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Nonradiative carrier recombination is of both great applied and fundamental importance, but the correct
ab initio approaches to calculate it remain to be inconclusive. Here we used five different approximations to
calculate the nonradiative carrier recombinations of two complex defect structures GaP : ZnGa-OP and GaN :
ZnGa-VN, and compared the results with experiments. In order to apply different multiphonon assisted electron
transition formalisms, we have calculated the electron-phonon coupling constants by ab initio density functional
theory for all phonon modes. Compared with different methods, the capture coefficients calculated by the
static coupling theory are 4.30 × 10−8 and 1.46 × 10−7 cm3/s for GaP : ZnGa-OP and GaN : ZnGa-VN, which
are in good agreement with the experiment results, (4+2

−1) × 10−8 and 3.0 × 10−7 cm3/s, respectively. We also
provided arguments for why the static coupling theory should be used to calculate the nonradiative decays of
semiconductors.

DOI: 10.1103/PhysRevB.91.205315 PACS number(s): 63.20.dk, 61.72.S−, 72.10.Di

I. INTRODUCTION

Nonradiative carrier recombination as often described
by the Shockley-Read-Hall (SRH) [1–3] phenomenological
model is a very important process in semiconductor physics.
Normally nonradiative transitions reduce device efficiencies
by reducing photogenerated carriers, suppressing lumines-
cence, reducing carrier lifetimes, or enhancing defect diffusion
during device operations [4]. Since the direct measurement of
such processes is often difficult [5–7], especially to identify
the responsible defects, it is very desirable to use ab initio
calculations to study the related phenomena. However, so
far, there is a lack of commonly accepted way to calculate
the SRH, which is the focus of the current study: to com-
pare different approaches to establish the correct ab initio
procedure.

The SRH recombination includes two carrier capture
processes: first the photo generated, or the injected, minority
carrier is captured by the recombination center, and then the
majority carrier recombines with this defect center. The first
step is often the rate-determining step. For deep centers, the
nonradiative carrier capture occurs via multiphonon emission
(MPE) [8]. Many researchers have contributed to the theo-
retical foundations of MPE over the past six decades. These
studies have revealed that the results of calculations are very
sensitive to the adopted theoretical models, with different
approaches yielding capture rates many orders of magnitudes
different [9]. So far, there is a lack of systematic studies
to compare different methods, and to find which method is
most suitable for semiconductor SRH calculations. Part of
the reason is due to the lack of efficient ab initio approach
to calculate all the electron-phonon coupling constants often
required in these formalisms. Recently we have proposed
a variational approach to calculate all the electron-phonon
coupling constants in a single self-consistent field (SCF)
calculation [10]. In the current paper, we take the advantage of
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that method to comparatively study different SRH calculation
formalisms. Some of these formalisms have been used by other
researchers, and the others are proposed by us as plausible
methods for SRH calculations.

The different formalisms studied in the current paper
include (i) static coupling theory [11–13], (ii) adiabatic
approximation [14], (iii) Marcus theory [15], (iv) quantum
charge transfer (CT) theory [16], and (v) one-dimensional (1D)
quantum formula [17].

Recently, we have used the adiabatic approximation for-
malism [method (ii)] [10] to calculate the nonradiative recom-
bination rate for GaN : ZnGa-VN. Despite the fact that the ab
initio calculated electron-phonon coupling constants and all
the phonon modes are used in the formalism, the calculated
rate is several orders of magnitude too small, especially
compared to the newly measured experimental data [18],
which appeared after Ref. [10]. Alkauskas et al. [17] developed
another practical approach to calculate the nonradiative carrier
capture coefficients [method (v)]. They considered only one
special collective phonon mode along the transition degree of
freedom, and used it to replace the sum over all vibrational
modes. In this 1D model, the atomic degree of freedom is
represented by a single generalized configuration coordination
Q. They also calculated the carrier capture rate of GaN :
ZnGa-VN, and found their result (at room temperature) as
1.0 × 10−8 cm3/s, which is higher than our previous result,
Bp = 5.57 × 10−10 cm3/s [10], but is still lower than the
experiment results, Bp = 3 × 10−7 to 3 × 10−6 cm3/s [18].
In their discussion, they argued for the use of static coupling
theory instead of adiabatic formalism. Indeed, there was
a long-lasting debate about different methods to calculate
nonradiative recombination processes [9,14,19]. It was found
that the static coupling formalism yields results orders of
magnitudes larger than the adiabatic approximation formalism,
and is generally in better agreement with experiments. In
Sec. II, we will come back to this point, and present our view
regarding this issue.

The nonradiative recombination process is also a charge
transfer (CT) process, which can be calculated by the classical
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Marcus theory [15] [method (iii)]. Marcus theory has been
widely used to study the charge transfer from one localized
state to another localized state at different locations. For
example, McKenna and Blumberger [20] have determined
the electron transfer rate between two localized defect states
in MgO using Marcus theory, while Tarafder et al. [21]
calculated the rate of hole transfer from a photoexcited
CdSe/CdS core/shell nanorod to a tethered ferrocene molecule
with Marcus theory. However, most of these cases involve
two localized states at two different locations, which make it
possible to define the so-called diabatic states (states localized
at different places) [20,21]. It is more challenging to use
the Marcus theory to calculate the nonradiative recombi-
nation process since the electronic states before and after
the transition are localized at the same place (while one is
extended, another is localized). Nevertheless, Henry and Lang
in their seminal paper [8] used essentially the Marcus theory
to study the nonradiative recombination rate, and seemed to
get good results when compared with experiments. But their
calculations were not ab initio, instead effective mass models
and a few adjustable parameters are used to get the correct
result. Here we will use ab initio methods to carry out the
Marcus theory calculation for nonradiative recombination rate.
The Marcus theory is a classical 1D theory, since it describes
the atomic degree of freedom by a single reaction/transition
coordinate Q. In the conventional Marcus theory for charge
transfer between two localized states, the electron-electron
coupling is not induced by phonon modes, instead it exists
in the original zero phonon Hamiltonian between the two
localized diabatic states (which are not electron eigenstates
to begin with, hence the coupling exists). The Marcus theory
can also be extended using quantum mechanical treatments
for the phonon degree of freedom while keeping the original
electron-electron coupling constant. We call such formalism,
as derived by Nan et al. [16] as the quantum CT method
[method (iv)]. Compared to the classical Marcus theory, the
quantum mechanical theory can have different temperature
dependence, especially at low temperatures; it can provide
the quantum tunneling effects for the phonon modes yielding
larger transition rates than the classical formula.

