
electromagnetic boundary conditions provided by cavity con-
ductors and voltage-biased nanocircuit dc gates. In the limit
where photon-induced magnetic effects are negligible, we
can reexpress the mesoscopic QED Hamiltonian in terms of
a scalar photonic pseudopotential. This picture unifies the
different approaches used so far to describe mesoscopic QED
devices, since the photonic pseudopotential can vary linearly
with space in the case of a locally uniform photonic electric
field (dipolar coupling limit), as well as remain constant
inside a given circuit element in the limit of a coarse-grained
circuit model. In the framework of a tunneling model, the
photonic pseudopotential leads to various types of linear
electron/photon coupling terms: cavity photons shift the orbital
energies of the different nanocircuit elements, but also induce
simultaneously tunneling and local orbital transitions. This
general description can be used to study the behavior of many
different types of mesoscopic QED devices. For instance, it can
be applied to quantum dot circuits, molecular circuits, quantum
point contacts, metallic tunnel junctions, and superconducting
nanostructures enclosing Andreev bound states or Majorana
bound states. To illustrate the richness of our approach, we
study in detail the elementary example of a cavity coupled to a
“quantum RC circuit,” i.e., a single quantum dot coupled to a
single normal metal reservoir. The photon-induced tunneling
terms between the quantum dot and the reservoir induce a
nonuniversal relation between the cavity frequency pull and the
cavity damping pull, contrarily to what is expected with purely
capacitive coupling schemes at low temperatures [59-65].

This paper is organized as follows. In Sec. IT A, we discuss
the gauge-invariant mesoscopic QED Hamiltonian, which
involves a photonic vector potential. In Sec. II B, we perform a

PHYSICAL REVIEW B 91, 205417 (2015)

unitary transformation to obtain a new Hamiltonian where
the electron/photon coupling is due to the scalar photonic
pseudopotential. In Sec. IIC, we reexpress the photonic
pseudopotential scheme in the framework of a tunneling
model. In Sec. II D, we discuss the application of our formalism
to the case of nanocircuits with superconducting elements. In
particular, we give an explicit Hamiltonian for a nanostructure
with Majorana bound states coupled to a cavity. In Sec. III, we
work out in detail the case of the quantum RC circuit coupled
to a cavity. Section IV concludes. Appendix A gives a detailed
mathematical justification for the form of the Hamiltonian of
Sec. IT A, on the basis of an effective model which separates
physically the tunneling electrons occupying individual orbital
states in the different elements of a nanocircuit, from the
plasmonic collective modes of this nanocircuit. Appendix
B discusses the advantages of the photonic pseudopotential
scheme.

II. GENERAL DESCRIPTION OF MESOSCOPIC QED
A. Gauge invariance and minimal-coupling scheme

A nanocircuit encloses a large variety of degrees of
freedom. Our main interest in this paper is the interaction of the
cavity with the ensemble 7 of the “tunneling” conduction elec-
trons, which can occupy orbital states in the different elements
of a nanocircuit and tunnel between them. However, there
also exist plasmonic electronic modes which are responsible
for the screening of external fields from a massive metallic
electrode. Plasmons can also convey screening currents in the
reservoir electrical lines, which reequilibrate locally charge
distributions on tunnel junctions after a tunneling event. The
question of plasmonic modes in a nanocircuit is complicated
since nanoconductors have generally a low electronic density,
which allows only a partial screening of the cavity field [66].
In principle, even the metallic contacts of the nanocircuit are
not able to screen totally the cavity field due to their thinness.
In the limit where the nanocircuit contacts are connected to
outside electrical lines with a low impedance, it is reasonable
to assume that the dynamics of plasmonic modes in the
nanocircuit is very fast compared to the dynamics of the
cavity modes and of the tunneling electrons [67]. In this case,
one can assume that the plasmonic modes in the nanocircuit
generate a distribution of screening charges which is enslaved
to the position of the tunneling charges and to the value of
the cavity field. This produces a renormalization of the cavity
field properties, and in particular its spatial dependence nearby
and inside the nanocircuit. It also produces a renormalization
of the Coulomb interactions between the tunneling charges.
In general, the Coulomb interactions between the nanocircuit
charges is also renormalized by the screening charges on
the cavity conductors (see Appendix A). The positive ions
and valence electrons constituting the crystalline structure
of the nanocircuit can be treated in a mean field approach,
leading to an effective potential V.onr(¥) which confines
tunneling electrons inside the nanocircuit. This confinement
potential can delimit quantum dots, or induce disorder effects
in nanoconductors, for instance. This approach is sufficient
provided the background charges producing Vo.s(7) and the
microwave cavity are far off resonant. In this framework, gauge
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invariance imposes the Hamiltonian
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and e > 0 the elementary charge. The field operator ¥ (F)
includes all the tunneling charges of the nanocircuit. Above,
h7(F) is a single-electron Hamiltonian, G(7,7 ') describes the
Coulomb interaction between the tunneling electrons (see
Appendix A for details), and hwod'a is the Hamiltonian of
a (renormalized) cavity electromagnetic mode. The potential
®pam(F) is due to dc voltages applied on the nanocircuit
electrostatic gates and to constant charges on floating con-
ductors such as the cavity central conductor in a coplanar
geometry. The coupling between the cavity and the tunneling
electrons arises from the photonic vector potential term of
Eq. (4). For simplicity, we have considered a single cavity
mode with creation operator a' and vector potential profile
A(F). This description can be generalized straightforwardly to
the multimode case by introducing a sum on a cavity mode
index in Egs. (1) and (4). Note that /I(?) can strongly vary on
the scale of the nanocircuit.

The formal description of the electromagnetic field and
the light/matter interaction in mesoscopic QED requires some
care. In atomic cavity QED, the cavity field is generally
assumed to vary slowly on the scale of an atom [4]. In contrast,
we have to take into account strong spatial variations of the
photonic field on the scale of a nanocircuit. In particular,
a protrusion of a cavity conductor can be used to increase
the photonic field locally, close to a given quantum dot
[11,13,14,17] (see Fig. 1). The dc voltage-biased electrostatic
gates, used to control the nanocircuit spectrum, provide
supplementary boundary conditions on the electromagnetic
field. Besides, we have already mentioned that the plasmonic
screening charges on the nanocircuit conductors can modify
the photonic vector potential profile, especially inside and
around fermionic reservoirs. In order to describe this complex
reality and justify mathematically the shape of Eqs. (1)-(4), we
introduce in Appendix A an effective model which separates
physically the tunneling electrons occupying individual orbital
states in the nanocircuit from the collective plasmonic modes
of the nanocircuit. In this framework, one can introduce a
Hodge decomposition of the electromagnetic field [68,69],
which can be obtained thanks to the use of an auxiliary

electrostatic Green’s function. This leads to the terms in A(?),
G(#,7"), and @y (F) in Egs. (1)—(4).

