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Optimizing third-harmonic generation at terahertz frequencies in graphene
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We model third-harmonic generation in doped monolayer graphene at terahertz frequencies by employing a
nearest-neighbor tight-binding model in the length gauge. We show that for a given incident-field amplitude
there is an optimum Fermi level that maximizes the emitted third-harmonic field. The optimum Fermi level
depends very strongly on the incident-field amplitude as well as on the scattering time and increasing either
enhances the third-harmonic response. We consider the general case of Fermi-level-independent scattering as
well as three different scattering mechanisms that are Fermi-level dependent: phonon, long-range impurity, and
short-range impurity scattering. For each case, we determine the optimal Fermi level as well as the amplitude
of the optimized third-harmonic response for single-cycle incident fields with central frequencies of 1 THz and
amplitudes in the range of 25–75 kV/cm. We find that although nonlinear processes beyond third order suppress
third-harmonic generation, we still obtain third-harmonic amplitudes as large as 1.6% of the fundamental of the
transmitted field.

DOI: 10.1103/PhysRevB.91.205407 PACS number(s): 72.20.Ht, 72.80.Vp, 42.65.−k, 73.50.Fq

I. INTRODUCTION

Graphene, a two-dimensional allotrope of carbon, has
a number of features that make it an attractive nonlinear
system to study [1–4]. These include a tunable Fermi level,
which can be adjusted via an applied gate voltage [5,6], and
more importantly a linear dispersion relation near the Dirac
point [7,8]. This linear dispersion and the accompanying
constant Fermi velocity has led to the prediction of the
generation of high harmonics in graphene [1]. Application
of an electric field results in a rate of change in the crystal
momentum within a given band that depends linearly on the
applied electric field in the usual way. However, because the
electron dispersion in graphene is linear in k near the Dirac
points, the electron velocity is independent of the crystal
momentum. Thus, the current experiences saturation when,
due to the application of a strong terahertz (THz) field, most
of the electrons move to one side of the Dirac point in k space.
This leads to a suppression in the temporal peaks of the current
density, i.e., “clipping” of the current, which in turn results in
the generation of odd harmonics in the current and transmitted
electric field.

Third-order nonlinearities in graphene have been inves-
tigated theoretically and experimentally across the electro-
magnetic spectrum [1,2,9–17]. In the optical regime, different
third-order processes have been measured, such as four-wave
mixing [2] and third-harmonic generation [18,19]. However,
there have been inconsistencies in the values for the extracted
effective susceptibilities with results depending strongly on the
measurement method, operating frequency, and sample prepa-
ration [15]. At terahertz frequencies, high harmonic response
in graphene has been predicted theoretically [1,9,10,12],
but the only reported experimental evidence of harmonic
generation has been in a 45-layer-thick sample [20]. There
has been no indication of harmonic generation in monolayer
graphene, although a nonlinear suppression of the conductivity
has been observed [21]. Hence, it is important to understand
why harmonic generation has not generally been observed and
to investigate the effects of different system and experimental
parameters on the efficiency of high harmonic generation so

as to determine the conditions under which a third-harmonic
response may best be observed. The nonlinear response, of
course, depends on the amplitude of the incident electric field.
However, it is less obvious how the Fermi level in the graphene
sample and scattering times of the charge carriers in the sample
will affect harmonic generation.