To judge the accuracies of the different calculation results,
we need to choose nonradiative recombination centers with
unambiguous experiment results. The electron capture cross
section for Zn-O center in GaP has been measured unambigu-
ously to be (2+2

−1) × 10−15 cm2 at 300 K by Jayson et al. in their
excellent study [22]. The same system has also been studied by
Henry and Lang, which proved that the carrier capture process
in this system is indeed due to multiphonon emission [8]. We
will also calculate GaN : ZnGa-VN complex. Not only it has
been studied before in our previous work [10], there are also
recent new experiments [18], which make the experimental
results more certain.

This paper is organized as follows. The comparison
between static coupling theory and adiabatic approximation
is described in Sec. II. We give the details of variational
electron-phonon coupling constant calculations in Sec. III. In
Sec. IV, we outline the computational formalisms for different
methods. The calculation results of two complex defect
structures GaP : ZnGa-OP and GaN : ZnGa-VN are shown in
Sec. V. Section VI concludes the paper.

II. STATIC COUPLING AND ADIABATIC
APPROXIMATION FORMALISMS

Under the adiabatic approximation, the initial and final
electron and phonon wave functions are described by Born-
Oppenheimer approximations:

�i,n(r,R) = ψi(r,R)φi,n(R)
(1)

�j,m(r,R) = ψj (r,R)φj,m(R)

Here i and j denote the initial and final electronic states, n and
m denote the phonon states. Under the Born-Oppenheimer
approximation, ψi(r,R) is the ith eigenstate of the electronic
degree of freedom for a fixed atomic configuration R:

H (r,R)ψi(r,R) = εi(R)ψi(r,R) (2)

In above equation, R is just a parameter, H(r,R) is the
electron Hamiltonian, either in the form of the many-body
wave-function Hamiltonian, or the density functional theory
(DFT). εi(R) is the total energy of the system when the system
is at the ith electronic state and the atomic configuration is R.
The phonon wave function satisfies the following equation:[∑

R

− 1

2MR

∇2
R + εi(R)

]
φi,n(R) = Ei,nφi,n(R) (3)

Here MR is the nuclear mass, and Ei,n is the total energy
of electron and phonon state i,n. The same can be said for
state ψj (r,R) and φj,m(R). In the adiabatic approximation
formalism, the transition between �i,n(r,R) and �j,m(r,R)
occurs because they are not the true eigenstates in the
electron-phonon combined Hamiltonian due to the first- and
second-order derivatives of �i,n(r,R) and �j,m(r,R) with
respect to R, which are ignored in the Born-Oppenheimer
approximation. As a result, there is a coupling between these
two states:

〈�j,m|Htot|�i,n〉 ≈ 2

〈
ψj (r,R)φj,m(R)

∣∣∣∣ ∂ψi(r,R)

∂R

∂φi,n(R)

∂R

〉
(4)

In writing down the above equation, we have ig-
nored the second-order derivative of ψi(r,R) by R.
Now, under the Frank-Condon approximation, we assume∫

ψj (r,R) ∂ψi (r,R)
∂R

d3Nr is independent of R, hence can be put
out from the R integration in Eq. (4), hence we have:

〈�j,m|Htot|�i,n〉

≈ 2

〈
ψj (r,R)

∣∣∣∣ ∂ψi(r,R)

∂R

〉∣∣∣∣
R=R0

〈
φj,m(R)

∣∣∣∣ ∂φi,n(R)

∂R

〉
(5)

When the adiabatic approximation failed to yield large enough
transition rate, there are many analyses for what might be
wrong. A lot of blame goes to the Frank-Condon approxima-
tion from Eq. (4) to Eq. (5). High-order perturbation theory to
express ψi(r,R) and ψj (r,R) are used to show how Eq. (4) can
be converted to the static coupling approximation, or to show
the adiabatic approximation and static coupling approximation
are the same [19]. We would like to express a different view
here.
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FIG. 1. (Color online) The coordinate diagram for static coupling
theory and adiabatic approximation. The solid lines indicate ψi(r,R)
and ψj (r,R) under the adiabatic approximation. The dashed lines
indicate ψi(r,Ra) and ψj (r,Ra). The dotted line connected branches
are ψ ′

i(r,R) and ψ ′
j (r,R) described in the text.

Equation (4) critically depends on the validity of Eq. (3) for
all atomic configurations R. This includes the configuration
R where εi(R) ≈ εj (R). As we know, it is at such an energy
crossing point that the transition happens most easily. For
example, the Marcus theory can be described by a Landau-
Zener transition when such an energy crossing happens. How-
ever, it is well known that the Born-Oppenheimer adiabatic
approximation breaks down exactly at such a crossing point
(much like it breaks down at the conical intersection of
small molecules in quantum chemistry calculations). For our
problem, to state this in another way, if Eq. (2) is satisfied for
every R, including the crossing point, as shown in Fig. 1, the
two valley states i and j are actually connected continuously
by the solid line, thus they are the same state under the
adiabatic approximation. As a result, there could not be an
i-j transition in the first place. Yes, another related fact is
that, one adiabatic state (the solid line) will have very fast
changes with R near the crossing point. As a result, the
∂ψi(r,R)/∂R at that R will be significantly different from
the derivation at Ra , hence the Frank-Condon approximation
will break down. To avoid such fundamental problems, one
has to break away from the Born-Oppenheimer adiabatic
approximation of Eq. (1). In order to have an i-j transition,
we must describe the electron wave function differently as
indicated by the dotted line in Fig. 1. We can call these two
wave functions ψ ′

i(r,R) and ψ ′
j (r,R). They will not satisfy

Eq. (2) around the crossing point, their transition happens
mostly at the crossing point, and the dominant contribution
to their coupling term 〈� ′

j,m|Htot|� ′
i,n〉 also comes from the

crossing point. The ψ ′
i(r,R) and ψ ′

j (r,R) of the dotted line
branches in Fig. 1 can be approximated by ψ ′

i (r,R) = ψi(r,Ra)
and ψ ′

j (r,R) = ψj (r,Ra) as indicated by the dashed line in
Fig. 1 (the same Ra must be used to preserve the electronic
orthogonality between these two states). As a result, we have
their coupling constant under the first-order approximation as:

〈� ′
j,m(r,R)|Htot(r,R)|� ′

i,n(r,R)〉
= 〈ψj (r,Ra)φj,m(R)|Ha

+
∑
R

∂H

∂R
(R − Ra)|ψi(r,Ra)φi,n(R)〉

=
∑
R

〈ψj (r,Ra)|∂H

∂R
|ψi(r,Ra)〉〈φi,n(R)|

× (R − Ra)|φj,m(R)〉 (6)

This is the static coupling formalism. Note, by approximating
ψ ′

i(r,R) = ψi(r,Ra), we no longer have the R derivative
of ψi(r,R) in Eq. (6), which was the cause of coupling
in the adiabatic approximation. Equation (6) captures the
coupling caused by the Landau-Zener theory happen at
the energy crossing point, while the coupling described by the
adiabatic approximation (especially under the Frank-Condon
approximation) is caused by the imperfection of the Born-
Oppenheimer approximation near the valley point Ra . But
that imperfection is rather small, hence the resulting adiabatic
formula yields a too small transition rate. Thus, from this
discussion, it becomes clear the static approximation should
be used. Note, in both the Frank-Condon approximation and
static coupling approximation, there is a choice of Ra . One
typical practice is to use the relaxed valley point position R

when the electron is occupying the localized state (the defect
state).