In this section, we disregard the spin of charge carriers
because we want to focus on regimes where charge effects
prevail. The introduction of the spin degree of freedom in
Hamiltonian (1) would be straightforward by invoking gauge
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FIG. 1. (Color online) Scheme of a loopless nanocircuit with
source/drain electrodes (blue) and electrostatic gates (green) embed-
ded in a photonic cavity (purple). The yellow cloud represents the
photonic field. The cavity presents some protrusions (purple stripes)
fabricated to increase the photonic field inhomogeneities (darker
yellow areas).

invariance (see for instance Sec. IIE 1). The direct coupling
between the particles’ spin and the photonic magnetic field can
usually be disregarded because this coupling is expected to be
very weak unless collective excitations are considered in a
large ensemble of spins [70-72]. From recent predictions, real
[24-26] or effective [25,27,28] spin-orbit coupling provides
an alternative way to obtain a spin-photon coupling.

In Eq. (2), the coupling of tunneling electr0n§ to gavity

photons occurs through two terms, one in %; A4+ A- %;,
corresponding to single-photon transitions, and the other one
in A2, corresponding to two-photon transitions. The second
has no reason to be disregarded in the general case, even if it
has no structure in the electronic sector. For instance, this term
is crucial for determining the existence of a Dicke quantum
phase transition when many two-level systems are coupled
transversely to a cavity [73,74]. The A2 term can also bring a
nonnegligible contribution to the cavity frequency pull caused
by one nanocircuit, which is a central quantity in mesoscopic
QED experiments (see Appendix B). Hence, it is convenient
to introduce a new representation in which the A2 term is
eliminated. This task is completed in the next section.

B. Photonic pseudopotential scheme

In atomic cavity QED, the Power-Zienau-Woolley (PZW)
transformation formally enables the elimination of a space-
dependent A(7)? term from the system Hamiltonian [4]. This
generalizes the widely known “electric-dipole” transformation
used in the case where A(?) can be considered as constant
on the scale of an atom. However, the natural variables of
the PZW Hamiltonian are polarization and magnetization
densities associated with the charge distribution of an atomic
system, which are not directly useful in our case. To reexpress
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the PZW Hamiltonian in terms of particle coordinates and
momenta, it is necessary to perform a multipolar development
of the light/matter interaction [4]. In practice, this development
is performed to a limited order, which means that only
a moderate space dependence of the photonic electric and
magnetic fields is taken into account. In this section, we
perform a unitary transformation of Hamiltonian (1) in the
same spirit as the PZW transformation, but with specificities
required for mesoscopic QED. Upon disregarding magnetic
effects, we can take into account a strong space dependence
of the photonic electric field, thanks to the use of a scalar
photonic pseudopotential. This procedure avoids the develop-
ment of the light/matter interaction in terms of multipoles.
This is necessary to describe, e.g., multiple quantum dot
circuits with strongly asymmetric capacitive couplings to the
cavity. Furthermore, we use a second-quantized description
of charges, which is more convenient to describe central
phenomena of mesoscopic physics such as tunneling but also
superconductivity (see next section).

To account for the possibly strong spatial variations of fi(?)
on the scale of a nanocircuit, we define inside the volume of the
nanocircuit a reference point 7y and a continuous functional
path C(7,7') relating any points 7 and 7'. We also define a
photonic pseudopotential V (7)(a + a') with

V. () = o / A - de. 5)
C(Fy,F)

Importantly, one can use Vi - V() >~ a)oA(r) inside the
nanocircuit volume, provided the flux of V‘ AA through the
nanocircuit can be disregarded. This criterion is generally
satisfied, considering the typical amplitude of the cavity
magnetic field and the size of nanoconductors. In this case,
the arbitrariness on the choice of the contours C(¥,7’) leads
only to marginal effects. One exception is nanocircuits with
large loops leading to magnetic Aharonov-Bohm effects. This
case is beyond the scope of the rest of this article, which
focuses on photon-induced electric effects. We perform the
transformation

It[:;t =U THtolu (6)
with
e(@a—ah ot o
U = exp (— / &Erv. @t (r)wr)). (7)
ha)()
This gives
Hyy = /d3mp (MY F) + Heow + hapa'a
+ V(@ +a" + (V?/hawy) ®)
with
Do e / S RGIAGIAG, ©)
and i (F) = —h2 A7 /2m — e®Pparm(F) — € Vieont(¥). In this new

representation, the single-electron potential and the Coulomb
interactions are renormalized by the term in 92, but the elec-
tron/photon coupling takes a simpler linear form. The motion
of tunneling electrons is modified by the pseudopotential
V. ()@ + a'). Note that the arbitrariness on the choice of
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7o is not an issue, since a change in 7y shifts V,(r) by a
global constant and leads to a unitary transformation of H tot-
In the limit where the spatial dependence of the photonic
vector potentlal can be dlsregarded ie., A(r) ~ AO, one finds
V. (F) = Ey - F(@ + a') with Eo(F) = woAo. This corresponds
to the electric-dipole approximation frequently used in atomic
cavity QED. In the opposite limit of a small enough conductor
or a perfect screening of A(?) inside this conductor, one can
use a V| (¥) constant inside this conductor. This is reminiscent
of the capacitive network models frequently used to describe
superconducting charge qubits in circuit QED. Note that we
do not assume that the ensemble 7 of the tunneling charges is
neutral.

C. Tunneling model and coarse graining of nanocircuits

In this section, we consider a nanocircuit gathering quantum
dots and reservoirs connected by tunnel junctions. The effect of
time-dependent classical fields on tunneling through quantum
dots has been studied since the 1990s [75,76]. Mesoscopic
circuit QED offers the opportunity to study the interaction
between microwave photons and quantum dot circuits from
a different perspective. Quantum dot circuits are often de-
scribed in terms of a tunneling model in which the dots and
reservoirs contain quasilocalized orbitals coupled by tunnel
elements [77]. This decomposition is instrumental in order to
particularize the treatment of the reservoirs and account for the
irreversibility of transport processes or other reservoir-induced
damping effects. Importantly, the tunnel couplings arise from
an overlap between neighboring orbitals. This means that
these orbitals cannot be considered as orthogonal, except in
the limit of weak tunnel couplings (see for instance [78]).
However, in practice, it may be necessary to take into account
a strong interdot tunneling. For example, in the case of a
DQD, there can exist a strong splitting between bonding and
antibonding states, which can be resonant with the cavity
[11-15,17]. Depending on the absolute energy scale of the
DQD confinement potential, it might be necessary to go to the
limit of a nonperturbative interdot tunnel coupling to obtain
such a splitting. In order to circumvent the difficulty related to
the nonorthogonality of the nanocircuit orbitals, we divide the
nanocircuit into the ensemble D of tunnel-coupled quantum
dots from one side, and the different reservoirs with an index
R, with p € {1, ... ,N} from the other side. We use an index
o € {D,Ry, ...,Ry}todenote these different elements, and an
index j to denote the different orbitals in a given element 0. We
assume that the low-energy spectrum for the whole ensemble
D of the quantum dots can be determined in the absence of the
reservoirs as the discrete spectrum of a potential profile with
one or several potential wells. This procedure can be performed
for an arbitrary interdot tunneling strength and leads to exactly
orthogonal orbitals, so that {6%j,6pjr} =4, . One can also
define exactly orthogonal orbitals in the isolated reservoir
R,, with p € {1,...,N}, so that {62,”_,6RM,} =368p,8; . In
a second step, one can evaluate the tunnel coupling tp; g, ;-
between the orbitals j and j’ of D and R, from the overlap
between their wave functions. This gives {6;J i+Cr,j'} = 0 only
at lowest order in tunneling [79]. However, using a weak
tunneling between D and R, is not a severe restriction since
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the large density of states in the reservoirs can compensate
for the smallness of the tunnel coupling elements, and lead to
a large tunneling rate compatible with the Kondo effect, for
instance. To summarize, in the absence of the cavity, the tunnel
Hamiltonian is written
Ho=eyelicoy+ Y (tojojlh o +He),  (10)
0,j 0F#0'.j.J'

where the creation operator 6ij corresponds to an orbital j
with energy ¢,; and wave function ¢,;(r) mainly localized
inside element o € {D, R, ...,Ry}. One can use {6Zj,éorj/} =
80,00;,j» at lowest order in the dot/reservoir tunnel couplings.

