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Transport in two-dimensional modulation-doped semiconductor structures
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We develop a theory for the maximum achievable mobility in modulation-doped 2D GaAs-AlGaAs
semiconductor structures by considering the momentum scattering of the 2D carriers by the remote ionized
dopants, which must invariably be present in order to create the 2D electron gas at the GaAs-AlGaAs interface.
The minimal model, assuming first-order Born scattering by random quenched remote dopant ions as the only
scattering mechanism, gives a mobility much lower (by a factor of 3 or more) than that observed experimentally in
many ultrahigh-mobility modulation-doped 2D systems, establishing convincingly that the model of uncorrelated
scattering by independent random remote quenched dopant ions is often unable to describe the physical system
quantitively. We theoretically establish that the consideration of spatial correlations in the remote dopant
distribution can enhance the mobility by (up to) several orders of magnitudes in experimental samples. The
precise calculation of the carrier mobility in ultrapure modulation-doped 2D semiconductor structures thus
depends crucially on the unknown spatial correlations among the dopant ions in the doping layer which may
manifest sample to sample variations even for nominally identical sample parameters (i.e., density, well width,
etc.), depending on the details of the modulation-doping growth conditions.
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I. INTRODUCTION

One of the most studied physical properties in all of physics
during the last 40 years has been the low-temperature electrical
conductivity (σ ) of two-dimensional electron gases (2DEG) in
confined semiconductor structures such as Si-MOSFETs and
2D GaAs-AlGaAs heterostructures and quantum wells. Many
important fundamental discoveries [1–13] have been made in
the context of studying 2DEG transport properties such as
integer and fractional quantum Hall effects [2], Mott variable
range hoping [3], weak and strong localization [3,4], Wigner
crystallization [5], possible anyonic non-Abelian fractional
quantum Hall effects [1,6], stripe and bubble 2D interacting
phases [7], 2D metal-insulator-transitions [4], microwave-
induced-resistance oscillations [8], Coulomb drag [9], in-
terlayer spontaneous coherence [10], interlayer canted an-
tiferromagnetism [11], bilayer even-denominator fractional
quantum Hall effect [12], monolayer even-denominator
fractional quantum Hall effect [13], and so on. In many situa-
tions, new (and often unexpected) experimental discoveries
in 2D physics become possible because of the continuous
enhancement in the 2DEG mobility μ defined as μ ≡ σ/ne =
eτ/m, where m and τ are, respectively, the carrier effective
mass and the transport relaxation time, through careful
materials improvement and clever sample design. Indeed, the
best available current GaAs 2DEG samples routinely achieve
μ > 107 cm2/V s at low temperatures (�1 K) and not-too-low
(as well as not-too-high) carrier densities (∼1011–3 × 1011

cm−2) with the current mobility record (obtained in 2008)
being μ ∼ 4 × 107 cm2/V s (corresponding to an almost
macroscopic carrier mean free path of a fraction of a mm)
obtained by the Weizmann group [14] and the Princeton-Bell
Labs group [15]. The 2D mobility (or equivalently, carrier
mean free path) has thus increased by a remarkable factor of
∼4000 from μ ∼ 104 cm2/V s in 1978 [16] to μ ∼ 4 × 107

cm2/V s in 2008 [14,15] over a 30 year period in GaAs-based
modulation-doped 2DEG systems (although most of this
mobility enhancement occurred in the initial 10–12 year period
with the enhancement during the last 20 years being a rather
modest factor of 3–4).