III. VARIATIONAL ELECTRON-PHONON COUPLING
CONSTANT CALCULATIONS

One key element in evaluating the nonradioactive
recombination rate in most of the approximations is
the calculation of the electron-phonon coupling con-
stants: 〈ψj (r,Ra)|∂H/∂Qk|ψi(r,Ra)〉, where Qk is the
kth phonon mode coordinate. If the phonon modes are
known [10], the above constants can also be calculated
from 〈ψj (r,Ra)|∂H/∂R|ψi(r,Ra)〉. Note that H is the self-
consistent electron Hamiltonian. In DFT, it is the SCF Kohn-
Sham equation single-particle Hamiltonian. Thus if ∂H/∂R

needs to be calculated numerically for every R, there will be
3N SCF calculations, where N is the number of atoms in
the system. That makes the ab initio calculation extremely
expensive. Recently, we have proposed a variational way to
carry out the calculation for all the electron-phonon coupling
constants by one additional calculation [10]. We have shown
that, for a local/semilocal exchange-correlation functional,
in a self-consistent Kohn-Sham calculation, if we have used
ρλ(r) = ∑

i∈occ |ψi(r)|2 + λρf (r) for the ionic, Hartree, and
exchange-correlation energy evaluations, while keeping the
conventional formalism for the kinetic energy and nonlocal
potential, and we keep ρλ(r) fixed during SCF iterations for
ψi(r), then we have:

d

dλ
FR =

∫
ρf (r)

∂

∂R
Vtot(r,R)d3r (7)

Here FR is the ab initio atomic force on atom R calculated from
Hellman-Feynman formula, and Vtot is the self-consistent total
potential in the Kohn-Sham Hamiltonian: H (R) = − 1

2∇2 +∑
l,R |φl,R〉〈φl,R| + Vtot(r,R) (here φl,R is the nonlocal po-

tential projector for atom R and angular momentum l).
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Thus

〈ψj (r)| ∂

∂R
H |ψi(r)〉

=
∑

l
〈ψj (r)|

[
|φl,R〉

〈
∂φl,R

∂R

∣∣∣∣ +
∣∣∣∣∂φl,R

∂R

〉
〈φl,R|

]
|ψi(r)〉

+
∫

ψj (r)ψi(r)
∂

∂R
Vtot(r,R)d3r (8)

Note, the first term is the same term as in the Hellman-Feynman
force evaluation, which can be calculated readily, while the

second term can be calculated from Eq. (7) while using
ρf (r) = ψj (r)ψi(r).

The above formalism is derived based on local/semilocal
exchange-correlation functional. Here we would like to point
out that the same variational approach works also for nonlocal
functionals such as the hybrid density functional method
(e.g., the screened hybrid functional of Heyd, Scuseria, and
Ernzerhof (HSE) [23,24]). In our variational calculation, the
total energy of the system under hybrid exchange-correlation
functional will be expressed as:

E(ψ,R,λ) = −1

2

∑
k∈occ

〈ψk|∇2 |ψk〉 +
∑
k,R,l

〈ψk|φl,R〉〈φl,R|ψk〉 + Uα(ρλ,R)

−α
∑
k,k′

∫
ψk(r)ψk′(r)ψk(r ′)ψk′(r ′)v(r − r ′)d3rd3r ′ − αλ

∑
k

∫
φj (r)ψk(r)ψk(r ′)φi(r

′)v(r − r ′)d3rd3r ′ (9)

Here Uα(ρλ,R) is the ionic, Hartree and local/semilocal exchange-correlation energy with mixing factor α, and ρλ is the charge
density defined above. The v(r − r ′) is the long-range truncated Coulomb interaction kernel. When λ = 0, Eq. (9) returns to
the conventional hybrid functional total energy. While carrying out SCF iteration to find the minimum energy of E(ψ,R,λ)
with respect to ψ , we will fix the ρf (r), φi(r), and φj (r). The corresponding single-particle Hamiltonian will be the same
as the conventional hybrid functional calculation except an additional exchange term: −αλ

∫
[φi(r)φj (r ′) + φj (r)φi(r ′)]v(r −

r ′)ψk(r ′)d3r ′. But this term will not cause any significant extra computational cost. Then following the same derivation steps as
in Eq. (8) of Ref. [10], we have:

d

dλ
FR = d

dR

[
∂E(ψ,R,λ)

∂λ

∣∣∣∣
ψ,R

]
= d

dR

[
∂Uα(ρλ,R)

∂ρλ

∂ρλ

∂λ
− α

∑
k

∫
ψk(r,R)ψk(r ′,R)φj (r)φi(r

′)v(r − r ′)d3rd3r ′
]

=
∫

ρf (r)
dV α

tot(r,R)

dR
d3r − α

∑
k

∫
φj (r)

[
dψk(r,R)

dR
ψk(r ′,R) + ψk(r,R)

dψk(r ′,R)

dR

]
φi(r

′)d3rd3r ′ (10)

This is exactly the 〈ψj (r)|∂H/∂R|ψi(r)〉 for the hybrid func-
tional single-particle Hamiltonian when ρf (r) = ψi(r)ψj (r).
As in the local/semilocal case, the nonlocal potential term [the
first term in Eq. (8)] needs to be added. Thus, same as in
the local/semilocal exchange-correlation functional case, the
electron-phonon coupling constants of the hybrid functional
can also be obtained by doing one additional SCF calculations
of Eq. (9) with a small λ, and using the Hellman-Feynman
formula to calculate the atomic force FR(λ), then a numerical
difference method will give us dFR/dλ.