We now reexpress the photonic pseudopotential scheme of
the previous section in the framework of the tunneling model.
For this purpose, one needs to decompose the field operator
¥1(7) associated with tunneling charges on the nanocircuit
orbital states. At lowest order in the dot/reservoir tunneling,
one can use [79]

AGES PG (11
0,j

Hence, Hamiltonian (8) directly gives

A = H, + H&n + hi(@ + 2" + hova'a  (12)

Cou

with

hine =Y ojlliCoj + D (ojurjillyoj +He).  (13)

0,j 0jF#0'j’

Note that in principle, the term in V2 from Eq. (8) renormalizes
&0j» Loj,o j'» and the Coulomb interaction term I:Ié‘i)‘:ﬂ, but this is
not essential for the physics we discuss below.

Since the photonic pseudopotential modifies the potential
landscape seen by the tunneling charges, it can naturally affect
all the parameters in the tunneling model. First, cavity photons
shift the orbital energy &,;, with a coupling coefficient

Qoj = _e/dr3|<ﬂoj(7)|2Vl(7)- (14)

In general, «,; strongly depends on the indexes o and j due to
the space dependence of V| (¥). This makes the cavity-induced
orbital energy shifts particularly relevant experimentally. For
a standard metallic reservoir, it is reasonable to disregard
the dependence of «,; on the orbital index j, i.e., oty; > ay,
because the properties of the electronic wave functions in the
reservoir can be considered as constant near the Fermi energy
[80]. In this framework, a behavior similar to the capacitive
coupling of the cavity central conductor to the reservoirs is
recovered. This type of reservoir/cavity coupling enables one
to interpret data obtained for a quantum dot coupled to two
normal metal leads [9,10]. In contrast, o,; may strongly depend
on j for o = D, as illustrated for instance by the example of a
DQD with an asymmetric V, (v) [11,13-15,17-19].
The Hamiltonian Florb also contains coupling terms in

Voj.oj = —e f dr’el (s, OVLE  (15)

with oj # 0’ j’. These terms include photon-induced tunneling
terms in y,; » j, With 0 # o', and photon-induced transitions
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internal to o, in Y,j.y. In principle, all the above cav-
ity/nanocircuit coupling terms can coexist. In practice, we
expect the terms in «,; to be dominant over the tunnel terms
in y,j.» j with o # o', which involve a weak overlap between
wave functions. Nevertheless, as shown in the next section,
the signatures of the photon-induced tunneling terms can
be boosted by the large number of states they affect in the
reservoirs. If V| (¥) varies slowly inside D, the photon-induced
transitions internal to D are negligible, i.e., yp; p; =~ 0, since
l¢p;) and |@p ;) are orthogonal by definition. However, these
transitions become possible if the cavity field is weakly
screened [V, (F) ~ Ey - (@ + ah)], or if a protrusion of a
cavity conductor is placed close to one of the quantum dots in
order to reinforce the spatial variations of V (v) [11,13,14,17].
Transitions in yp; p; can be particularly interesting in the case
of real or artificial spin orbit coupling which mixes spin and
orbital states. In this case, the yp; p; terms can correspond to
spin transitions inside a single quantum dot [24,26] or a DQD
[25,27,28]. In the reservoirs, the VR, j.R,j t€rms are probably
always nonresonant due to strong energy relaxation. Hence,
we will assume that these terms do not need to be treated
explicitly because they can be included in a renormalization
of the states |, ;)

In practice, the potential V,(¥) can be evaluated numer-
ically by removing all nanoconductors from the device and
simulating the microwave electromagnetic field in the cavity
in the presence of the metallic gates, sources, and drains of
the nanocircuit. This can be done using standard microwave
simulation tools, which can take into account imperfect metals.
It enables a realistic evaluation of the elements «,; and y,; » ;.
Even if V| () is not calculated numerically but replaced by a
phenomenological expression, the expressions (14) and (15)
remain interesting because they set constraints between the
different o,; and y,; -, which all depend on the same V. (P
profile.

We do not give details on the Coulomb interaction term
HY™, which stems directly from Eq. (8). If Coulomb blockade
in the nanocircuit is already strong in the absence of the cavity,
the effect of the cavity on interactions may be disregarded
or treated perturbatively. In the next section, we discuss
another situation where we assume that the effects of HY",
are negligible due to the large tunnel rate between a quantum
dot and a normal metal reservoir. In the general case, Coulomb
interactions between the tunneling charges can lead to a large
variety of effects, which we will not discuss in this work.

To conclude, we obtain a decomposition of the system
Hamiltonian in terms of nanocircuit elements connected by
tunnel couplings. While this is reminiscent of the coarse-
graining description of superconducting microcircuits fre-
quently used in circuit QED, a full analogy is not possible
due to the presence of the orbital degree of freedom in the
mesoscopic QED case. Due to this orbital degree of freedom,
we obtain a large variety of electron/photon coupling terms.
In this section, we have discussed the case of quantum dot
circuits which raises most experimental efforts so far. However,
the above approach can be used for any other type of system
in which a decomposition in terms of a tunneling model is
relevant. This includes quantum point contacts, molecular
circuits, metallic tunnel junctions, and hybrid superconducting
systems enclosing Andreev bound states or Majorana bound
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states, for instance. This last case is discussed in more detail
in Sec. I1 E.

D. Discussion on the theoretical context

Many theoretical works on mesoscopic QED use as a
starting basis a tunnel Hamiltonian where all parameters
(orbital energies, tunnel rates, ...) are perturbed by corrections
proportional to the cavity electric field. These empirical ap-
proaches lack a formal justification and can lead to unphysical
predictions. Our work provides a rigorous framework for the
use of tunneling models with a linear light/matter interaction
(the superconducting case will be discussed explicitly in
Sec. IIE).

As already mentioned above, our approach proceeds along
a spirit similar to the PZW transformation, but with modi-
fications necessary to take into account the specificities of
mesoscopic QED, among which are a strong space dependence
of the cavity electric field on the scale of a nanocircuit,
and boundary conditions provided by cavity conductors and
voltage-biased dc electrostatic gates. Interestingly, the effect
of boundary conditions provided by grounded conductors on
the PZW transformation has been discussed recently [81].
However, this reference considers only neutral atomic systems
affected by locally constant cavity fields (dipolar coupling
limit).

