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Multitip scanning gate microscopy for ballistic transport studies in systems
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We consider conductance mapping of systems based on the two-dimensional electron gas with scanning
gate microscopy using two or more tips of an atomic force microscope. The paper contains the results of
numerical simulations for a model tip potential. In addition, a few procedures are proposed for the extraction and
manipulation of ballistic transport properties. In particular, we demonstrate that the multitip techniques can be
used to obtain a readout of the Fermi wavelength, to detect potential defects, to filter specific transverse modes,
and to tune the system into resonant conditions under which a stable map of the local density of states can be
extracted from conductance maps using a third tip.
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I. INTRODUCTION

Conductance (G) of open systems with the two-dimensional
electron gas (2DEG) in semiconductor heterostructures at
low temperatures is determined by scattering of the Fermi
level electrons. Using the scanning gate microscopy (SGM)
technique [1], one probes the properties of the electron
transport in mesoscopic devices by variation of the potential
landscape for the Fermi level electrons with the charged
tip of the atomic force microscope (AFM) moving above
the surface of the sample. The potential of the charge at
the tip is screened by the two-dimensional electron gas [2],
which produces a short-range form of the effective tip
potential for the Fermi level electrons. The SGM technique
was widely used in studies of ballistic electron transport, in
particular to visualize the electron trajectories as deflected
by an external magnetic field [3], electron branching of the
Coulomb flow [4,5], including evidence of the quantum Braess
paradox [6], formation of a quantum ring potential with a
controlled number of modes in each arm [7], investigation of
electron backscattering with quantum point contacts [4,5,8],
formation of Coulomb islands [9], and mapping the local
density of states (LDOS) [10,11]. In addition to the studies
of ballistic flow, the tip potential was also used for studies
of the charge flow in conditions of the Coulomb blockade
in quantum dots [12]. The role of the tip is then to tune the
chemical potential of the confined electron system into the
transport window defined by the Fermi energies of the source
and drain electrodes [12].

In this paper, we consider possible applications of the
SGM technique for studies of ballistic transport using two
or more tips instead of a single one. We show that the
double-tip system can be used for (i) measuring the Fermi
wavelength, (ii) mapping the potential defects in the channel,
(iii) mode filtering, (iv) detection of localized resonances in
an experimental implementation of a stabilization method, and
(v) tuning the system to resonant conditions when the LDOS
can be read out with a third tip.

Usage of several probes was implemented a few years
ago for scanning tunneling microscopy (STM) studies of
the sample surface. A version of the STM technique using
several independent tips was used in particular to perform four-

point measurements [13,14] for determination of the surface
properties. Multiple probe experiments have already been
performed on nanowires, in scanning tunneling microscopy
(STM) mode [14–16], with spacing between the probes
controlled down to ∼30 nm. In principle, the spacing is only
limited by the size of the tip apex (probes with a tip apex as
low as ∼1 nm are available). In the case of multiple probe
scanning gate microscopy experiments, the probe positioning
should not be more difficult than in STM mode, and the probe
spacing discussed below in this work is within experimental
reach with current technological tools.

II. MODEL

We consider ballistic transport at the Fermi level electrons
in systems based on a two-dimensional electron gas (2DEG).
We neglect the electron-electron interactions and we use the
effective-mass Hamiltonian of the form{

− �
2

2meff
∇2 + Vext(x,y)

}
ψ(x,y) = EFψ(x,y), (1)

where meff = 0.067m0 is the effective mass of GaAs, EF is
the Fermi level energy, and Vext contains all external sources
of the electrostatic potential (e.g., potential of the tips Vtip).
The potential of the tip is one of the most critical aspect to
control in SGM. The experimental studies of the tip potential
for the systems based on 2DEG indicate the Lorentz form
of the potential [17], which results from the screening of the
Coulomb charge at the tip by the electron gas [2]. The full
width at half-maximum of the tip potential turns out to be of
the order of tip-2DEG distance [18], and it is independent of
the charge at the tip or the density of the 2DEG (see Fig. 6 of
Ref. [18]), which only influence the height of the tip potential.
Accordingly, we assume that the potential of the tip is given
by the short-range Lorentzian potential of amplitude Utip and
width wtip,

Vtip(x,y) = Utip

1 + [(x − xtip)2 + (y − ytip)2]/w2
tip

. (2)

The Lorentzian form of the potential was also used
for previous modeling [11], along the Gaussian [3,19] tip
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potential profile. For modeling the scanning gate microscopy
of quantum wires above the highly doped substrate, a Coulomb
potential with the image charge potential was also used [20].
All the model potentials [3,11,19,20] are smooth and short-
range, so qualitatively the simulated conductance maps are
quite similar.