In this paper, we develop a theoretical model based on the
density-matrix formalism in the length gauge to calculate the
nonlinear THz response of graphene. We employ this model
to examine the dependence of third-harmonic generation on
the amplitude of the incident electric field, the Fermi level,
and the scattering time of the charge carriers in a monolayer
graphene sample. Although some previous theoretical investi-
gations [9,12] have ignored scattering effects, we find that the
third-harmonic amplitude is strongly affected by scattering.
Because scattering times in graphene are only on the order of
tens of femtoseconds, it is very important to include scattering
processes in any model of the THz response of graphene.
This is in contrast to models at optical frequencies where
neglecting scattering is often a reasonable approximation [15].
There have been extensive theoretical and experimental studies
on carrier scattering in graphene [8,22–25]. In principle,
there are four mechanisms of carrier scattering that can be
important in graphene: phonon scattering, long-range impurity
scattering, short-range impurity scattering, and carrier-carrier
scattering. In this paper, we first optimize the Fermi level for a
given Fermi-level-independent scattering mechanism and then
optimize it when a different scattering mechanism is dominant.
In the latter case, we account for the different Fermi-level
dependence of the scattering time for three different scattering
mechanisms: phonon, long-range impurity, and short-range
impurity. We examine each scattering mechanism separately
and optimize the Fermi level for strongest third-harmonic
response for a range of field amplitudes of 25–75 kV/cm.
We find that for any combination of incident electric-field
amplitude and sample scattering time (or dominant scattering
mechanism) there is an optimal Fermi level for which the
transmitted third-harmonic response generated by graphene
in the terahertz regime will be strongest. We find that the
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amplitude of the generated third-harmonic field can be as
large as 1.6% of the fundamental of the transmitted field.
These results will be useful in guiding further experimental
studies at high-field amplitudes and tunable Fermi levels
towards efficient and detectable third-harmonic generation
from monolayer graphene. Moreover, they also help explain
why third-harmonic generation has not been experimentally
observed from monolayer graphene to date.

The paper is organized as follows. In Sec. II, starting with
the tight-binding method to obtain interaction matrix elements
in the length gauge, we present a brief derivation of our
theoretical model to calculate the intraband current density
and the transmitted field. In Sec. III, we introduce the three
different scattering mechanisms and show the scattering time
versus Fermi-level dependencies considered here. In Sec. IV,
the numerical simulations are presented with both Fermi-level-
independent and Fermi-level-dependent scattering. Finally, the
conclusions are presented in Sec. V.

II. THEORY

We employ a nearest-neighbor tight-binding model for
the band structure of graphene [8,26]. The tight-binding
expression for the Bloch states is as follows:

�[c,v]k(r) = F
∑

R

e(ik·R)[ψp(δrA) + Cψp(δrB)], (1)

where c and v indicate conduction and valence bands,
F is a normalization constant, C = σc,ve

−iχ(k), σc,v =
{−1,1}, χ (k) = arg(1 + e−ik·a1 + e−ik·a2 ), a1 and a2 are the
primitive Bravais lattice vectors, ψp(r) is the wave function of
a carbon 2pz orbital electron, δrA,B ≡ r − R − rA,B , where
rA and rB are basis vectors for the A and B atoms within
the graphene unit cell, and the sum is over the Bravais lattice
vectors R. We employ the length-gauge Hamiltonian [27],

H = H0 − er · E(t), (2)

where H0 is the unperturbed Hamiltonian of graphene,
e = −|e| is the electron charge, r is the electron position
vector, and E(t) is the THz electric field at the graphene layer,
which is equal to the transmitted field. The length gauge has
been employed rather than the velocity gauge because it has
been shown in previous works [27–29] that the length gauge
does not result in the unphysical divergences for the nonlinear
response when a finite set of energy bands is employed.

Following the Aversa and Sipe approach [27], the time
dependence of the density operator in the conduction and
valence bands including interband and intraband transitions
as well as scattering within and between these bands may
be determined. Carrier dynamics in graphene under stimu-
lation by an electric field involve both interband transitions
(between bands) and intraband transitions (within a band).
These two types of transitions are illustrated in Fig. 1. In
previous work [14], we have included interband and intraband
transitions in a density-matrix approach. However, because we
are only considering n-doped graphene in this paper, interband
transitions play a negligible role in the response and can
be safely omitted (as we will demonstrate below). Thus for
most of the calculations presented below, a simplified model
involving only intraband transitions is used.

Interband
transition

Intraband
transition

Energy

kx

Fermi
level

Dirac
point

ky

FIG. 1. (Color online) Diagram of the dispersion relation in
graphene near the Dirac point showing the linear dispersion, Dirac
point, Fermi level due to doping, and both intraband and interband
transitions.