IV. COMPUTATIONAL FORMALISMS FOR DIFFERENT
METHODS

In this section, we will write down the actual computational
formalisms to be used for different methods. For all quantum
mechanical methods, the wave functions of a system are
approximated by the product of electronic states and vibronic
states as described by Eq. (1), or similar expression. The
nonradiative decay probability between electron state i or j is
given by the conventional Fermi golden rule expression:

Wij = 2π

�

∑
n

∑
m

p(i,n)|Vin,jm|2δ(Ein − Ejm) (11)

where the off-diagonal matrix elements of the electronic
Hamiltonian are

Vin,jm = 〈�j,m(r,R)|H |�i,n(r,R)〉 (12)

and p(i,n) is the probability that the system is in the initial
phonon state �i,n(r,R), so that

∑
n p(i,n) = 1. Provided

that the vibrational equilibrium rate considerably exceeds
the nonradiative decay rate, p(i,n) can be described by the
Boltzmann distribution:

p(i,n) = Z−1 exp(−βEin) (13)

where Z = ∑
n exp(−βEin) is the partition function and β =

(kBT )−1.
The off-diagonal matrix elements Vin,jm are important

in determining the nonradiative recombination coefficients.
Different ways to approximate Vin,jm constitute different
formalisms. For these we have the following approximations.

A. Static coupling theory

For the static coupling theory, ψi(r,R) and ψj (r,R) are
replaced by ψi(r,Ra) and ψj (r,Ra) respectively, the off-
diagonal matrix elements Vin,jm can be expressed by Eq. (6),
here we reexpress it using normal phonon modes Qk:

〈�j,m(r,R)|H |�i,n(r,R)〉

= 〈ψj (r,Ra)φj,m(R)|Ha +
∑

k

∂H

∂Qk

(Qk − Qk,a)

× |ψi(r,Ra)φi,n(R)〉
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=
∑

k

〈ψj (r,Ra)| ∂H

∂Qk

|ψi(r,Ra)〉〈φi,n(R)|(Qk − Qk,a)

× |φj,m(R)〉
=

∑
k

Ck
i,j ·〈φi,n(R)|Qk|φj,m(R)〉 (14)

Here Ra (or Qk,a) is the relaxed position of i, and by definition:
Qk ≡ Qk − Qk,a .

The relaxed state coordinations of phonon k at electron
states i and j , can be calculated as:

Q(i,j )k = 1√
Mk

∑
R

MRμk(R)R(i,j ) (15)

Here R(i,j ) ≡ R(i,j ) − R(i,j )(0) are atom displacements from
equilibrium positions, μk(R) is the kth phonon mode vector,
and MR is the nuclear mass for atom at R. We adopt harmonic
approximation to describe the phonon states of the initial i and
final j electronic state. We have the linear relation:

Qj = Qi + K (16)

where K = Qj (0) − Qi(0) ≡ Qji . Qi(0) and Qj (0) are the
coordinations when atoms at equilibrium positions, or more
explicitly

Kk = Qji,k = 1√
Mk

∑
R

MRμk(R)Rji (17)

Here Rji = Rj (0) − Ri(0) is the relaxed atomic position
difference of the system at the electronic states j and i.

Then the electron-phonon coupling constant Ck
i,j between

electronic states i and j and phonon mode k is

Ck
i,j = 〈ψj (r,Ra)| ∂H

∂Qk

|ψi(r,Ra)〉 =
∑
R

μk(R)〈ψj |∂H

∂R
|ψi〉

(18)

and
∑

R MRμk(R)μl(R) = δk,l .
Now, plug in Eq. (11), we have:

Wij = 2π

�

∑
k1,k2

C
k1
i,jC

k2
i,j

·
{∑

n

∑
m

p(i,n)〈φj,m(R)|Qk1 |φi,n(R)〉

× 〈φj,m(R)|Qk2 |φi,n(R)〉∗δ(�ωjm − �ωin + Eij )

}

(19)

Here Eij is the energy difference of the initial and final
electronic states after atomic relaxation with no phonon
contributions while �ωin and �ωjm denote the phonon energies
in the initial and final states (with multiple phonon modes and
multiple phonons). Using the Dirac distribution function,

δ(ω) = 1

2π

∫ ∞

−∞
eiωtdt

we can get,

Wij ≡ 2π

�

∑
k1,k2

C
k1
i,jC

k2
i,j · A

k1k2
ij (20)

where

A
k1k2
ij = 1

2πZ

∫ ∞

−∞
χ

k1k2
ij (t,T )e−it

Eij

� dt, (21)

χ
k1k2
ij (t,T ) = Tr

[
Qk1e

−itHj /�Qk2e
−(β−it)Hi/�

]
(22)

These are the Herzberg-Teller (HT) terms, where Hi and Hj

are the phonon Hamiltonians for the initial and final electronic
states, where β = (kBT )−1. The indices k1, k2 run over the Nvib

normal coordinates, where Nwvib is the number of vibrational
degrees of freedom. The trace in Eq. (22) can be computed on
the basis of Q, as follows,

χ
k1k2
ij (t,T ) =

∫ ∞

−∞
dQ〈Q|Qk1e

−itHj /�Qk2e
−(β−it)Hi/�|Q〉

(23)

This term can be evaluated using path integral techniques
and Gaussian integration, and the derivation presented by
Borrelli et al. [25–27] is very efficient, which has been
implemented here. Let us introduce the following diagonal
(Nvib × Nvib) matrices, a(τi), a(τj ), c(τi), c(τj ), d(τi), d(τj ),
whose kth diagonal terms are given by (ξ = i,j ),

a(τξ )k = ωk

sinh(i�ωkτξ )
(24a)

c(τξ )k = ωk coth(i�ωkτξ/2) (24b)

d(τξ )k = ωk tanh(i�ωkτξ/2) (24c)

where τi = −t − iβ and τj = t , we have used the assumption
that the phonon mode in i and j states are the same k1 = k2 =
k, and ωk is the frequency of the kth harmonic oscillator.

From the above matrices, the following diagonal matrices
can be defined,

C(τi,τj ) = c(τj ) + c(τi) = ωk

[
coth

(
i�ωkτj

2

)

+ coth

(
i�ωkτi

2

)]
(25a)

D(τi,τj ) = d(τj ) + d(τi) = ωk

[
tanh

(
i�ωkτj

2

)

+ tanh

(
i�ωkτi

2

)]
(25b)

To evaluate the HT term of Eq. (22), a Nvib-dimensional
column vector, DHT, and a (Nvib × Nvib) matrix, AHT, defined
by Borrelli et al. [25,27] are also needed [with K defined in
Eq. (17)],

DHT = −D−1d(τj )K (26a)

AHT = 1
2 (D−1 − C−1) + DHT(DHT)T (26b)
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Under the assumption that the phonon modes in i and j

states are the same, we have χ
k1k2
ij = χ

k1
ij δk1k2 , then [25,26]:

χk
ij (t,T ) =

√
det[a(τj )] det[a(τi)]

(i�)2N det(C) det(D)
exp[−KT d(τj )K

+ KT d(τj )D−1d(τj )K](AHT)kk (27)

Introducing Eq. (27) in Eq. (21), we can numerically carry
out the time integration to get A

k1k2
ij = A

k1
ij δk1k2 . The time

integration in Eq. (21) converges well especially when a small
damping term for the limits of −∞ and ∞ is used.