In the following, we assume that all the tip potentials
have the same width and amplitude and that the distance
between them can be changed. The experiments that pro-
vide quantitative information on the form of potential use
the Coulomb resonances measured on a quantum dot in
the Coulomb blockade regime [17]. One can therefore imagine
selecting two probes with identical tip potential through similar
experiments with quantum dots before starting the multiple
probe SGM experiments discussed below.

The shape of the discussed devices—tailored from the sam-
ple containing a two-dimensional electron gas—is described
by hard-wall boundary conditions.

To solve the scattering problem, we use a finite-difference
implementation of the transparent boundary method (TBM)
[21–23]. For the boundary conditions in the input lead, we
use the standard approach with the wave function given by
superposition of incoming and outgoing (reflected) transverse
modes,

ψinput(x,y) =
Minput∑
k=1

{
ake

ikxχ
input
k (y) (3)

+ rke
−ikxχ

input
−k (y)

}
,

where Minput is the number of current propagating transverse
modes χ

input
k in the input lead, and ak and rk are the incoming

and reflection amplitudes. For the output lead, we assume that
the wave function is given by the formula

ψoutput(x,y) =
Moutput∑
k=1

tke
ikxχ

output
k (y), (4)

where Moutput is the number of transverse modes χ
output
k in the

output lead and tk is the outgoing amplitude. The transverse
modes were calculated with the method presented in Ref. [24].
Matching the boundary conditions (3) and (4) with the wave
function calculated inside the device, one finds the solution
for the scattering problem. After solving Eq. (1) (for details,
see [23]) for each incoming mode i, the conductance of the
system is calculated from the transmission probability Ti using
the zero-temperature Landauer formalism

G = G0

Minput∑
i=1

Ti,

with G0 = 2e2

h
.

In all the cases considered below, we assume that both
leads have the same width equal to the width of the channel,
thus M ≡ Minput = Moutput. We choose the discretization grid
�x = �y = 4 nm. In further discussion, we will refer to the
local density of states, which is defined as the sum of electron
densities incoming from the left and right lead [2].

The TBM is very similar to the wave-function matching
method [24], which is based on the scattering matrix and the

FIG. 1. (Color online) Sketch of the system considered in
Secs. III and IV. We consider a channel of width W = 80 nm and
the system of two tips with the same amplitude Utip = 5 meV and
width wtip = 15 nm. The length of the computational channel is
L = 1000 nm. The tips are above the axis of the channel (red dashed
line) and are separated by a distance dtip. The center of the system of
two tips is located at position xtip.

wave-function approach. Actually, our method is also similar
to the one implemented in the KWANT package [25]. The
procedure for finding the wave function inside the device is
exactly the same (see Sec. 2.2 of Ref. [25]). To solve the
transport problem, one has to find eigenmodes of each contact,
incorporate them into the Hamiltonian (1) by using proper
boundary conditions [Eqs. (3) and (4)], and then solve the
system of linear equations with a huge but sparse Hamiltonian
matrix. The computational time needed to solve the problem
depends on the solver used. We use the superLU library [26],
which performs fast LU decomposition designed for sparse
matrices. We find that for a computational box of L × L

mesh points, the computational time scales as O(L3) compared
to O(L4) for the recursive Green function (RGF) technique.
Nevertheless, the memory usage is indeed larger for TBM:
O(L2 log L) versus O(L2) for the RGF [25].