In treating the scattering, we employ the relaxation-time
approximation, which assumes that as the carrier populations
scatter, they relax to a Fermi-Dirac distribution,

fc =
[

exp

(
E − EF

kBT

)
+ 1

]−1

, (3)

where E is the electron energy, EF is the Fermi energy, kB

is the Boltzmann constant, and T is the temperature. Thus,
the time dynamic equation for the electron-density operator is
given by [14]

dρcc(k)

dt
= −eE(t)

�
· ∇kρcc(k) − ρcc(k) − fc(k,t)

τ
, (4)

where τ is the population scattering time, which is considered
to be independent of energy. The intraband current density,
which in this case is the total surface current density Js in the
graphene sample, is then given by

Js(t) = 4evF

A

∑
k

ρcc(k,t )̂k, (5)

where A is the normalization area of the graphene sheet and
the sum is only over the region close to one of the Dirac points,
vF is the Fermi velocity, and k̂ is the unit vector in k space
where the origin is at one of the Dirac points.

To determine the response of the system, the electric field
transmitted through a layer of graphene on the interface
between the air and a substrate is required. Taking the index of
refraction of the substrate to be n, the transmitted field [Et (t)]
is given by

Et (t) = 2Ei(t) − η0Js(t)

n + 1
, (6)

where Ei(t) is the incident terahertz field and η0 is the
impedance of free space.

III. CARRIER SCATTERING

One of the challenges in optimizing the third-harmonic
response with respect to the Fermi level and scattering time is
the possible dependence of the scattering time on carrier den-
sity and thus on the Fermi level. Numerous experimental [25]
and theoretical [23,30–32] studies have sought to calculate or
measure the dependence of the scattering time (or conductivity
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or carrier mobility) as a function of carrier density and have
come to a variety of conclusions. There are four important
sources of carrier scattering in graphene: phonon scattering,
long-range impurity scattering, short-range impurity scatter-
ing, and carrier-carrier scattering [8,23,25,32,33]. For the
doping levels considered in this paper, the carrier-carrier
scattering time is expected to be greater than 100 fs for an
electron with an energy that is less than 1 eV above the
Fermi energy [23]. Thus, for the doping levels considered
in this paper, it is expected that the average electron-electron
scattering time will be considerably more than 100 fs, which
is somewhat longer than the other scattering times. Hence, for
simplicity, we have neglected the electron-electron scattering
as it is not expected to qualitatively change the results.

In this section, we give a brief description of each of the
first three types of scattering mentioned above and examine
the scattering times over the range of Fermi levels that
are used in the simulations. In the next section, we will
calculate the dependence of the generated third harmonic
on the Fermi level and incident-field amplitude for different
scattering mechanisms. Because the impurity-scattering times
depend sensitively on the impurity density, each sample will
have a different dependence on temperature and Fermi level.
Thus, rather than trying to combine the effects of all three
scattering mechanisms in our nonlinear simulations, we treat
each one separately. Because all samples will have phonon
scattering, one can then interpret the results using the different
scattering mechanisms from samples in which one of the three
mechanisms dominates.

A. Phonon scattering

Lattice vibrations lead to a phonon-scattering channel
that is unavoidable and can dominate transport near room
temperature in very clean samples [8]. The key data that
we employ to model the phonon-scattering mode is from
Chen et al. [25], who provided experimental results for the
conductivity (σ ) versus gate voltage data for a number of
different samples of graphene on a SiO2 substrate. As these
data are dominated by phonon scattering rather than impurity
scattering, it is thought that they must represent a high quality
clean sample. The samples discussed later in which scattering
is dominated by impurities almost certainly experience the
same phonon scattering observed here but also a larger degree
of impurity scattering. Therefore, it is not surprising that this
phonon-dominated sample possesses the longest scattering
times.

For our simulations, we use the data for sample 1 in Fig. 1(c)
of Chen et al. [25] and use their Eq. (2b) to fit the data
[here Eq. (7)], which fits their measurements somewhat better
than the alternative models they present. This semiempirical
equation contains contributions from longitudinal acoustic
phonons and remote interfacial phonon scattering by the
polar optical phonons of the SiO2 substrate. Using this, our
expression for the inverse of the dc conductivity is given by

σ−1(N,T ) = σ−1
0 (N ) + σ−1

A (T ) + σ−1
B (N,T ), (7)

where N is the carrier density, T is the temperature, σ−1
0 is the

residual resistivity at low temperatures, σ−1
A is the resistivity

due to acoustic phonon scattering, and σ−1
B is a single Bose-
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FIG. 2. (Color online) Three models for scattering time as a
function of Fermi level: phonon dominated (with dots represent
the experimental values [25]), long-range impurity dominated, and
short-range impurity dominated.