E. Mesoscopic QED with superconducting nanocircuits
1. Minimal-coupling scheme with superconducting nanocircuits

In the above sections, superconductivity was not explicitly
taken into account. It is important to discuss the generalization
of our approach to the case of superconducting hybrid nanocir-
cuits, considering the present interest for Majorana fermions
[82] or Andreev bound states, for instance [83]. For simplicity,
we consider below standard BCS superconducting correlations
characterized in the mean field approach by a superconducting
gap A(F) coupling electrons and holes with opposite spins.
The gauge-invariant minimal coupling Hamiltonian of Eq. (1)
can be generalized as

HS = Ho + / Er(A@E*YLHY ) +He)  (16)

with lﬂj (¥) the field operator for tunneling electrons with spin
o €{t,|}and

d(F) = e(@ — a"V, . (7)/hawo. (17)

The term H is the straightforward generalization of Eq. (1)
to the spin-dependent case; i.e., the single-electron term /7 (7)
can have a structure in spin space, due to magnetic fields
and/or spin-orbit coupling, for instance. Hence, /() must be
replaced by ’[1&“7),1%(7)] in the first term of Eq. (1) and
by ¥4 (F) + ¥, (7) in Eq. (3). Due to gauge invariance, 7 (F)

can involve the electron momentum through —ii‘ﬁ; + eA(?)
only. Importantly, we define A(F) as a gauge-invariant quantity,
so that the phase parameter ® ensures the gauge invariance
the pairing term of HJ,. The form used above for & is valid
provided photon-induced magnetic effects can be disregarded,

in agreement with the approach of Sec. II B.
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2. Photonic pseudopotential scheme with
superconducting nanocircuits

Using Eqs. (6) and (7) with UiFY(F) replaced by
Yo ¥ 1 (7)o ¥ (7), Hamiltonian (16) is transformed into

—_~
A

AS, = Ao + / SPr(AGTIEHEE +He),  (18)

—~

where Hy is again the generalization of Eq. (8) to the
spin-dependent case. Importantly, Eq. (18) shows that in the
photonic pseudopotential scheme, the phase of the gap term
is not affected by photons anymore. This represents one more
advantage of this scheme. This result remains valid in the case
of d-wave or p-wave superconducting correlations [84].

3. Mesoscopic QED with Bogoliubov-de Gennes equations

In the case where electron-electron interactions can be
disregarded, Bogoliubov—de Gennes equations are a widely
used approach [85], which enables a diagonalization of the
circuit Hamiltonian in terms of quasiparticles with creation

operator c,ﬁ. One can define quasiparticle modes in the absence
of the cavity, by using

= f Srifl@ O O wa @ (19)
with a spinorial wave function
wy(z) =" (U} (2),u'}(2),v](2), — v}(2)]
fulfilling
hest(F)xa(F) = Eyx(F) (20)
with x,,(2) =" [u}(2).u’} (2), — Vi(2), — v} (2)] and
hr(F) AF)oo ] |

- ~ (21)
A*(r)og  —oyh3 (7)o,

heg(F) = |:

Above, 0¢ and o, are the identity and the second Pauli matrices
in spin space. From the definition of ch, one gets
HS = Z Enclc,, + hwod'a

+ > (Dineien +D5))@ +ah

n,n’

+ > (DS chel, +He)@+ah (22)

with

nn

PV — ¢ / Erwl(F)VL A rwe (), (23)
Dy = —¢ f Srvi®@P + @R, (24)

DY = —e / Erwl F\VLE) (T, +it)wl ()2, (25)

and 1., 7y, 7, Pauli matrices in Nambu space.
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4. Mesoscopic QED with Majorana fermions

In this section, we discuss the case of a nanocircuit
enclosing Majorana bound states, coupled to a cavity. In
principle, these self-adjoint bound states can appear at the
interface between the topological and nontopological super-
conducting phases of a nanostructure [86-88]. Although an
indirect Majorana bound state/cavity coupling mediated by a
superconducting quantum bit or a Josephson junction has been
considered in many works [43-49], a direct coupling can also
exist [55]. Using our formalism, we can provide a general
Hamiltonian describing such a situation. The direct Majorana
bound state/cavity coupling occurs due an overlap between
neighboring Majorana bound states, caused by the finite size
of the nanocircuit. This overlap is naturally dependent on
the photonic pseudopotential. Proposals to obtain Majorana
bound states in condensed matter systems rely on the use of
superconducting elements, which calls for the use of the results
of Sec. II E. For simplicity, we disregard Coulomb interactions
and use the framework of the Bogoliubov—de Gennes equations
of Sec. IIE3. To remain general, we do not specify the
details of the system. We consider an ensemble of Majorana
bound states with creation operators C,T\,I.n = Cpy,, and wave
function @y, (7), localized inside a nanoconductor. In general,
the nanoconductor also encloses a continuum of ordinary
fermionic states C;n with wave function ¢g,(r) located
above an energy gap. We assume that the nanoconductor is
tunnel-coupled to a fermionic reservoir with orbital states Cp, 1
with wave functions gg ,(F). Such a reservoir can be used to
measure the conductance through the Majorana system [82].
In the limit of weak tunneling, one can reexpress Eq. (22) by
using the ensemble of the operators Ci,n with 0o € {M,R,S},
following considerations similar to those for the tunneling
model of Sec. II C. This gives

lot ZZlenn’CMnCMn + Z &, C'
n<n’ 0€{R,S},
+ Z CM,n ,iwnRCI (l‘r}lwnki)* CR,n’
n,n’

+ Z (yo(rlt)o 'n’ C CD w t+ ytﬁ)o 'n’ )(&T + &)

0,0 € {M,S,R}
n,n’

+ Z (V(fi::)() 'n’ Cl nc]L

0,0 € {M,S,R}
n,n’

]+ hava'a

+Hce)@ +a). (26)

Above, the coefficients y(f,? o Dave expressions similar to the

D(’), coefficients of Egs. (23)—(25) with w,»(F) replaced by
@otoy.n(m(F). We use energies gy, for the orbitals in the reservoir
(0 = R) and the nanoconductor continuum of states (0 = S),
and a tunnel coupling parameter 6, ,, between overlapping
Majorana bound states. The Majorana bound states and the
reservoir are connected by tunnel coupling terms in t,yn’?. For
simplicity, we have omitted the dc tunnel coupling between
the reservoir and the nanoconductor continuum of states.
Photons can shift all the above mentioned parameters, due
to the two last lines of Eq. (26). In particular, photons can
modify the tunnel coupling between neighboring Majorana
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bound states, due to the terms in yMn w3 discussed in Ref.
[55]. Note that in Hamiltonian (26), there is no dc coupling
between the Majorana bound states and the nanoconductor
continuum of states, which are assumed to be orthogonal
by construction of Cy, and Cg,. However, there can be
photon-induced transitions between the Majorana bound states
and the nanocircuit continuum of states due to terms in yMn S

and Vsn/ wn- Effects related to these last transitions have been
discussed in [54]. Our approach provides a general justification
for such terms.