III. IMPURITIES MAPPING

Let us start our discussion with the device presented in
Fig. 1. We consider a long (1000 nm) and narrow (80 nm)
channel. For the Fermi energy EF = 2.5 meV, there is only one
current-propagating transverse mode in the channel (M = 1).
We consider a double-tip system assuming that tips move along
the x axis. The center of the system of the two tips is denoted
by xtip (see Fig. 1). Both tips are separated by a distance of
dtip. We assume Utip = 5 meV and wtip = 15 nm, For a single
tip with these parameters, the conductance of the system is
reduced to G = 0.12G0. In Fig. 2(a), we show the result for
the conductance G of the system as a function of xtip and the
intertip distance dtip for a clean channel. The dtip dependence
of conductance reveals a series of resonances, separated by a
distance λF /2 ≈ 60 nm, which are related to the formation of
the Fabry-Pérot interferometer [4,8] between the two tips. The
interferometer induced by the two tips can probe the Fermi
wavelength.

Let us now consider the system with a single potential
defect present in the middle of the channel. The defect is
modeled with Eq. (2) with Uimp = 2 meV and wimp = 10 nm
[see the potential profile below Fig. 2(b)]. Now the SGM
image reveals new features, i.e., the resonance lines bend
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FIG. 2. (Color online) Results for EF = 2.5 meV (one band
transport). (a) The DT scan obtained for a clean channel. (b) Added
impurity in the middle of the channel with amplitude Uimp = 2 meV
and of width wimp = 10 nm modeled with Eq. (2). (c) The same as (b)
but for two impurities separated by distance 160 nm, and (d) obtained
for two impurities of different sign ±2 meV separated by distance
100 nm. The plots below show the potential profile in the channel for
each case [(b)–(d)].

and oscillate in the vicinity of the impurity. Far from the
impurity, the resonance lines return to the same position as
in Fig. 2(a). Note that the first resonance line (around dtip ≈
90 nm) resembles the potential profile inside the channel. In
Figs. 2(c) and 2(d), we show that the first resonance line
follows the potential profile of the defect. This effect can be
explained in terms of the semiclassical WKB approximation.
For slowly varying potential U (x) and EF > U (x), the wave
vector of the propagating wave function e±ikFx is given by
kF = √

2meff[EF − U (x)]/�. Now if U (x) > 0, the phase
of the wave propagating through the potential hill will
be delayed by some value �ψ in comparison to the phase of
the unperturbed system. Thus in order to restore the resonance
for a standing wave, one must increase the distance between
the tips by a value that compensates for the delayed �ψ

phase. For U (x) < 0, the distance between the DT has to be
decreased [see Fig. 2(d)]. Note that the proposed detection
scheme resolves only the average Fermi wavelength and their
shifts along the channel. One can detect the presence, position,
and a character of the potential defect (repulsive or attractive),
but not the quantitative potential profile of the defect.

In Fig. 3 we show the results for the channel with two
impurities [same as in Fig. 2(c)] but for higher energies EF. The
results of Figs. 3(a) and 3(b) correspond to M = 2, although
for EF = 7.5 meV the threshold for M = 3 is only slightly
higher in energy. At higher energies [Fig. 3(a)], the resolution
of the images is reduced with the resonance lines getting closer
and wider, but the image still allows one to map the defect
potential distribution along the channel. Note that in Fig. 3(a),

FIG. 3. (Color online) The same as in Fig. 2(c) but for higher
Fermi energies. (a) Results for EF = 4.5 meV (two band transport)
and (b) EF = 7.5 meV.

we notice the resonances of Fig. 2(c) for both the lowest
subband (resonance sequence starting near dtip � 30 nm) and
the second transverse mode (the sequence starts for dtip �
100 nm). Note that the resonances corresponding to the second
transverse subband are distinctly thinner—in this subband, the
kinetic energy of motion along the channel (or simply the wave
vector) is small, so the lifetime of the resonances trapped
within the interferometer is larger. The states of the second
subband possess a nodal line at the axis of the channel, and the
results of Fig. 3(a) were gathered for the tips at this axis. The
distinct conductance response of the second subband occurs
since the width of the tip is large compared to the width of the
channel, 2wtip/W � 0.4. For EF = 7.5 meV [see Fig. 3(b)],
the image loses the features visible in Fig. 2, but the W -shaped
line clearly indicates the position of the defects.