Einstein distribution fitting parameter that is most likely related
to interfacial phonon scattering [25].

Now, using the Drude model, the linear dc conductivity is
given by

σ = e2EF

�2π
τ, (8)

where τ is the electron-phonon scattering time that we wish to
determine and the Fermi energy is related to the carrier density
by EF = vF �

√
πN .

Using Eq. (8) and the expression for σ in terms of the
components σ0, σA, and σB , we can examine each component
and determine an accurate function for scattering time τ . In
order to obtain σ0, we have fit the experimental data to a power-
law equation. The final result is shown as the solid red curve in
Fig. 2 along with the experimental data (dots) for a Fermi-level
range between 50 and 360 meV. The corresponding scattering
time increases from 80 fs to almost 155 fs.

B. Charged long-range impurity scattering

Charged long-range impurity scattering due to impurities
in the substrate has been proposed in order to explain the
linear behavior of graphene conductivity versus the carrier
density concentration in low carrier density samples [23] and
successfully explains several transport experiments [34–36].
As discussed by Hwang and Das Sarma [23], in samples that
are dominated by charged impurity scattering, due to screening
by the carriers in the graphene, the scattering time increases
with Fermi energy and is given by

τ = EF

2πni�v2
F Ic

, (9)

where ni is the impurity number density and Ic is a factor that is
approximately 0.053 for graphene on SiO2 [23]. The impurity
concentration depends very much on the graphene substrate.
In order to keep our scattering times on the same order as
that found at room temperature due to phonon scattering, we
take our charged impurity concentration to be 1.5 × 1012/cm2,
which is similar to the one reported in Ref. [37] and leads to
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scattering times similar to those found in the recent graphene
literature [30–32]. The dependence of the charged impurity-
scattering time as a function of the Fermi energy for the above
impurity density is plotted as the dashed blue line in Fig. 2.

C. Short-range impurity scattering

We finally consider short-range impurity scattering arising
due to disorder in the graphene itself. From Hwang and Das
Sarma [23], for short-range impurities, the expression for the
scattering time is

τ = π�
3v2

F

2niV 2
o InEF

, (10)

where ni is the impurity number density, Vo is the scattering
potential, and In is a dimensionless factor that is approximately
0.03 for graphene on SiO2. Following Hwang and Das

Sarma [23], we take Vo = 1 keV Å
2
, and to bring these

scattering times into the same range as the phonon- and
long-range scattering times discussed above, we take the
impurity concentration to be ni = 2 × 1012/cm2, which is
consistent with values found in the literature [38,39]. For this
impurity density, the short-range impurity-scattering time is
plotted as the dashed-dotted curve in Fig. 2.

IV. RESULTS

To perform our simulations, we discretize k in Eq. (4) on a
square grid. We solve the coupled dynamic equations using the
Runge-Kutta algorithm with an adaptive time step. The values
for the density matrix as a function of time at each point in
k are used to evaluate Eq. (5), the result of which is used to
calculate the transmitted field via Eq. (6). For simulations in
which interband terms are excluded, a grid size of 401 × 401
cells with a maximum energy of 2.5 eV was required for
convergence of the transmitted field. In all simulations, we
make the approximation that the electron dispersion relation
is exactly linear with a Fermi velocity of vF = 1.0 × 106 m/s.
Using the tight-binding expression for the full dispersion, we
find that this linear expression for the dispersion is accurate
up to energies of about 900 meV at which energy it deviates
by less than 5.6% from the linear relation. This also means
that for energies below 900 meV, the electron group velocity
differs by less than 12% from vF . To ensure that we stay
within the linear regime, in all of our simulations, we choose
the maximum THz fields and Fermi energies such that no more
than 10% of all charge carriers ever occupy states with energies
above 900 meV.