This remarkable factor of 4000 enhancement in the 2D
mobility has been possible because of the MBE modulation
doping technique [16] invented in 1978 which enables a
spatial separation of the ionized dopants producing the 2D
carriers from the 2DEG itself by locating the ionized dopant
layer inside the insulator (i.e., in AlxGa1−xAs layer) some
distance “d” (“the set-back distance”) away from the GaAs-
AlxGa1−xAs interface where the 2DEG resides (on the GaAs
side of the interface). This spatial separation of the ionized
dopants from the 2DEG strongly suppresses the Coulomb
scattering by the dopant charged impurities, leading to the
strong mobility enhancement. Increasing d over the years—the
best current modulation-doped 2D samples typically have d =
70–200 nm—has steadily improved the mobility as Coulomb
scattering by the remote dopant ions is progressively reduced
by the large set-back distance. (Unfortunately, d cannot be
increased indefinitely since the induced carrier density in the
2DEG due to modulation doping decreases approximately
as 1/d and thus for very large d, the 2D carrier density
becomes far too low.) It is generally believed that the current
high-mobility GaAs-based 2DEG is essentially immune to
remote ion scattering, and the low-temperature 2D mobility
in ultra-high-mobility modulation-doped systems is limited
entirely by the unintentional background charged impurities
invariably present in the GaAs (as well as the AlxGa1−xAs)
layer even in the ultra pure materials used in the modern MBE
growth process [17]. The unintentional background charged
impurities are typically thought to have a concentration of
�1013 cm−3 (roughly one impurity for ∼109 lattice sites!) in
the best MBE-grown materials, and a consensus has developed
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in the community that reducing the background impurity
content in the GaAs layer would enable further improvement
in the 2D mobility, eventually reaching perhaps a mobility of
∼100 million cm2/V s or more in the near future [18]. We note
that background impurities being present (in the GaAs layer
itself) are not spatially separated from the 2DEG and therefore
lead to much stronger resistive scattering compared with the
remote dopants for the same impurity densities [17,18].

It is, therefore, extremely perplexing that realistic the-
oretical calculations of 2D mobility in modulation-doped
GaAs-AlxGa1−xAs quantum wells, assuming the existence
of only scattering by the random remote ionized dopants
(which must always be present in order to create the 2DEG
satisfying overall charge neutrality), give theoretical mobility
values substantially lower than the actual experimentally
measured maximum mobility for the same sample parameter
(e.g., d, n, the remote dopant ion density nd , the 2D GaAs
well thickness a) in the best available 2DEG samples. In
particular, the T = 0 mobility of GaAs-based 2D quantum
wells was calculated by the two of us [18] some years
ago for various values of d, n, and nd . From Fig. 1(a) of
Ref. [18], we find that for n = nd = 3 × 1011 cm−2 and for
d = 800 Å the calculated zero-temperature mobility limited
only by random remote dopant scattering is μth = 13 × 106

cm2/V s for an a = 300 Å wide quantum well. For exactly the
same sample parameters (i.e., n = 3 × 1011 cm−2, d = 800 Å,
and a = 300 Å), by contrast, several existing modulation-
doped GaAs-AlxGa1−xAs quantum well systems have μex ≈
20–40 × 106 cm2/V s [14,15]! This is remarkable because
the actual theoretical mobility in a more complete calculation
can only be lower than the value (13 × 106 cm2/V s)
calculated in Ref. [18], i.e., μth is a theoretical limit on the
maximum possible mobility since other scattering mechanisms
(e.g., background unintentional charged impurities, interface
roughness, alloy disorder, phonons etc.) as well as finite
temperature effects can only lower the actual mobility with
the expectation that μex < μth must always be obeyed. Thus
the paradox that μex ≈ 2 − 3μth in some samples makes no
sense at all and is a serious question mark on the whole
theoretical framework!

One may wonder if such a Born approximation based
Boltzmann transport theory calculation of the 2D mobility
in Ref. [18] should be taken as quantitatively accurate, and
perhaps a better transport theory will indeed produce μth � μex

as it should be. This, however, should not matter in the current
context of ultrahigh mobilities since the effective dimen-
sionless disorder parameter kF l ∼ 2 × 105 (where kF and l

are respectively the 2D Fermi wave number and the carrier
transport mean free path) in this case, making the Boltzmann
theory mobility calculation within the Born approximation to
be essentially an exact theory (since kF l ∼ 2 × 105 � 1).

The essential puzzle is then, why does the measured
experimental mobility in some situations surpass the maximum
theoretical limit (by 200%–300% and possibly more since
many scattering mechanisms are being ignored) in high-
mobility GaAs modulation-doped systems? We emphasize
that this puzzling anomaly (i.e., μex > μth) obviously occurs
in only a few ultrahigh mobility modulation-doped samples
with the vast majority of 2D samples satisfying the expected
inequality μth > μex. In particular, when the 2D mobility is

limited by the background disorder scattering (rather than
remote dopant scattering), the agreement between theory and
experiment appears to be satisfactory.