III. EXAMPLE: QUANTUM RC CIRCUIT IN A CAVITY
A. Hamiltonian of the system

We now give an example of a specific prediction given by
Hamiltonian (12). We consider a cavity coupled to a “quantum
RC circuit” made out of a single quantum dot tunnel contacted
to a single normal metal reservoir. We assume that the dot
has a large intrinsic level spacing so that a single-dot orbital
with energy &, needs to be considered. The dot is capacitively
coupled to a dc gate electrode, which enables one to tune ¢,.
We study the effects of the dot on the photonic mode with
frequency wo/2m. Following the previous section, the total
Hamiltonian of the system is

+ Houn + Hgr-
(27

ﬁRC+cav = I:]e + flinl(a + &T) + hwofﬁfl

The Hamiltonian

I:Ie = gdéjjéd + /dsNov(s)[séf(s)c(s) + tATé(s) + t’“'(s)cd]

(28)
of the dot and its reservoir involves the lead density of states
Nov(e). For later use we have introduced a cutoff v(e) =
D? / (D? + €%). The terms in ¢ describe tunneling between the
dot and the reservoir, whose orbitals correspond to fermionic
creation operators éjj and cf(g), respectively, with {éd,éji} =
1 and {é(¢),é7(e")} = 8(e — €’)/Nyv(e). One can use extra
bosonic modes bf(e) with [b(e),b(e")] = 8(e — €')/ng to
describe the intrinsic damping of the cavity; i.e.,

Hpu = f denglebt(e)b(e) + thi(e)a + t*atb(e)]. (29)

The coupling between the quantum dot circuit and the cavity
is described by the term A, (G + ah) with

hint Za@$6d+/d5N0V(5)[V 16(e) + v el ). (30)

It is not necessary to write explicitly the coupling between
the chemical potential of the reservoir and the cavity because
since there is a single reservoir, it is only the difference between
the potentials of the dot and the reservoir which matters. Note
that the terminology “quantum RC circuit” mainly refers to
the fact that no dc current can flow through the device and
dissipation is due to transport through a single tunnel barrier.
However, in the general case, the concept of a local capacitor
is not sufficient to describe the coupling of the electromagnetic
field to the device, since the photonic pseudopotential modifies
&4 and ¢ simultaneously. In practice, one can measure the
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response of the cavity to a microwave drive with frequency
wpgrr /27, which can be described by

HRF = SRFElel'tCAl + SZFeileNCAlT. (31)

Above, we have disregarded Coulomb interactions between the
tunneling charges (including the contribution from the V2 /iy
term arising from the unitary transformation of Sec. II B),
because we assume that these interactions are smaller than the
tunnel rate I' = 77|¢|> N, between the dot and the reservoir.
Such a simplification is frequently performed for interpreting
standard current measurements in open quantum dot circuits
[91,92]. In practice, one can check the relevance of this
hypothesis by measuring for instance the ac current through
the dot versus ¢,.

B. Cavity frequency pull and damping pull

Our purpose is to identify signatures of the terms in y, which
could become visible in the cavity response, considering the
recent progress on the mesoscopic QED technology [89,90].
In the framework of the linear response theory, the cavity
electromagnetic response to Hy is determined by the Green’s
function [29] Gy a1 (wrr) With G 4 5(t) = —i0@)([B(1),A(t =
0)]) and G 4 3(w) = ffozodtf}fg’g(t)ei‘“’. One can use the exact
relation

Gaat(@) = Go(w) + K 2Go(@)Gj, i (@)Go(w)  (32)

with Go(w) = (0 — wy +iAg)~" the free cavity Green’s
function. In the simplest model where t and n( are inde-
pendent of energy, the constant Ay = 7|t|?ng/h corresponds
to pure cavity damping. In the following, we consider the
limit Ag < o which corresponds to standard cavities. In
the limit wgr — wo, A9 K I', one can use a random phase
approximation which leads to

(CORF)T1

(33)

Gaat(wrp) = [wrp — wo + iAo — G

intPint

with Gy, ;. (1) = G i D, o the electronic response func-
tion calculated in the absence of the cavity. In the framework
of a noninteracting diagrammatic calculation, G 5 (w) can
be decomposed into the eleven contributions represented in
Fig. 2. Our calculation is not perturbative in ¢ since we use
an exact expression for the dressed propagator of electrons
on the dot, corresponding to the double full lines in Fig. 2.
There are nine types of diagrams corresponding to the possible
ordered pairs formed with the interaction constants ¢, y, and
y*. The diagrams of Fig. 2(a) correspond to pure contributions
from photon-induced orbital shifts in . The diagrams of Figs.
2(b) and 2(c) correspond to contributions from photon-induced
tunneling in |y|?, y2, or y*2. Note that the contributions in
|y |> have been separated into the diagrams of Fig. 2(b) which
diverge logarithmically for D large and the bottom diagrams
in Fig. 2(c) which are regular. There also exist interferences
between photon-induced orbital shifts and photon-induced
tunneling, as shown by the diagrams of Fig. 2(d) which depend
onay oray®.

The constants I and D set the scale of variations of
G,;im;“m(a)). Therefore, in the limit wy < I', D, one can re-
place G ;. (wrr) with G; ;. (0) in Eq. (33). This gives a

PHYSICAL REVIEW B 91, 205417 (2015)

€

FIG. 2. (Color online) Scheme of the various contributions to
G, i (D). The wavy lines correspond to photonic propagators, the
simple dashed lines to bare electronic propagators in the normal metal
reservoir, and the double full lines to electronic propagators in the
quantum dot dressed by the dot/reservoir tunneling processes.

cavity frequency pull Awy = Gy, ;. (0 = 0)/ h? and a cavity
damping pull AAy = —(wo/ihz)BGﬁim;lim(w)/awbzo. In the

limit ' « D and at zero temperature, one obtains Awy =
Al + Ao, where

2
Aol = ——— (47> NZ Re[ty*)°T
0 mh(I? + ¢&3) ( o Relry’]
+ 4dmaRe[ty*INoeq — T (34)

stems from the diagrams of Fig. 2(a), 2(c), and 2(d), and

2 D I?+¢3
Aa)g:%|y|2N0D2——|-g2{Dlog|: D2 d:|
d

+ |eq| (2 arctan |:L:| — n)} (35)
|€al

stems from the diagrams of Fig. 2(b). Note that the cutoff
v(€) on the reservoir density of states is necessary to avoid a
divergence of Aa)g. The cavity damping pull is given by

2(1)0

AAg = S(al — 2w Re[ry*INoea)>.  (36)

ﬂ(l"2 + 85)

Interestingly, Aw(; and A Ag vanish for e; 3> T, whereas Aa)g
vanishes only for e; > D. Above, we have implicitly included
the spin degree of freedom in the model. In the spinless case,
Awgy and A A should be divided by a factor 2.
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FIG. 3. (Color online) Reduced Awy and /A A, versus &; for
different values of y. We have used /" = 0.001, D = 20I", and
pulsation scales Qo = 2a?/7Thand ; = Awy/T.