B. Adiabatic approximation

The formalism for the adiabatic approximation has been
given in our previous work, especially Eq. (2) of Ref. [10].
The nonradiative decay probability between electron states i

and j can be expressed as:

Wij =
∑

k

∣∣Ck
i,j

∣∣2
ωk(2π )1/2

2�D

[
(coth yk + 1)

× exp

(
− (Eij − �ωk − EM )2

2D2�2

)

+ (coth yk − 1) × exp

(
− (Eij + �ωk − EM )2

2D2�2

)]
(28)

where k is the index of phonon mode with frequency
ωk , and D2 = 1

2

∑
l ω

2
l 

2
l (2nl + 1), nl = [exp(β�ωl) − 1]−1,

l = (Mlωl

�
)1/2(Q0(j )

l − Q
0(i)
l ), and yk = β�ωk/2, β = 1

kBT
.

Here Q
0(i)
l and Q

0(j )
l are the relaxed ground-state coordinations

of phonon mode l at electron states i and j . EM = 1
2

∑
l �ωl

2
l

is the reorganization energy (atomic relaxation energy after
electron state transition). Ck

i,j is the electron-phonon coupling
constant between electronic states i and j and phonon mode
k as shown in Eq. (3) of Ref. [10]. As above, we have also
assumed that the phonon modes at electronic states i and j are
the same except a shift in the origin. We have also used the
strong coupling limit formula [14], which has been shown to
be valid in the case of nonradiative decay. As a result of this
limit, the time integration [similar to Eq. (21) above] can be
evaluated out analytically. Thus at the end, all the expressions
are analytical, the nonradiative rates can be calculated as long
as the phonon modes and electron-phonon coupling constants
are known.

C. Classical Marcus theory

The transfer rate in Marcus theory is expressed as [21]:

τ−1 = |Vc|2
√

π

λkBT �2
exp[−(λ + Ej − Ei)

2/4λkBT ] (29)

Vcis the electronic coupling between electronic states i and j ,
and λ is the reorganization energy of the system (the atomic
relaxation energy after the electron transferred from i to j ),

FIG. 2. (Color online) Marcus theory energy diagram.

Ei and Ej represent the total energy of the system (after
atomic relaxation) at electronic state i and j , as shown in
Fig. 2. Note that these are the energies at the minimum of
the energy valley in the atomic (phononic) degree of freedom.
Thus they do not include the phonon energies. While Ei , Ej ,
and λ are well defined, one major challenge is to calculate
Vc. One common approach is to use diabatic states (unitary
transformation from the adiabatic states) to represent i and
j electron wave functions. They are not the eigenstates, thus
can have coupling under a fixed electron Hamiltonian at Ra .
One way is to construct a maximally localized defect state
using a mixture of the eigenstates ψ ′

j = c1ψi + c2ψj , and set
the conduction band state ψ ′

i to be orthogonal to this defect
diabatic state. Then Vc = 〈ψ ′

i |H |ψ ′
j 〉. But we found that the

resulting coupling constant is rather small. Thus we conclude
the coupling cannot be caused by diabatic states.

Another approach is to use an external potential to perturb
the eigenenergies εi and εj until they cross each other, then
the anticrossing energy gap should be 2Vc [21]. Unfortunately,
in our case, the perturbation potential also causes coupling by
itself, as a result, different ways of doing perturbation can yield
very different results. Physically, however, the Marcus theory
does describe a Landau-Zener transition when the electronic
eigenenergies of i and j cross each other caused by the phonon
fluctuation. Thus, instead of using arbitrary perturbations, we
can use the actual phonon distortion. Since Marcus theory can
be considered as a 1D theory, one natural approach is to perturb
the system along the transition degree of freedom, defined as:
R = Rj − Ri . If we distort the system large enough along
this direction, εi and εj can cross each other, then the coupling
between ψi and ψj when they cross can be used for Vc. One
way is to actually do the displacement along R, and carry
out ab initio calculation, and get the anticrossing of εi and
εj . However, we found that the required distortion is so large
that the electronic structure has been totally changed and we
can no longer identify εi and εj . As a result, we have used an
analytical expression to calculate the coupling:

Vc = 〈ψi(Qi)|H (Qc)|ψj (Qi)〉 = 〈ψi |∂H/∂Q|ψj 〉(Qc−Qi).

(30)

Here Q is the 1D degree of freedom along R, Qi is the initial
position at state i, and Qc is the crossing point when Ei and
Ej cross each other, which can be estimated using parabolic
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approximation of Ei(Q) and Ej (Q). Note that in using the
above formula, we can say that the coupling Vc is not caused
by diabatic coupling at H (Qi) [〈ψi(Qi)|H (Qi)|ψj (Qi)〉 = 0]
instead, it is induced by phonon modes along R.

D. Quantum CT theory

The above classical Marcus theory can be re-derived
quantum mechanically for the phonon degree of freedom
while keeping the coupling constant Vc as the same. The
quantum mechanical formula was derived by Jortner [28] and
Lin et al. [29]. It starts with the Fermi golden rule:

kCT = 2π

�2
|Vc|2

∑
n,m

p(i,n)|〈φj,m|φi,n〉|2δ(Ein − Ejm) (31)

where Vc is the electronic coupling between initial and finial
states, φ corresponds to vibrational wave functions.

Based on the Slater sum (Mehler’s formula):

∞∑
n=0

exp
[−(

n + 1
2

)
t
]

√
π2nn!

Hn(x)Hn(x ′) exp

[
−1

2
(x2 + x ′2)

]

= (2π sinh t)−1/2 exp

[
− 1

4
(x + x ′)2 tanh

1

2
t

− 1

4
(x − x ′)2 coth

1

2
t

]
(32)

where Hn(x) are the Hermite polynomials, Nan et al. [16] have
derived the quantum CT rate expressed as:

kCT = |Vc|2
�2

∫ ∞

−∞
dt exp

{
iωf i t −

∑
k
Sk[(2n̄k + 1)

− n̄ke
−iωkt − (n̄k + 1)eiωkt ]

}
(33)

where n̄k = 1
e�ωk/kB T −1

denotes the population of kth normal

mode and ωk is its frequency. Sk = λk

�ωk
= 1

2 �
−1ωk(Qk)2 is

the Huang-Rhys factor measuring the charge-phonon coupling
strength. The above auxiliary time integral can be carried out
numerically without much difficulty (it converges well when
a slowly damping factor is used towards ∞ and −∞).