In this paper, we aim to replicate conditions easily
achievable in a laboratory to best provide useful guidance
to experimentalists. The system we model is a monolayer of
graphene placed on top of a fused quartz substrate, which
has a refractive index of approximately 1.9 at terahertz
frequencies [40–42]. The temperature of the system is taken
to be 300 K, and the sample is assumed to be in vacuum so as
to avoid possible effects due to background gases [43]. In all
cases, the THz pulse is normally incident to the graphene and
is a 1 THz sine wave with a Gaussian envelope with a full width
at half maximum of 1 ps and an amplitude of Eo [44]. This
pulse was chosen because it is typical of the single-cycle pulses
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FIG. 3. (Color online) (a) Transmitted temporal signal and
(b) the corresponding normalized amplitude spectra, Enorm(ω) for
Eo = 50 kV/cm, Fermi level of 240 meV, and scattering time of
156 fs without (black solid line) and with (dashed blue line) graphene
present.

that are often obtained experimentally [45,46]. The duration
of each simulation is 6 ps with the pulse at the center of the
simulation time window. The electric field of the transmitted
pulse just after the air-quartz interface is shown in Fig. 3(a)
with (dashed line) and without (solid line) the graphene layer.
The Fourier transforms of both these fields are shown in
Fig. 3(b) where the Fourier amplitude of the transmitted
field is normalized to the amplitude of the transmitted field
at the fundamental frequency of 1 THz for the case when
the graphene is not present. Thus, the normalized transmitted
amplitude spectrum is defined as

Enorm (ω) ≡
∣∣∣∣ Et (ω)

Eo
t (ωo)

∣∣∣∣ , (11)

where ωo/2π = 1 THz and Eo
t (ω) is the field transmitted

through bare SiO2. As can be seen, in addition to the small
decrease in the amplitude of the field at the fundamental, we see
the clear presence of THz components at both 3 and 5 THz. In
the following, we concentrate on the generated third-harmonic
field.

A. Fermi-level-independent scattering

Before considering the third-harmonic generation results
using the above three models of scattering (which depend on
the Fermi level), we first present the results of simulations
where the scattering time is independent of the Fermi level.
Although generally speaking both interband and intraband
dynamics will occur in the graphene [14], the interband
dynamics will play a very small role if the Fermi level
is sufficiently high such that the interband transitions are
largely Pauli blocked. Thus, in our simulations, we take
EF � 50 meV, which is much greater than the average photon
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FIG. 4. (Color online) The calculated normalized transmitted
THz field Enorm (ω) as calculated using the full simulation (solid
line) and using a simulation that only includes intraband motion
(dashed line) for Eo = 50 kV/cm, a Fermi energy of 185 meV, and a
scattering time of 65 fs.

energy of only 4.14 meV for our 1 THz pulse. To confirm
that we can safely neglect the interband transitions, we have
performed a full simulation including both interband and
intraband dynamics using the theoretical model we presented
in Ref. [14] alongside a simulation that includes the intra-
band dynamics only. The results of the normalized transmitted
field spectra Enorm (ω), found using these two different simu-
lations, are shown in Fig. 4 for Eo = 50 kV/cm, a scattering
time of 65 fs, and a Fermi level of 185 meV. We have chosen
this value for the Fermi energy because (as we will show
towards the end of this sub-section) it is close to the optimized
values for this field amplitude and scattering time. As can be
seen, excluding the interband current leads to an overestimate
of the third-harmonic amplitude of only ∼12%.

Figure 5 shows the calculated density distribution near the
Dirac point during excitation for Eo = 50 kV/cm, a Fermi
level of 185 meV, and a scattering time of 65 fs at the time
t = 2.75 ps when the carriers are at their extreme displacement
to the right in k space. One can see that these carriers are
driven significantly away from the Dirac point, which is a
requirement to create significant current clipping and therefore
third-harmonic generation. However, this creates a certain
amount of unoccupied states at low energies near the Dirac
point, opening the way to interband transitions. Although these
interband transitions do occur, our simulation shows that the
interband current is at least two orders of magnitude lower than
the intraband current, and as discussed above the effect of these
transitions on third-harmonic generation is not significant in
the cases studied here.