From Egs. (34)-(36), at low temperatures, when the cavity
has a frequency smaller than the dot/reservoir tunnel rate I’
and the reservoir bandwidth D, and when y = 0, the cavity
frequency pull and the damping pull fulfill the relation ® =
/2 with

O[ZAA()

= wo(hAwe)? G

This property is a manifestation of the Korringa-Shiba relation
[93], whose universality is still actively discussed for quantum
RC circuits [59-65]. Remarkably, we find that this universality
is broken for y finite. Hence, one can identify the existence of
the y coupling by comparing the Awy(es) and /A Ao(eq)
curves (Fig. 3) or studying ® (Fig. 4). Here, we present
results for y /o <« 1 because from Eqgs. (14) and (15), this
is the most probable regime of parameters. When y = 0, Awy
and /A A show identical variations with g4, and are both
even functions of &4, while ® = /2. When y # 0, VAAp
presents a resonance with ¢; which is wider than that of
Awy (Fig. 3, middle panel). A good resolution on the tails
of the Awy and /A A resonances could also reveal that Aw,
and AAy are not even with g4 in the general case, except if
arg[ty*] = m/2 (Fig. 3, bottom panel). In principle, even a
relatively small y can be detected. Indeed, for y /a ~ 1074,
O already significantly deviates from 7 /2 at &, ~ 0 where the
signals Awy and /AA are maximal (Fig. 4, pink curves).
This is because the effect of the photon-induced tunneling
term is boosted by the large number of states involved in the
reservoirs. To conclude, in order to reveal the photon-induced
tunneling terms, one promising possibility is to compare the
cavity frequency pull and damping pull caused by a quantum
dot with a single normal metal reservoir. Even arelatively weak
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arg(ty*)=n/2 yla=0

1.0

arg(ty*)=n/3
yla=0

20

FIG. 4. (Color online) Ratio ® versus &, for different values of
y. We have used the same values of ¢, D, and €2 as in Fig. 3.

photon-induced tunneling can affect these quantities because
the large number of reservoir states reinforces the tunnel effect.

C. Experimental state of the art and discussion

In principle, circuit QED should enable an accurate de-
termination of ® thanks to the use of resonant techniques.
The fabrication of a quantum dot with a single normal metal
reservoir inside a coplanar cavity is fully accessible with
present techniques. However, so far, the closest case studied
experimentally is a quantum dot with two normal metal
reservoirs, which leads to more complicated physics due to an
asymmetric coupling of the two-reservoir chemical potentials
to the cavity [9,10]. Different types of quantum RC circuits
based on 2DEGs but also carbon nanotubes or semiconducting
nanowires deserve an investigation. The ratio y /o should be
strongly dependent on the type of nanoconductor and the
contacts configuration used.

The physics discussed in this section is related to the
problem of a quantum RC circuit which is not coupled to a
cavity but directly excited by a classical microwave field with
amplitude agr and frequency wgr /27, which corresponds to
a term in hyagr cos(wgrt). At low frequencies and 7 = O,
it has been predicted [59—65] that a spinless quantum RC
circuit excited classically should have the same admittance
as an RC circuit, with a universal resistance R = h /262.
However, this result was obtained in a purely capacitive
coupling scheme;i.e., y = 0. Assuming that the admittance of
the circuit is determined from the current I = edig/dt with
g = @;6[,, this value of Ry can be recovered by calculating
the charge susceptibility Gy, a,(wgr), i.e., the diagram of
Fig. 2(a), which leads to Ry = ®h/e?> = h/2e* because
y = 0. However, in the general case, one should calculate the
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current response of the quantum RC circuit from G, ;. (wgrr)
because the oscillating drive can also modify the tunnel barrier
transparency. Only the diagram of Fig. 2(a) and half of the
diagrams of Fig. 2(d) should contribute to R, whereas the
diagrams of Fig. 2(b) leading to the logarithmic term of
Eq. (35) should not contribute. Therefore, R, should show a
behavior qualitatively different from ®. We will not discuss the
detailed behavior of R here. We will simply point out that for
y # 0, R is not universal, and furthermore, R, and ® are not
trivially related. Interestingly, the universal value R, = //2e>
expected for a spinless system with y = 0 has been checked
experimentally in the limit 7 — O for a 2DEG-based circuit
[92]. However, this measurement is not incompatible with a
finite y, due to its uncertainty of the order of 20% [94].

Note that since R, and ® are qualitatively different signals,
it can be interesting to measure both in the same experiment
in order to obtain more information on the system. More
generally, the study of tunneling effects can benefit from a
simultaneous measurement of the cavity response and the
current through the nanocircuit. Such a joint measurement
has already been realized in the case of a DQD. The
cavity dispersive shift is directly sensitive to the population
imbalance between the DQD bounding and antibounding
states whereas the current though the DQD corresponds to
a more complex combination of state populations and tunnel
rates. The simultaneous measurement of the two signals gives
stronger constraints to determine the system parameters [17].
Another possibility to gain more information on mesoscopic
QED systems might be to measure cross correlations between
the electronic current and the cavity output field.

Importantly, the example of the quantum RC circuit shows
that dissipation of the cavity photons has to be considered
carefully, since an open quantum dot circuit with a single
contact can already induce photon dissipation. On a more
general level, photonic dissipation in mesoscopic QED is a
very rich problem. Another interesting possibility would be
to prepare nontrivial quantum photonic states by combining
the effects of photonic and electronic dissipation with the
nonlinearity of quantum dot circuits, by analogy with the meth-
ods developed for two-level systems [95,96]. This so-called
“reservoir engineering” could benefit from the specificities
of nanocircuits such as the use of reservoirs with specific
electronic orders or finite-bias electronic transport.

IV. CONCLUSION

Mesoscopic QED has common ingredients with atomic
cavity QED, such as the relevance of an orbital degree of
freedom, which does not exist for superconducting qubits.
It has also common ingredients with standard circuit QED,
such as the tunneling physics and the strong inhomogeneities
of the photonic modes. It is therefore necessary to develop
a specific description which combines all these ingredients.
In the case where photon-induced magnetic effects can be
disregarded, one can express the coupling between tunneling
quasiparticles and photons in terms of a scalar photonic
pseudopotential. In the framework of a tunneling model,
this leads to photon-induced orbital energy shifts, which
coexist with photon-induced tunneling terms and photon-
induced local orbital transitions. To illustrate the richness
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of our approach, we have discussed the example of a cavity
coupled to a quantum RC circuit, i.e., a single quantum dot
coupled to a single normal metal reservoir. The photon-induced
tunneling terms between the dot and the reservoir induce
a nonuniversal relation between the cavity frequency pull
and the cavity damping pull, contrarily to what is expected
with purely capacitive coupling schemes at low temperatures
[59-65]. This case represents only one example of the use
of our formalism. We have given explicit Hamiltonians for
the cases of a multiple quantum dot circuit in a cavity, and
a superconducting nanostructure enclosing Majorana bound
states coupled to a cavity. One could also consider cavities
coupled to quantum point contacts, molecular circuits, and
metallic tunnel junctions, for instance.
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APPENDIX A: EFFECTIVE MODEL FOR MESOSCOPIC
QED DEVICES