For completeness, we considered a clean channel with the
width of the tip potential increased to wtip = 50 nm. In Fig. 4
we plotted the conductance as a function of the intertip distance
dtip and the height of the tip potential. For Utip = 2 meV, the
system is transparent for the electron flow, and the formation of
the resonances, as discussed above for wtip = 15 nm, appears
higher in energy. For Utip > 3.5 meV, the ballistic electron
flow is blocked. For larger values of Utip, the formation of a

FIG. 4. (Color online) Conductance of the system as a function
of the tip amplitude Utip and distance dtip between the tips obtained
for EF = 2.5 meV and width of the tip potential wtip = 50 nm.
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quantum dot supported by the tips should be expected with
the transport dominated by the Coulomb blockade, which is,
however, beyond the scope of the present work. The best
resolution of the scan as a function of dtip is obtained just
below the cutoff of the ballistic transport.

To conclude this section, we find that the double-tip system
can be used to read out the Fermi wavelength and the potential
profile along the channel.

IV. TRANSVERSE MODE FILTER

In Fig. 3(a) we observed the resonances of the first and
second subband (the red lines near dtip = 100, 200, and
300 nm). These resonances occur separately or in overlap with
the lines of the lowest resonance, depending on the values of
dtip and xtip. Thus choosing a proper value of dtip and xtip,
one can make a device that will filter out specific modes. For
the proof of principle, we will restrict our consideration to
the first and second mode. The resonance lines are plotted in
Fig. 5(a) as functions of the distance between the tips and
the Fermi energy for the clean channel (as in Fig. 1) but with
the width increased to W = 100 nm. At low Fermi energies,
only the first transverse mode is present in the conductance,
and the double tip stops the transport unless the Fermi energy
coincides with the resonances localized between the tips. For
higher values of EF, the resonance lines of the second mode
appear in the (dtip,EF) plane and intersect with the first mode
lines. Figures 5(b)–5(f) show the electron density for work
points marked by arrows in Fig. 5(a). We can see that for a
given energy EF, one may filter out a specific transverse mode
by changing the dtip distance. Upon filtering, one can select
low-energy modes and block high energy, or vice versa. The
mode filtering should be visible in the angular branching of the

FIG. 5. (Color online) (a) The conductance G of the long channel
of width W = 100 nm as a function of dtip and EF. Dashed lines in
(a) show the energy spectrum of a two-dimensional quantum well of
length dtip − 2wtip. The shift by 2wtip accounts for the finite size of
the tip potential. (b)–(f) Electron density |ψ |2 obtained for values of
(dtip,EF) indicated by arrows.

FIG. 6. (Color online) Sketch of the second system considered
in this paper. A long channel of width 100 nm is coupled to the
resonant cavity of variable width W and length 500 nm. As before,
we have two tips in the system: one in the left lead and the second in
the right lead. Both tips have the same parameters of Utip = 5 meV
and wtip = 15 nm and are separated by a distance dtip. The red line
corresponds to the third tip scan discussed in Sec. VI.

current flow in the SGM of quantum point contacts [4]. Also,
the SGM readout of the double-slit interference [27] should be
simplest for a single incident subband, since the contributions
of various modes cancel in the Landauer summation [27].
The mode filtering can be used/tested against the Young
interference features in the SGM images.

In Fig. 5(a) we plotted the energy spectrum of a quantum
well of width 100 nm, length dtip − 2wtip, and infinite po-
tential profile. The conductance resonances follow the energy
spectrum exactly for an infinite quantum well.

V. DETECTION OF LOCALIZED RESONANCES

Let us now consider the system depicted in Fig. 6 with a
channel of width 100 nm connected to the quantum cavity
of length 500 nm and width W . To get the best resolved
images, we set EF = 2 meV (single subband transport within
the channel). In Fig. 7(a) we show the conductance of the
system as a function of the dtip and width W of the cavity.
We kept the center of the double tip fixed in the middle of the

FIG. 7. (Color online) (a) The conductance of the system de-
picted in Fig. 6 as a function of dtip and cavity width W . The dashed
rectangle corresponds to the zoomed area shown in Fig. 8(a). The red
line corresponds to the scan with the third tip discussed in the next
paragraph. (b) Conductance of the system presented in Fig. 6 as a
function of W but without DT.
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resonant cavity. For small values of W around 100 nm, the
resonance lines are very similar to those of Fig. 5(a). For a
changed width of the cavity, the cavity-localized energy levels
vary as ∝W−2. Thus changing the width W , we should expect
the behavior of the resonance lines to be similar to those of
Fig. 5(a). Large values of W lead to a complex behavior
of the resonance lines but with well-distinguishable patterns
of X-shaped lines, which appear with a period of λF along the
dtip axis.