We examined a variety of different cases where one would
expect the interband transitions to be most important, i.e.,
those where the Fermi energy is low and the field is high;

FIG. 5. (Color online) Plot of the electron density in k space at the
time when carriers have been moved to their maximum displacement
to the right for the Eo = 50 kV/cm field, a 185 meV Fermi level, and
a 65 fs scattering time.

in all cases, the exclusion of the interband current only leads
to a small overestimate in the third harmonic that is at most
12%. The effect of the interband transitions on the nonlinear
response of doped graphene was also noted by Ishikawa [12].
The reduction in the nonlinearity due to interband transitions
occurs because interband carrier injection increases the carrier
density, which in turn increases the intraband current and thus
reduces the clipping effect. The inclusion of the interband
response in our simulations increases the simulation time by
about a factor of 200, increasing the time required for a one
run case from a few minutes to a few days. Because we need
to perform hundreds of simulations to obtain the optimized
Fermi energy of each field amplitude and scattering time, the
results that we present in the rest of the paper are calculated
using simulations that only include the intraband response. To
minimize the effect of omitting interband transitions, we limit
the field amplitude, scattering time, and Fermi level such that
interband effects are below 12%.

In Fig. 6 we plot Enorm(3ωo) as a function of the Fermi
energy and the scattering time for an incident-field amplitude
of Eo = 50 kV/cm. Also shown in the plot (via the black dots
joined by a solid line) is the optimum Fermi energy for a given
scattering time. We clearly see that for samples with longer
scattering times, it is preferable to have a higher Fermi level.
This trend arises because, although a higher Fermi energy leads
to a larger current, if the Fermi energy is too high, then only a
small fraction of the carriers will be driven to the other side of
the Dirac point in k space, and so the clipping that leads to the
third harmonic will be minimal. Increasing the scattering time
results in an increase in the distance that the average carrier is
driven in k space, which means that the optimum Fermi energy
increases with scattering time.

We have found that for all electric-field amplitudes and
scattering times considered, an optimal Fermi level can be
found for third-harmonic generation. However, rather than
present a systematic study of these results for different field
amplitudes for our density-independent scattering time, we
now turn instead to the results for the three different models
of carrier scattering.
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FIG. 6. (Color online) Normalized third-harmonic amplitude
Enorm(3ωo) as a function of the scattering time and Fermi level for
an incident-field amplitude of Eo = 50 kV/cm. The black circles
indicate the Fermi energy that yields a maximum third harmonic for
a given scattering time.

B. Fermi-level-dependent scattering

Having observed that in the absence of any relationship
between Fermi level and scattering time there is always a par-
ticular Fermi level for which third-harmonic THz generation
is optimal, it is natural to extend the discussion to the more
realistic case in which there is dependence of the scattering
time on the Fermi level. As discussed in Sec. III of this
paper, we have performed nonlinear simulations for graphene
dominated by one of three types of scattering: phonon,
long-range impurity, and short-range impurity. In this section
we investigate whether there still exists an optimal Fermi
level at a given field amplitude for each model of scattering
and how the optimization is affected by the scattering time
function. In general, for samples containing a significant
density of short-range and long-range impurities, the scattering
in the sample will be dominated by short-range scattering at
high Fermi levels and by long-range scattering at low Fermi
levels [8]. However, to allow for the possibility that a sample
may contain a much higher density of one type of impurity than
the other and therefore be dominated at all Fermi levels by the
corresponding scattering mechanism, we have considered all
scattering modes separately for Fermi levels over the range
of 50–360 meV. We start with the case of phonon-dominated
scattering. In Fig. 7, we plot the normalized third-harmonic
field amplitude as a function of the Fermi energy for four
different incident-field amplitudes. We note that for all field
amplitudes, there is an optimal Fermi energy and that this
energy increases with increasing field amplitude as expected.
Moreover, we note that choosing the optimum Fermi level is
very important. For example, a 150 meV deviation in the Fermi
energy from the optimum value can reduce the third-harmonic
response by 50% or more.