1. Definition of the model

In the main text, Eqgs. (1)—(4) have been introduced on
the basis of a physical discussion and gauge invariance
considerations. It is also instructive to use an effective model
which separates spatially the tunneling and plasmonic parts of
the nanocircuit. Note that this effective model does not aim at
calculating quantitatively the nanocircuit/cavity couplings. It
rather aims at providing a full mathematical justification for the
form of Egs. (1)-(4) and a deeper insight on the underlying
physics. For simplicity, we assume that the nanoconductors
host only individual electronic orbital modes since their
electronic density is generally very low. We assume that the
plasmonic modes in the fermionic reservoirs (blue elements in
Fig. 1) are ultrafast due to the absence of a dynamical Coulomb
blockade [67]. In this case, one can decompose each fermionic
reservoir into a purely orbital conductor [dark gray elements in
Fig. 5(a)] which contains no plasmons and is tunnel-coupled
to the nanocircuit, and perfect conductors [small purple
elements in Fig. 5(a)] which can host plasmonic modes, but
are only capacitively coupled to the nanoconductors. These
perfect conductors, or “effective plasmonic reservoirs,” can be
placed such that the partial or full decrease of the photonic
fields around the nanocircuit orbital states is reproduced at
least qualitatively. We denote with C the ensemble of the
perfect conductors, which includes the cavity conductors,
gate electrodes, and the effective plasmonic reservoirs [see
Fig. 5(b)]. Some of these conductors are voltage biased and
some others are left floating, such as the central conductor in a
coplanar cavity. The rest of the circuit represents an effective
orbital nanocircuit O where tunneling physics prevails [see
Fig. 5(c)]. Note that in principle, to grant current conservation,
the “orbital” reservoirs have to be connected to voltage sources
through wirings which host plasmonic modes, but one can
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wtla

FIG. 5. (Color online) (a)Effective model for the circuit of Fig. 1,
where the nanocircuit reservoirs are decomposed into effective orbital
reservoirs (dark gray elements) and effective plasmonic reservoirs
(nearby purple elements). (b) Ensemble C of the perfect conductors
considered for the generation of the photonic modes. The photonic
field in yellow is inhomogeneous, as represented by darker yellow
areas near the cavity protrusions, and by the white (screening)
areas between the small purple conductors. (c¢) Effective orbital
nanocircuit O.

assume that they are too far from the nanoconductors to have
any significant influence on the nanocircuit/cavity coupling.
For later use, we attribute to each conductor of the ensemble
C anindex i and we note S; and V; the corresponding surface
and volume. In the following treatment we make a distinction
between the conductors i € F which are left floating with a
constant total charge Q;, and the conductors i € B which
are voltage-biased with a constant voltage V; or grounded
(V; = 0). The generators imposing the voltages V; can be
omitted from the description and included in electromagnetic
boundary conditions since they are far from the cavity and
nanocircuits. The volume Vy complementary to ) _;V; hosts a
charge distribution p(F,t) = Y, nead(F — Go) of particles «
with charges e, at positions g, which belong to the nanocircuit
O. We also define the corresponding current distribution

j(?,l‘) = Zaeoea§a8(7 - Eiot)-

2. Decomposition of fields in harmonic, longitudinal,
and transverse components

In cavity QED, the treatment of the boundary conditions
provided by the cavity conductors is usually omitted, because
the atoms are very far from the cavity mirrors. Therefore,
a procedure based on a spatial Fourier transformation can
be used to separate the transverse electric field £, which
has no divergence, from the longitudinal electric field E|,
which has no rotational [4]. It is found that the value of E I
is instantaneously imposed by the charge distribution p(7,t)
associated with the atomic system. In contrast, the transverse
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fields E, and B = B, correspond to propagating modes. In
mesoscopic QED, it is necessary generalize this procedure
to account for the presence of the perfect conductors of the
ensemble C, including voltage-biased electrostatic gates. As
already mentioned in the previous section, we use a charge
distribution p(7,t) which includes the charges from the O
subsystem only. We will take into account the screening
charges on the surface of the conductors of C through
electromagnetic boundary conditions.

Inside Vo, p(F,1), f(? ,1), and the total electric and magnetic
fields E (,t)and é(? ,t) are related by Maxwell’s equations. To
understand how these relations are affected by the screening
charges lying on C we mtroduce the Hodge decomposmon
of a generic field f as f fH + fl -+ fhm, where fH has a
finite divergence but no rotational, f " has a finite rotational
but no divergence, and ﬁarm has none [68,69]. A similar
decomposition was invoked very recently in the context of
cavity QED [81]. However, in this reference, the effects of
the dc voltage biases V; or the floating charges Q; are not
considered (i.e., V; = 0 is used for any 7). Besides, the volume
Vo outside the cavity conductors is assumed to be bounded.
This hypothesis is not possible in our case due to openings
in the cavity planes, which are necessary to connect the
nanocircuits to their outside voltage bias circuitry. Hence, we
need to perform the Hodge decomposition in the fully general
case. Below, we explain how to perform this task.

It is convenient to introduce a potential ®pum(7) and
a Green’s function G(7,7") which fulfill the static Laplace
equations:

A?cbha.rm(;) =0 (ATD)
and
A:G(F,F) = =8(F —T')/eo (A2)
for (,F') € V3, with boundary conditions
/ d*r Vi ®pam(7) - i = —Q, fori € T, (A3)
Si
®pam(P) =V for7¥ € S; and i € B, (A4)
and
/ d*rV:GF,F)-ii = 0fori e F, (A5)
Si
G(F,F)y=0for7 € S;andi € B. (A6)

Above, 7 is the outward pointing unit vector perpendicular to
S;i. One can check that each of these two sets of equations
has a unique solution provided B is not empty [97]. From
Egs. (A1)-(A6) and the Maxwell equations one can check that

Enam(F) = — V5 Pparm (7). (A7)
E\(F.1) = — / &r'V:GE ) 1), (A8)

and
E\(F.1) = EG.0) — Ey(F,1) — Enam(P),  (A9)
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while B, (F,1) = B(F.1)is still valid. We also find j = jj + j,
with

Ji(Fot) = —[0E(F.1)/01) /¢ o (A10)

and

JLGED) = JF.0) — jyGEn). (A1)

The harmonic component Eharm represents a static contribution
to the electric field, set by the charges Q; or potentials V;
imposed on the conductors i. Thanks to the use of G(7,7"),
the definitions (A8)—-(A11) take into account the effect of the
screening charges lying on C. Using the Maxwell equations
and the expressions (A7)-(All),_one can check that the
longitudinal components E; and j; are set instantaneously
by p(¥,t) since

Vi E|(r,1) = p(r,1)/eo (A12)

for 7 € V. Furthermore, B 1, E 1, and ] | follow an indepen-
dent system of propagation equations, i.e.,

Vi AEL(F,t) = —3B.(F,1)/0t, (A13)
19 -
V~ A BL(r 1) = pL()jJ_(r t) + iy El(r t) (A14)

for7 € Vp. The above equations have to be supplemented with
the boundary conditions

/ d*rEy)(F.t) -7 =0fori € F, (A15)

i

/ dr - Eyy(F.t) = 0for 7 € S; with (i,j) € B2, (Al6)
ij

with £;; any trajectory connecting conductors i and ;.