E. 1D quantum formula

In the work of Alkauskas et al., a quantum mechanical
1D model is presented [17]. In this 1D model, as discussed
above, the atomic movement is along the R = Rj − Ri

direction, and one phonon degree of freedom along this
direction is considered. Numerically, the coordination Q along
this direction is defined as:

Q2 =
∑

α

Mα(Rα − Ri:α)2 (34)

Here, α is the atom index, Mα is the nuclear mass. In the 1D
model, only a single electron-phonon coupling matrix element:

Wij = 〈�i |∂H

∂Q
|�j 〉 (35)

is needed. It can be calculated numerically. The capture
coefficient is calculated using the static coupling model as:

Cp = 2π

�2
W 2

ij

∑
n

p(i,n)
∑
m

|〈φj,m|Q − Qi |φi,n〉|2

× δ(Eij + m��i − n��j ) (36)

Here, �i and �j are the effect phonon modes along the
transition degree of freedom at electronic state i and j . In
our approximation, we have set �i = �j . Note here, only one
effective phonon mode is considered, hence φi,n and φj,m are
single phonon mode wave functions. In Ref. [17], how Eq. (36)
is evaluated was not discussed in detail. Here, we have used
the same formalism as in the multiphonon case. For only one
effective phonon mode, we only need to set k1 = k2 = 1 to
change Eq. (20) to calculate the above equation. In numerically
calculating the time integral of Eq. (21), a relatively large
damping factor is used to yield a smooth transition rate as
a function of Eij , this is the equivalent of smearing the δ

function in Eq. (36).
Note, one difference between Eqs. (36) and (31) is that in

Eq. (31) the (Q − Qi) factor is pulled out as a fixed factor
(Qc − Qi), which is combined with Wij to give VC . Pulling
out Q − Qi is like a classical approximation, which represents
its effect by the crossing point value. On the other hand, in
Eq. (31), all the phonon modes are used, while in Eq. (36),
only one single-phonon mode is used. However, if we try to
include all the phonon modes in Eq. (36), besides the effective
phonon mode along the R direction, all the other phonon
modes k must be orthogonal to this effective phonon mode,
as a result, their Qk = Qk(j ) − Qk(i) are all zero. Then the
corresponding 〈ϕi,n(k)|ϕj,m(k)〉 = δn,m, thus there is no effect
for all the other phonon modes. In other words, Eq. (36) is the
same if all the phonon modes are included.

V. RESULTS

In the following, we present the results of the two complex
defects GaP : ZnGa-OP and GaN : ZnGa-VN using different
methods. The bottleneck for the nonradiative recombination is
the charge transfer from the minority carrier to the defect state.
For GaP : ZnGa-OP, this is from the electron in the conduction
band to the defect state; for GaN : ZnGa-VN, this is from the
hole in the valence band to the defect state.

A. GaP : ZnGa-OP

1. Atomic structure and formation energy

A 64-atom (2 × 2 × 2) supercell is used to calculate the
formation energy of the ZnGa-OP in GaP using the screened
hybrid functional of HSE [23,24] and the generalized gradient
approximation (GGA) atomic relaxation. The cut-off energy
for the plane-wave basis is 400 eV. The mixing parameter of
HSE was set to 0.2. The GGA calculated equilibrium lattice
parameters of GaP, a = 5.49 Å. This part of the calculation
uses the commercial code Vienna ab initio simulation package
(VASP) [30].

The atom structures for ZnGa-OP in GaP at different charge
states are shown in Fig. 3. The impurity atoms Zn and O
drift from the equilibrium positions of GaP bulk. For different
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FIG. 3. (Color online) The atom structures of ZnGa-OP in GaP at
different charge states. The bond length between Zn and O changes
from 3.16 Å of (ZnGa-OP)0 to 2.42 Å of (ZnGa-OP)−.

charge states, the impurity atoms also drift. When one electron
is captured, the bond length between Zn and O changes from
3.16 Å of (ZnGa-OP)0 to 2.42 Å of (ZnGa-OP)−.

Following Ref. [31], the formation energy Eq of the
ZnGa-OP defect with charge q is calculated as shown in Fig. 4.
Our HSE calculated 0/− transition energy is at 2.023 eV above
the VBM as shown in Fig. 4. The ZnGa-OP center in GaP is a
neutral center for which both the recombination luminescence
and electron-capture cross section are accurately known
experimentally. The experimentally established energy of the
exciton bound to the ZnGa-OP center at helium temperature
is approximately 2.02 eV. Henry et al. found the binding
energy of the defect bounded exciton to be approximately
0.037 eV [22]. Adding this binding energy to the bounded
exciton energy, we get the defect level at about 2.057 eV above
the VBM. This is close to our calculated 2.023 eV result. Thus
the transition energy from the CBM to the defect level is
E = 0.282 eV for a 2.34 eV GaP band gap. (By definition,
this is the energy the system lowers by transferring a minority
electron carrier from the conduction band to the defect state. It

FIG. 4. (Color online) The formation energy of ZnGa-OP in GaP
at different charge states calculated under HSE. Note, the material we
studied is p-type doped, thus at equilibrium it has a neutral defect.
During the nonradiative recombination process, an electron first falls
from the conduction band to the defect state, make it a “−” charged
defect. This process is the rate determining process.

FIG. 5. (Color online) The impurity wave function of
(ZnGa-OP)− center in the 64-atom supercell calculated using
the HSE DFT functional.

is the same for the Eij in Eq. (21) or all the other equations.)
The relevant electron-phonon coupling should be between the
impurity states and the conduction band states, which can be
represented by the CBM state. In Ref. [17], a prefactor is used
to represent the wave function amplitude difference near the
defect between the CBM state and an actual itinerate state at
the finite temperature. However, for neutral defect, that factor
is rather close to 1 (e.g., 1.02), thus we have ignored that
prefactor in the following discussions.

2. Impurity wave function and phonon DOSs

For the nonradiative carrier recombination process of GaP :
ZnGa-OP, the relevant electron-phonon coupling should be
between the impurity state and the conduction band states,
which can be represented by the CBM state. The impurity state
wave function is localized in a 64-atom supercell as illustrated
in Fig. 5.

Then we used a combined dynamic matrix (CDM) method
as described in Ref. [10] to calculate the phonon modes
and phonon DOSs are show in Fig. 6. The CDM requires

FIG. 6. (Color online) The phonon spectrum, the black solid line
is calculated by the CDM with Rc = 6.0 a.u., the red dashed line is
the GaP bulk.
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FIG. 7. (Color online) Calculated 1D cc diagram for ZnGa-OP

center in GaP. Symbols: calculated values; solid line: parabolic fit.

only the calculation of atomic displacements for a few atoms
within Rc distance of the defect center to get the phonon
mode of the whole system. We used Rc(=6.0 a.u.), for
which the CDM describes well the impurity DOS [10]. There
are some localized phonon-mode peaks inside the gap of
bulk phonon DOS. We also see some significant shift for
the acoustic modes. For every phonon mode, we get the
frequency ωk and eigenvector μk(R) with a normalization of∑

R MRμk1 (R)μk2 (R) = δk1,k2 . We also get the displacement
Kk from the atomic displacement Ri-Rj after the electron
charge transfer by Eq. (17).