In order to observe third-harmonic amplitudes, such as
shown in Fig. 7 experimentally, a quite high dynamic range
(defined as the ratio of the frequency-dependent signal ampli-
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FIG. 7. (Color online) Simulation results from the fit to the
phonon-dominated scattering data (see Fig. 2) for the normalized
third-harmonic field amplitude as a function of Fermi level for a
range of incident-field amplitudes Eo (top to bottom: 50, 37.5, 25,
and 20 kV/cm).

tude to the detected noise floor [47,48]) is required. For the
phonon-dominated mechanism and 50 kV/cm incident field,
the maximum normalized third-harmonic amplitude peaks
at 11.9 × 10−3 (i.e., 38.5 dB below the fundamental) for a
Fermi level of approximately 240 meV. The third-harmonic
amplitude decreases to about 5.6 × 10−3 at a 90 meV Fermi
level, which is 6.5 dB below the peak. Hence, a dynamic
range larger than 45 dB becomes necessary to observe such
third-harmonic signals. Such a dynamic range is achievable
as presented in Ref. [20] where the third-harmonic level
was measured successfully in multilayer graphene. Moreover,
this perhaps explains why the third harmonic was not seen
in Ref. [21] where dynamic range was only about 23 dB.
Therefore, accurate tuning of the Fermi level as well as a quite
high experimental dynamic range are rather critical in order to
observe strong third-harmonic generation in graphene.

Rather than plotting the third-harmonic field as a function
of Fermi energy for different incident-field amplitudes for the
other two scattering mechanisms, we now present the opti-
mized Fermi energy and the resultant optimized normalized
third-harmonic amplitude for all three scattering mechanisms
in Figs. 8(a) and 8(b), respectively, as a function of the incident-
electric-field amplitude. As was shown in Fig. 6, longer
scattering times result in stronger third-harmonic responses.
Thus, for each scattering mechanism, for a given incident-field
amplitude, the optimal Fermi level curve is skewed towards
Fermi levels that correspond to longer scattering times. This
results in a much lower optimum Fermi energy for samples
dominated by short-range impurity scattering than for those
dominated by either phonon or charged impurity scattering.
Note that for the range of field amplitudes considered, the
optimal Fermi energy never exceeds 360 meV but can be
as low as 80 meV for samples which are dominated by
short-range impurities. Since the scattering time for the
long-range impurity-dominated samples is much less than
the phonon-dominated scattering scenario, the calculations
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FIG. 8. (Color online) (a) Optimal Fermi level and (b) normal-
ized third-harmonic field amplitude as a function of the incident-field
amplitude for the three scattering models.

revealed a higher optimized Fermi level for this mode. As the
scattering times for the phonon-dominated scattering scenario
are longer than for the other two scenarios, the resulting
third-harmonic amplitude is highest as shown in Fig. 8(b).

The short-range impurity-scattering case was the only
case considered for which the scattering time decreased with
increasing Fermi level. This leads to a number of differences
between this case and the other two. In general, the observed
trend in all cases is that as the incident-field amplitude is
increased, the optimal Fermi level and the third-harmonic
response also increased. For the phonon and long-range
samples, the increase in the Fermi level leads to increased
scattering time, leading to a steep increase in third-harmonic
response. However, for the short-range case, the increase in the
third-harmonic response with field amplitude is much weaker
due to the decrease in scattering time as the Fermi energy
increases.

In view of the results presented in Fig. 8(b), it is evident that
the required dynamic range is significantly less if the sample
is clean, i.e., phonon dominated. For instance, at an incident
field of 75 kV/cm, the third-harmonic amplitude power is
−35.9 dB, whereas it is −44.9 dB for short-range impurity
scattering. Having said that, the required dynamic range might
be much higher if the Fermi level is not tuned to the optimum
values shown in Fig. 8(a). Moreover, it is worth mentioning that
recent studies [49,50] have shown that the scattering time in
certain samples of graphene decreases when the electric-field
amplitude increases. Such a decrease would lead to a reduction
in the third-harmonic level for a given field amplitude, and
hence a higher field would be required to achieve the same
third-harmonic level. Because this field dependence is sample
and Fermi-level dependent, for simplicity we have not included
it in the analysis presented here but leave it for future work.
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FIG. 9. (Color online) Dependence of the normalized third-
harmonic amplitude on the transmitted field amplitude for a short-
range scattering model with a Fermi level of 105 meV and a scattering
time of 68 fs.