3. Mesoscopic QED classical Lagrangian

At this stage, it is convenient to introduce scalar and
vector potentials U and A in the Coulomb gauge; i.e.,
V; - A(F,t) = 0. We also define the decomposition U (F,t) =
U\ (F,t) + @parm(7), such that

E (F.1) = —=V;:Uy(F.1), (A17)
E (F.t) = —0AF.1)/dt, (A18)

and
B =V:AAGFD). (A19)

A comparison between Egs. (A2)—-(A6) and Egs. (A12), (A15),
and (A16) leads to the identification

U (F,t) = / &*r'GFE,F)p(F 1) (A20)
Vo

up to a global constant which one can disregard. Hence, E I
but also U are instantaneously set by the charge distribution

o(#,1). In contrast, the transverse fields E 1 and B are
determined by A which follows the propagation equation

CHAG, D] = — o)L (F 1) (A21)
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given by Eq. (A14), with (; = Az — (8?/c*3¢?), and bound-
ary conditions similar to Eqs. (A15) and (A16). In this
framework, a proper classical Lagrangian is

= %Zma@i - %ZeaUH(éast)
> e Phum@e) + Y Cade - AGant)
o o

I d - 2
+—/ d’r ‘—A(?,t)
2 Jy, dt

with ¢ € O in the sums. The Lagrangian equations deriving
from L correspond to Eq. (A21) and to the standard Newton
equations for the motion of particles «.

— 32|V A A(?,t)|2) (A22)

4. Mesoscopic QED Hamiltonian
From Eq. (A22), one can check that Do = maqa +
eaA(qa,t) is the conjugate of g, and Hl(r 1) = —goE (F,t)is
the conjugate of A(r 7). Therefore one can express the Hamil-
tonlan of the system as H = Z Da qa + fv a3 r(l'IJ_(r t)-

A(r t)) — L. This Hamlltoman can be quantized stralghtfor-
wardly by replacing py, Gy, I, and A with operators Py, Gu,

I1, and A. This gives

A= 3 [B0 — eahlGl?

2mu,

1 2 Y
+ E Za:eaUH(qa) + Za:eaq)harm(%z)

1 s (1 2, 1 - 2
+=f dr|—IIII"+ —|ViANA@®)|" ). (A23)
2 Vo ) Mno

In principle, the ensemble of the charges « € O includes
tunneling electrons (« € 7") but also ions and valence electrons
from an underlying crystalline structure. In the main text, the
two latter are assumed to be decoupled from the cavity and are
thus treated in a mean field approach. Note that the harmonic
potential term in the above Hamiltonian is omitted by Ref.
[81]. In our case, this term is crucial to account for the effect
of dc electrostatic gates.

Assuming that the coup}ing between C and O is pertur-

bative, the fields A and IT can be expressed in terms of
photonic modes calculated in the absence of O, using for
instance Eq. (A21) with ]1 =0 We treat explicitly only
one of these modes in Eq. (4). Screening charges on the

nanocircuits reservoirs can strongly modify A. This is why,
in the general case, it is not adequate to make a perturbative
treatment between the photonic field generated by the empty
cavity and the whole nanocircuit. Instead, the present work
considers a perturbative treatment between the photonic field
generated by the plasmonic modes in the whole mesoscopic
QED device, and the effective orbital nanocircuit O. Similarly,
in superconducting circuit QED, the cavity modes can be
strongly renormalized by the presence of a superconducting
quantum bit, and perturbation schemes must therefore be
defined carefully [98].
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In this Appendix, the renormalization of the bare cavity
modes by the nanocircuit plasmons is described formally
by supplementary boundary conditions imposed by effective
plasmonic reservoirs. This enables a simple mathematical
justification for the form of Eqs. ( )—(4). In order to get realistic

estimates of the fields A and I1, one can make a numerical
microwave simulation using the real device geometry, with
the nanoconductors omitted (see main text).

APPENDIX B: ADVANTAGES OF THE PHOTONIC
PSEUDOPOTENTIAL SCHEME

The advantages of a formalism without the A2 terms
have already been discussed thoroughly for cavity QED
[4]. However, since the physical ingredients and measured
quantities are different in cavity and mesoscopic QED, it
is useful to discuss more specifically the advantages of the
photonic pseudopotential scheme of Sec. II E 2.

The first quantity which is generally measured in meso-
scopic QED experiments is the cavity frequency pull for a
given cavity mode, which is modified by the nanocircuits
coupled to the cavity. Since the minimal coupling scheme and
the photonic pseudopotential scheme are related by a unitary
transformation, they must of course predict the same cavity
pull. It is nevertheless instructive to check this equivalence for
a simple example. Here, we use a simpler approach than in
Sec. IV, because we do not need to particularize the effect of
the nanocircuit reservoirs and we will not discuss the cavity
damping pull. We consider a cavity coupled to a nanocircuit
with unperturbed many-electron states |<p j> which satisfy the

general equation Hy |g;) = E; |p;) with

A2 2
A Po 2 € 2 3z
HO = E (zma - eq)tot(qot)) + E E G(%J]a/) (Bl)

o

and D(Ga) = Pram(Ga) + Veont(Ge). We discuss the limit
where the nanocircuit and the cavity are not resonant; i.e.,
E; — Ej # hwy for any j and j’. At second order in the

cavity/nanocircuit coupling (i.e., V, or ;l), an elementary
perturbation theory gives the cavity pull

2(hwo(Ej — Ej )M
(Ej — Ej)* — (hawo)?

Ahwyj= Y

Jlaal

(B2)
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with
M = (i IVL@Gu)l @) (@51 VL(Ga) ;).

Note that Ahwy ; depends on the state |¢;) occupied by the
nanocircuit. This can be used, in principle, for a noninvasive
readout of the nanocircuit state in the nonresonant regime [2].
Equation (B2) can be obtained by using Hamiltonian (8) or
equivalently Hamiltonian (1). In order to check the equivalence
between the two approaches, it is necessary to invoke the
completeness relation ) jloi){gjl =1 for the nanocircuit

(B3)

states. Interestingly, one can check that the A2 terms in Eq. (1)
give a contribution

Ahog!! = " 2E; — EjMO
Jaa

to Ahawy, j, which is not negligible for |[E; — E /| > hwy. We
conclude that in the framework of mesoscopic QED where the
cavity frequency pull is a central quantity, it is particularly
important to eliminate in a rigorous way the A2 terms if
one wants to use a linear light/matter coupling. The photonic
pseudopotential scheme completes such a task.

The cavity frequency pull is not the only means to
characterize the interactions between a nanocircuit and a
cavity. A more general workout of mesoscopic QED devices
requires the knowledge of the matrix elements between the
different nanocircuit eigenstates, generated by the cavity
photons. Another argument in strong favor of the use of the
photonic pseudopotential scheme is the general relation

(B4)

ie
Zma(Ej/ — E/)
X (91Gu - AGa) + AGa) - Pal@j). (BS)

It indicates that the single-photon coupling elements decay
more quickly with (E;; — E;) in the photonic pseudopotential
scheme. In practice one often uses a truncated space for the
nanocircuit electronic states which is difficult to handle or
determine globally. This is what we do for instance in Sec. IV,
where we consider a single-orbital quantum dot. Equation (B5)
shows that in this case it is more accurate to use Eq. (8) to
predict the cavity behavior.

Finally, the photonic pseudopotential scheme involves only
photon-independent superconducting gap terms (see Sec. IL E).
This can be another significant advantage considering the
already rich structure of the nanocircuit/light coupling in the
absence of superconductivity.
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