In Fig. 7(b) we show the conductance of the system
without the tips. The conductance contains a series of sharp
resonances of a Fano type corresponding to quasibound states
localized within the cavity. Most of the resonances visible in
Fig. 7(b) are also present in Fig. 7(a) as nearly horizontal
lines—independent of the distance between the tips—which
suggests that they correspond to the quasilocalized stated of
the cavity. The nearly horizontal lines are very thin, indicating
a long lifetime of the resonances. The lines with a steeper
dependence on dtip in Fig. 7(a) correspond to resonances
supported by the tips. The lines are wide, indicating a stronger
coupling to the channel. A study probing the conductance
as a function of the distance between the tips would be an
experimental implementation of the stabilization methods [28]
for detection of localized resonances.

The zoomed region of Fig. 7 marked by a black rectangle is
depicted in Fig. 8(a). In this picture, we can distinguish three
types of resonance lines: (a) vertical, almost independent of
the width W of the cavity; (b) resonances, which vary with W ;
and (c) well-visible horizontal resonances, independent of the
distance between DT, which correspond to the quasilocalized
state in the cavity. We found in general that the difference
between the two first types of resonances comes from the
symmetry of the resonant scattering densities. The scattering
densities for lines of type (a) and (b) are symmetric with respect
to the center of the cavity in the x direction. The resonances

FIG. 8. (Color online) (a) Zoom of Fig. 7(a) marked by a dashed
rectangle. (b)–(i) Probability density for the the electron incoming
from the left for dtip and W pointed by the arrows. (b)–(d)
Antisymmetric resonances, (e) an off-resonant scattering probability
density, and (f)–(i) symmetric resonances.

that are independent of W have a nodal surface at the symmetry
axis, while the other have a maximum on the symmetry line.
The former are strongly localized in the center of the cavity
[see Figs. 8(b)–8(d)] and the latter form resonances that are
delocalized over the entire cavity [see Figs. 8(f), (g), and (i)].
The delocalized resonances react stronger to the value of W

in Fig. 7(a). Figure 8(h) shows a resonance of a third type—of
energy that is weakly dependent on dtip—that corresponds
to the resonances supported by the cavity itself. Note that
outside the resonance lines, the asymmetry of the electron
injection is translated to asymmetry of the scattering density
[see Fig. 8(e)]. For resonances, the incidence direction cannot
be extracted from the scattering density [Figs. 8(b)–8(d) and
8(f)–8(i)].

In experiments, variation of the geometry of the cavity can
be accomplished by tuning an electrostatic confinement in
the y direction due to external gating. Since the electrostatic
confinement potential is usually parabolic at its origin, we
replaced the hard-wall confinement by

Uparabolic = 1
2ω′2y2 = 1

2 (3 meV − ω)2y2. (5)

With this potential, the effective width of the cavity is con-
trolled by the harmonic-oscillator energy. The parametrization
was chosen in order to get a better comparison with Fig. 7.
The value ω = 3 meV ⇒ ω′ = 0 meV corresponds to a small
value of W in Fig. 6 and channel-like behavior of conductance.
The value ω = 0 meV ⇒ ω′ = 3 meV corresponds to the
large values of W . Comparing Figs. 7 and 9, we can see that

FIG. 9. (Color online) The conductance of the system depicted in
Fig. 6 as a function of dtip and angular frequency ω of the oscillator.
The parametrization ω′ = 3 meV − ω is applied in order to keep the
same interpretation of the y axis (width of the cavity) as in Fig. 7(a).
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both share the same features: (a) X-shaped resonance lines
are present, (b) some resonances depend weakly on W as a
function of the cavity width (antisymmetric ones) and some
vary with dtip (symmetric states), and (c) horizontal resonance
lines are also present. Note that for a smooth potential, we find
in the conductance image resonances of a large slope (Fig. 9)
but which are not strictly vertical as for the cavity with the
rectangular confinement potential (cf. Figs. 7 and 8). This is
because the variation of ω changes the potential profile in the
whole cavity and not only the width of the cavity (as it was
in the previous example). Note that according to the above
discussion, the slope of the vertical resonance lines should
provide information on the shape of the confinement potential
within the cavity.