When scattering time and Fermi level are held constant,
if the process that generates the third harmonic is a purely
χ (3) effect, then the amplitude of the generated third-harmonic
field should increase as the cube of the incident THz field.
When the Fermi level is optimized to generate the largest third-
harmonic response at each incident-field amplitude, one might
expect that the third-harmonic response would thus increase at
least cubically with the incident field and perhaps even more
rapidly due to the selection of optimal Fermi level at each field
amplitude. This would thus lead to a quadratic dependence
of the normalized third-harmonic amplitude on the incident-
field amplitude. It is clear, however, that this is not what is
seen for any of the scattering mechanisms for the normalized
third-harmonic fields plotted in Fig. 8(b).

To explain the subcubic response, we have analyzed the
third harmonic for the short-range scattering mode starting
from low transmitted field amplitudes of 3 kV/cm up to
10 kV/cm. In Fig. 9, we plot the normalized third-harmonic
amplitude as a function of transmitted electric field for a Fermi
energy of 105 meV and a scattering time of 68 fs. The optimal
incident-field amplitude for this combination is 50 kV/cm,
which is much higher than the upper value selected for this
sweep. For a purely third-order response, Et (3ωo) should
depend cubically on the transmitted field amplitude; we fit such
a cubic response to the calculated results at low fields in Fig. 9.
As can be seen, the calculated response deviates significantly
from the cubic fit starting at an incident-field amplitude of
∼5 kV/cm. To explain this noncubic behavior, we note that as
seen in Fig. 4, odd harmonics higher than the third harmonic are
generally produced; the stimulation of these higher harmonics
is due to χ (5) (and higher) processes, which will not only
generate higher harmonics, but will produce an effective χ (3)

that depends upon the field intensity [51]. This results in a
lower-than-expected third-harmonic response at higher field
intensities. For transmitted field amplitudes up to ∼5 kV/cm,
we find (not shown) that the fifth-harmonic response is less
than 0.5% of the third harmonic for the 105 meV case, but at
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field amplitudes above this the fifth-harmonic field increases
more rapidly than the third harmonic. This change occurs
at the same field amplitude at which the departure from the
cubic prediction is observed in Fig. 9, and these simultaneous
changes are observed in all cases examined. At a transmitted
field amplitude of 10 kV/cm, the fifth harmonic is nearly 5%
of the third harmonic for the 105 meV Fermi level. It is thus
clear that the total nonlinear response is beyond a conventional
perturbative model, such as that used in Ref. [15]. This
means that perturbative models will generally overestimate the
third-harmonic generation and that full dynamic simulations
such as we perform here are necessary.

V. CONCLUSION

In this paper, we have modeled the third-harmonic response
of graphene to single-cycle THz radiation using a nonlinear
dynamic model in the length gauge. We have found that for any
combination of field amplitude and scattering time, the relative
third-harmonic amplitude can be optimized by selecting the
correct Fermi level. We simulated the response employing
three different types of Fermi-energy-dependent scattering and
found that the optimum Fermi energy is strongly influenced
by the type of scattering that is dominant in the sample. We

have found that the optimization of the Fermi level is very
important as a 150 meV deviation in the Fermi energy from
the optimum value can reduce the third-harmonic amplitude
by a factor of 2 or more.

For all different scattering mechanisms considered, the opti-
mized third harmonic increases subcubically with the incident
field due to nonlinear processes beyond third order. This result
partially explains the difficulty that researchers have had in
observing third-harmonic generation in monolayer graphene
and demonstrates the need to employ a nonperturbative ap-
proach to the calculation of the nonlinear response of graphene.
Future experiments seeking to generate a third-harmonic THz
response thus need to consider carefully the scattering rates,
the scattering mechanisms, and the Fermi energy if they wish
to observe and maximize the third-harmonic response arising
from monolayer graphene.
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