3. Configuration coordinate diagram

Based on the 1D quantum formula method, we calculate the
1D cc diagram for ZnGa-OP center in GaP as shown in Fig. 7.
The total energy points at different displacement Q along the
transition degree of freedom are actually calculated and shown
in Fig. 7 for the neutral and “–” charged state.

When Q < 7 amu1/2Å, the solid curves present a parabolic
fit to the energy values. However, when Q >7 amu1/2Å, there
seems to be some sudden change for its electronic structure,
which results in a sudden change for the total energy. Thus, in
line with the harmonic approximations for the phonon modes
in all our derivations, we have fitted only the data points of
Q < 7 amu1/2Å with parabolic curves (the blue and green
lines in Fig. 7) to predict their behaviors. For (ZnGa-OP)0, the
equilibrium configuration coordinate is at Q = 0 amu1/2Å;
for (ZnGa-OP)−, the equilibrium configuration coordinate is at
Q = 4.43 amu1/2Å. As shown in Fig. 7, the fitting lines of two
states cross at Qc = 19.09 amu1/2Å.

4. Calculated capture coefficients

We have used Eqs. (3), (8), and (9) in our previous
paper [10] to calculate the electron-phonon coupling constant

by two SCF calculations. Thus, we get the Ck
i,j , ωk , Kk of

every phonon mode k and E. From these, we calculated the
nonradiative decay probability Wij using different formulas.
The capture rate constant is Bn = Wij · V (V is the volume of
the supercell) and the capture cross section σn = Bn/vn (vn

is the mean thermal velocity of the electron) can also be
calculated. At T = 300 K, we get Bn = 4.30 × 10−8 cm3/s
and σn = 2.15 × 10−15 cm2 by static coupling theory,
which agrees well with the experimental result
σn = (2+2

−1) × 10−15 cm2. On the other hand, if the adiabatic
approximation is used, the calculated capture coefficient is
only Bn = 3.32 × 10−10 cm3/s, two orders of magnitudes
smaller than the static coupling theory.

5. For the 1D quantum formula

The electron-phonon coupling constant Wij = 〈ψi | ∂H
∂Q

|ψj 〉
is calculated as

Wij =
∑
R

〈ψi |∂H

∂R
|ψj 〉 · Rc − Ri

Qc − Qi

= 0.25 × 10−2 eV/amu1/2Å (37)

with 〈ψi | ∂H
∂R

|ψj 〉 being calculated with the variational method.
Alternatively, one can also directly calculate the above Wij by
making a numerical displacement along the transition direc-
tion, and calculate 〈ψi |H |ψj 〉 numerically (one can obtain
this quantity by calculating (εj − εi)〈ψi(Ra)|ψj (Ra + R)〉).
We found the result is almost the same as from Eq. (37), e.g,
for GaP : ZnGa-OP charged state Wij = (εj − εi)〈ψi | ∂ψj

∂Q
〉 =

0.22 × 10−2 eV/amu1/2Å. The other calculated variables
needed in the 1D formula are shown in Table I. g is the
degeneracy factor of the initial state; it reflects the fact that
there might exist a few equivalent energy-degenerate (or
nearly degenerate) levels of the initial state. The resulting
nonradiative capture coefficient is Bn = 1.68 × 10−10 cm3/s.
It is two orders of magnitude smaller than the multiphonon
static approximation result. This is expected as discussed in
Ref. [17], since only one phonon mode is used, and the phonon
mode, which induces the electron-phonon coupling, is forced
to be the same as the phonon modes that are involved in the
energy conservation. Such restriction can reduce the transition
rate.

For Marcus theory and quantum CT rate, the electronic
coupling Vc is also calculated by Ck

i,j and Qc, as:

Vc = 〈ψi |∂H

∂Q
|ψj 〉 ∗ (Qc − Qi) = 0.048 eV (38)

This is related to Wij in Eq. (37) as: Vc = Wij (Qc − Qi) =
0.25 × 10−2 × 19.09 = 0.048 eV. The λ in the Marcus theory
is 0.19 eV. Based on this electronic coupling Vc and all
phonon modes, we calculated the capture coefficients are
7.32 × 10−8 cm3/s by Marcus theory and 6.44 × 10−8 cm3/s
by quantum CT rate at room temperature. In these cases,

TABLE I. The key variables calculated for the 1D quantum formula method.

Wij (eV/amu1/2Å) |Qi − Qj |(amu1/2Å) ��j (meV) Sj Volume (Å
3
) Eij (eV) λ(eV) g

0.25 × 10−2 4.43 5.38 12.61 1326 0.282 0.19 4
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TABLE II. The capture coefficients (cm3/s) by different methods at T = 300 K. The 1D quantum formula result for GaN : ZnGa-VN from
Ref. [17] is also listed as we have failed to reproduce their result.

Exp Static Adiabatic Marcus QCT 1D

GaP : ZnGa-OP (4+2
−1) × 10−8 [8] 4.30 × 10−8 3.32 × 10−10 7.32 × 10−8 6.44 × 10−8 1.68 × 10−10

GaN : ZnGa-VN 3.0 × 10−7 [18] 1.46 × 10−7 5.57 × 10−10 [10] 1.18 × 10−8 1.21 × 10−8 1.5 × 10−9

1.0 × 10−8[17]

they are relatively close to the experimental values and the
multiphonon static approximation results.

The capture coefficients calculated by different methods are
summarized in Table II. The results by static coupling theory
are most consistent with the experiment results.

We also calculated the capture cross sections as functions
of T for GaP : ZnGa-OP under different methods. As shown
in Fig. 8, the capture cross sections increase with T under
the static, adiabatic and 1D quantum formula; and the capture
cross sections have a peak under Marcus theory and quantum
mechanical CT rate. For the 1D formula, its rate drops
much faster than the multiphonon formulas of adiabatic and
static approximations. One possible reason is that, at lower
temperature, the 1D formula will be more difficult to satisfy
the energy conservation by the single-phonon mode (mostly
an optical phonon mode).

The comparison between the experiment results [8] and
our calculation results of GaP : ZnGa-OP for their tempera-
ture dependence are also shown in Fig. 8. The calculation
results by static coupling theory are within the experimental
uncertainty [8], although only two temperatures exist from the
experiments.