Concluding this section, we found that using a double-tip
system with a cavity of variable width, one may tune the
system to a specific resonance: (i) symmetric or antisymmetric
resonances supported between the tips, or (ii) resonances
quasilocalized within the cavity (horizontal lines in Figs. 7
and 9).

VI. MAPPING THE LOCAL DENSITY
AT THE FERMI LEVEL

Let us now discuss the possibility of mapping the LDOS
inside the potential cavity presented in Fig. 6. Our recent
modeling [2,29] indicated that for a cavity strongly coupled
to the channel, the LDOS can only be extracted from the
(single-tip) conductance maps provided that the Fermi energy
coincides with the energy of localized resonances. Only in
the conditions of the Fano resonance is the conductance map
strongly correlated with LDOS. In III–V nanostructures, the
variation of the Fermi energy is far from straightforward.

However, with the two tips moving inside the channels (Fig. 6),
one can induce the resonant conditions without the need to
change the Fermi energy, and then scan for the local density
of states using a third tip.

In general, the conductance maps are highly correlated to
the local density of states when the electron scattering wave
functions incoming from the left and right leads are the same
up to a constant phase. The latter case can be supported [29]
by the perturbation theory [30,31] for which the first-order
correction to the conductance is simply proportional to LDOS.
The scattering densities for the electron incoming from the left
lead plotted for resonant conditions induced by the two tips
[Figs. 8(b)–8(d) and 8(f)–8(i)] are highly symmetric: nearly
identical densities are obtained for the electrons incident from
the right. Thus for the inverted current direction, the scattering
density inside the cavity stays the same, and this should lead
to good correlation between LDOS and the corresponding G

map [29]. Conversely, in off-resonant conditions [cf. Fig. 8(e)],
the scattering density is asymmetric with respect to the
channels, and the correlation between LDOS and G can be
expected to be low.

We consider a cavity of Fig. 7(a) with W = 430 nm. The
assumed third-tip parameters are Utip = 1 meV and wtip =
10 nm. We need a pronounced variation of G as a function of
the tip position, and the adopted height of the tip potential
is quite large as compared to the Fermi energy kept at
2 meV.

Figure 10(a) shows the conductance of the system depicted
in Fig. 6 as a function of distance between the two tips inside
the channels, dtip (see Fig. 7), and the position of the third
tip, xtip, along the axis of the system (red line in Fig. 6). We
observe a number of resonances for a sequence of dtip. The
dtip distance, which corresponds to resonances, can also be
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FIG. 10. (Color online) (a) Conductance G of the cavity [parameters corresponding to the red line in Fig. 7(a)] as a function of the third-tip
position, xtip, moved along the axis of the system marked by the red line in Fig. 6, and the distance between the two tips, dtip, that stay within
the channel. (b) �G = G − G′ as functions of xtip and dtip, where G′ is the conductance of the system without the third tip. (c) Local density
of states in the absence of the third tip along the axis of the system—line of the scan used in (a) and (b). For evaluation of the LDOS, we
normalized the scattering densities to the unity within the computational box. For off-resonant conditions, where the scattering density is large
only inside the channels [cf. Fig. 8(e)], we obtain a strong reduction of LDOS within the cavity—see Fig. 10(c). (d) Conductance G′ of the
system as a function of dtip without the third tip (blue line). Absolute value of Pearson correlation r between (a) and (c) images calculated from
Eq. (6) (red line).
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FIG. 11. (Color online) (a)–(c) The SGM image and (d)–(f) the LDOS obtained for points A, B, and C in Fig. 10(d). Point A corresponds
to the symmetric resonance induced by the double-tip system in the work point where the correlation r is negative. Point B corresponds to the
antisymmetric resonance with positive correlation r . Point C corresponds to a zero of T in the absence of the tip.

deduced from the G(dtip) dependence of the cavity–double-tip
system (without the third tip), which is plotted in Fig. 10(d).

In Fig. 10(b) we present the conductance change �G =
G(xtip,dtip) − G′(dtip) induced by the third tip with respect to
conductance G′ of the system without the third tip. Note that
�G changes sign in the vicinity of the resonance induced by
the double tip [see the blue curve in Fig. 10(d) for the location
of the resonances]. To compare the conductance obtained from
a scan with the third tip, Gscan ≡ G(xtip,dtip), with the obtained
LDOS on that line, Lscan = LDOS(xtip,dtip) (for a given value
of dtip), we calculate the Pearson correlation r ≡ r(dtip),

r =
∫

(Gscan − 〈Gscan〉)(Lscan − 〈Lscan〉)dxtip

�Lσ (Gscan)σ (Lscan)
, (6)

where 〈a〉 = 1
�L

∫
a(xtip)dxtip is the average value of a,

σ 2(a) = 1
�L

∫
[a(xtip) − 〈a〉]2dxtip is the standard deviation of

a, and �L = 800 nm is the length of the scan along the red line
in Fig. 6. Before the calculation of r , both functions Gscan and
Lscan were normalized to range from 0 to 1. The absolute value
of the correlation r is plotted in Fig. 10(d) with the red line.
Note that r increases to about 0.9 near the induced resonances,
which means that the obtained G maps well-resolve the LDOS
inside the cavity—see the points marked by A or B in the figure.
Outside the resonances (point C, for instance), the correlation
is much lower. In the figure, the abrupt dips in the r(dtip)
dependence result from the fact that the correlation coefficient
changes sign at the resonances [29].

In Fig. 11 we present the SGM images and corresponding
LDOS for points A, B [Fig. 10(d)]—near the resonances in-
duced by the two tips in the channels, and for point C—outside
a resonance (for G � 0 in fact). A close correspondence
between LDOS and G is reached in the resonant points
A and B with no evident correspondence in off-resonant
point C.

Summarizing, the usage of multiple tips allows for (i) tuning
the system to a resonance and then (ii) an accurate readout of
the local density of states.

VII. TIP AS A PART OF THE SCATTERING SYSTEM

The scanning gate microscope tip can be used as a part of the
scattering system, with the other tip gathering the conductance
maps. In particular, the tip potential placed near the exit of the
quantum point contact has been used to form a quantum Hall
interferometer [32]. A similar quantum Hall system including
a potential defect spontaneously formed at the exit from the
QPC constriction was studied with scanning gate microscopy
in Ref. [33].

The SGM with a double-tip system can be used for
observation of the Young interference [27] for a setup depicted
in Fig. 12. The SGM signal was predicted [27] to contain signa-
tures of the double-slit interference for low-energy transport.
The proposed [27] setup requires a beam splitter—a central
obstacle for electron flow, which may be difficult to introduce
in the form of a fixed gate. A floating one—introduced by the
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FIG. 12. (Color online) Schematics of the system with a quantum
point contact and the tip potential for observation of the Young
interference and the calculated scattering density current |j (x,y)| in-
cluding the double-slit interference pattern. The applied tip potential
parameters are wtip = 50 nm and Utip = 10 meV.

tip—is a possible option. In Fig. 12 we plotted a system with
the QPC slit entering a small open cavity. The potential of the
tip (schematically shown with the gray circle) was introduced
near the exit of the cavity to an unconfined half-plane. The

scattering density current |j (x,y)| plot in Fig. 12 shows the
formation of the interference pattern characteristic of Young
interference [27]. The other tip used as an electron flow
detector could then be used for readout of the double-slit
interference in the SGM conductance images.

VIII. CONCLUSIONS

We have studied numerically the possible applications of
the multitip scanning gate microscopy on the systems with
2DEG. We found that the measurements using a pair of tips
allow for (i) readout of the Fermi wavelength, (ii) detection
of the potential defects with an indication of their position
and attractive/repulsive character, (iii) filtering of specific
transverse modes, and (iv) tuning the system into a resonance
that allows for a reliable detection of the local density of states
with a third tip.
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