Figure 9 shows the capture coefficients as a function of
the defect state binding energy E for different formulas. To
calculate this, we let E change while keeping all the other
parameters (coupling constants, etc.) in all the formalisms.
Besides the adiabatic formula, all the results have a peak
at about E = 0.2 eV (the 1D quantum formula has a peak
around E = 0.15 eV). In Marcus theory, this peak appears
at E−λ = 0. We note that, in this case, at room temperature,
the multiphonon static formula, the Marcus theory, and the CT
formula give rather similar results.

FIG. 8. (Color online) Capture cross sections as function of
1000/T for GaP:ZnGa-OP. The stars are experimental data from
Ref. [8].

B. GaN : ZnGa-VN

The details of GaN : ZnGa-VN calculation have been
reported in our previous paper [10], which used adiabatic
approximation to calculate the capture coefficients. Now, we
can use the phonon modes and electron-phonon coupling
constant Ck

i,j to calculate capture coefficients by all the other
methods, including the static coupling theory. The 1D method
has already been calculated by Alkauskas et al. for this
system [17]. Here we report the results of all five different
methods for a comparative study in Table II. Note, for the
1D method, in Ref. [17] they used the overlap between
finite vibrational wave functions [32] to calculate Eq. (36).
We notice that our calculated result is different from that in
Ref. [17]. One possibility is that the formula [32] used in
Ref. [17] is slightly different from the one used in this article.
In particular, different phonon frequencies before and after the
transition can be used in the formula of Ref. [32].

We also calculated the capture coefficients as functions of
T for GaN : ZnGa-VN, and the results are shown in Fig. 10. At
the temperature range we have studied, the capture coefficients
calculated by static coupling theory are the highest and the
results by adiabatic approximation are the lowest. At high
temperature, the results by Marcus theory and quantum CT
rate are close, and the results by 1D quantum formula are
close to the results by adiabatic approximation. Similar to the
case of GaP : ZnGa-OP, the temperature dependences for the
two multiphonon approximations: the static coupling theory
and adiabatic approximation theory, are rather similar; they
both decay monotonically with decreasing temperature. On the
other hand, in this case, the Marcus theory and quantum CT rate
increase with decreasing temperature, while the 1D formula
results have a maximum rate as a relatively high temperature.

In our previous paper [10], we calculated the nonradiative
recombination capture coefficients of GaN : ZnGa-VN using

FIG. 9. (Color online) Capture coefficients as function of E for
ZnGa-OP center in GaP.

205315-10



COMPARATIVE STUDY OF AB INITIO . . . PHYSICAL REVIEW B 91, 205315 (2015)

FIG. 10. (Color online) Capture coefficients as function of
1000/T for GaN : ZnGa-VN. The star is experimental data from
Ref. [18].

adiabatic formulation, the result is 5.57 × 10−10 cm3/s. In this
paper, we use the same atomic structures and electron-phonon
coupling constant Ck

ij to calculate the capture coefficients by
static coupling theory, the result is 1.46 × 10−7 cm3/s, which
is more than two orders of magnitude larger than the adiabatic
result, and it is close to the experiment results Bp = 3 × 10−7

to 3 × 10−6 cm3/s [18]. We note that, for this system, the
Marcus theory and quantum CT theory yield an order of
magnitude too small capture coefficients as shown in Table II.

C. Marcus theory and quantum CT theory of nonradiative
transitions

In the strong coupling (
∑

j Sj � 1) and high-temperature
limits (�ωj/kBT  1, n̄j = kBT /�ωj ), Eq. (33) can be
integrated, and the quantum CT formula becomes the Marcus
formula. We plot the capture coefficients of these two methods
as functions of temperature in Fig. 11.

As we can see, at high-temperature, the results are the
same between Marcus theory and quantum CT rate. When
the temperature decreases, the capture coefficients increase
first and then decrease. For GaP : ZnGa-OP, the peak value
of capture coefficient is 6.47 × 10−8 cm3/s at T = 350 K by

quantum CT rate and 7.36 × 10−8 cm3/s at T = 260 K by
Marcus theory. For GaN : ZnGa-VN, the peak value of capture
coefficient is 1.18 × 10−8 cm3/s at T = 280 K by Marcus
theory and no peak value by quantum CT rate. At very low
temperature, the quantum CT result is always bigger than the
Marcus theory result. This is because of the quantum tunneling
effects presented in the quantum CT result, but not in the
Marcus theory.

In both the Marcus theory and quantum CT rate, the
electron-phonon coupling is a very important parameter, which
is calculated by ab initio density functional theory in this work.
As shown in Table II, for GaN : ZnGa-VN the results by Marcus
theory and quantum CT rate can be an order of magnitude
smaller than the results by static coupling theory.

D. Static and 1D quantum formula of nonradiative transitions

The 1D quantum formula is based on the static coupling
theory and it uses only one special phonon mode to replaces
the sum over all real phonon modes. For GaN : ZnGa-VN, the
capture coefficients calculated by the 1D quantum formula
are larger than the results by adiabatic formulation as shown
in Table II. But when compared with the experiments, the
capture coefficients calculated by the 1D quantum formula
are still significantly smaller than the experimental results as
shown in Table II.

VI. CONCLUSIONS

In this paper, we use static coupling theory, adiabatic
approximation, Marcus theory, quantum CT theory, and 1D
quantum formula to calculate the capture coefficients of two
complex defects GaP : ZnGa-OP and GaN : ZnGa-VN. Com-
paring the different methods, the results by the static coupling
theory are most consistent with experiment. In our opinion,
the static coupling theory is intrinsically more appropriate
in describing the nonradiative transition in our systems. This
is because it describes correctly the transition electron wave
functions at the atomic configuration when their energies cross
each other. In our study, all the parameters, including atomic
structure, formation energy, and electron-phonon coupling
constants, have been calculated by ab initio density functional
theory. All the phonon modes are considered.

FIG. 11. (Color online) Comparison between Marcus theory and quantum CT rate.
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More specifically, we have the following results. (i) Five
different formalisms are investigated, and we found the static
coupling theory is the best when compared with experiments.
(ii) The detail formulas of these five formalisms are presented.
(iii) A proof is presented for how the variational method
to calculate the electron-phonon coupling can also be used
for hybrid functions. (iv) The Marcus theory and quantum
CT theory always give similar results. (v) While for GaP :
ZnGa-OP, the Marcus theory and quantum CT theory give
larger capture coefficients than the multiphonon static theory,
in GaN : ZnGa-VN, their results are an order of magnitude
smaller than the multiphonon static coupling result. (vi) The
1D quantum formula gives results typically bigger than the
adiabatic coupling results, but smaller than the multiphonon
static coupling results. (vii) The temperature dependences
of the multiphonon static and adiabatic coupling results are
similar, and between Marcus theory and quantum CT are
also similar, but the temperature dependences between these
two groups and the 1D quantum formula results are all very
different.
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