In fact, for large enough kF d (� 1), i.e., for large set-back
distances (and relatively high carrier densities so that kF ∼ √

n

is not very small), a simple analytical formula for the maximum
possible mobility limited by remote dopant scattering at T = 0
in the modulation-doped 2D systems is given by

μ = 8e(kF d)3

π�nd

, (1)

with the corresponding mean free path given by

l = 32n2d3

nd

, (2)

with kF = √
2πn. Equations (1) and (2) assume arbitrary

values of the 2D carrier density n and the 2D ionized
dopant density nd , but in any conceivable situation with the
dopants producing the 2DEG, the following inequality must
necessarily hold between the ionized dopant density (nd ) and
the 2D carrier density (n):

n � nd. (3)

The inequality defined by Eq. (3) simply implies that the
carrier density cannot be higher than the dopant density in
order to maintain the overall charge neutrality in the system.
This leads to the maximum possible theoretical 2D mobility
in modulation-doped structures for n = nd—this is really the
maximum possible theoretical limit since all other scattering
mechanisms except for resistive scattering by the ionized
dopants in the modulation doping layer are being ignored (and
all these other scattering mechanisms, most notably scattering
by the unintentional background charged impurities, can only
bring down the 2D mobility from this limit). Putting n = nd ,
we get the following maximum possible 2D mobility:

μmax = 16
√

2πed3√n

�
. (4)

Using n = nd = 3 × 1011 cm−2 and d = 800 Å in Eq. (4),
we get a maximum theoretical limit of

μm = 1.7 × 107cm2/Vs. (5)

We note that this simple analytical approximation is close
to the realistic numerical result (μm = 1.33 × 107 cm2/V s)
obtained in Ref. [18] for the same 2D sample with d = 800 Å
and n = nd = 3 × 1011 cm−2. This maximum analytical the-
oretical limit is also surprisingly low as emphasized already,
compared with existing experimental results in some GaAs-
AlGaAs quantum well samples where mobilities approaching
4 × 107 cm2/V s have been achieved for the same sample
parameters [14,15]. We note that Eq. (4) provides a reasonably
good analytical approximation for the theoretical maximum
mobility limited by remote dopant scattering.

The conundrum that the theoretically estimated maximum
mobility in modulation-doped 2D semiconductor structures
often turns out to be below the actually experimentally
measured mobility was already known in the 1980s. In fact,
an early paper [19] predicted the maximum achievable 2D
mobility to be around 2 × 106 cm2/V s in the early days of
modulation doping when the typical high-mobility system had
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mobilities below 105 cm2/V s. Improved modulation-doping
and purer source materials with less background unintentional
impurities soon proved this “safe” prediction of 1983 to be
incorrect by a large factor since the 2D mobility reached as
high as 12 × 106 cm2/V s already in 1989 [20]. Unfortunately,
this puzzle has not disappeared since our predicted maximum
mobility of 13 × 106 cm2/V s in 2008 [18] is now routinely
surpassed by many existing experimental samples [14,15],
which typically reach mobility values exceeding 20 × 106

cm2/V s for the same carrier density and sample details
(i.e., well width and set back distance).

There are only two possible ways out of this embarrassing
conundrum of the theoretical maximum mobility limit being
lower than the actual experimentally measured mobilities:
(1) somehow, in spite of kF l � 1 condition being satisfied,
the Boltzmann transport theory plus Born approximation fails
in providing quantitatively reliable values of the 2D carrier
mobility; (2) the physical model for impurity scattering used
in the Boltzmann theory is incorrect and the remote ionized
dopants cannot be considered to be randomly distributed. A
third possibility, where for some unknown reason nd � n

applies, can be ruled out due to charge neutrality as we
have already mentioned above—in reality, nd � n must apply
to the experimental structures. We will assume that nd = n

applies throughout the current work except where nd and n are
individually measured experimentally.

In this paper, we consider the above two options systemat-
ically, ruling out the possibility (1) by comparing theory and
experiment. Then, we consider the option (2) in some depth by
calculating the 2D mobility assuming various minimal models
for spatial correlations in the charged impurity positions in the
dopant layer [21,22], showing that very reasonable physical
assumptions about spatial charged dopant correlations lead to
mobility values which can be an order of magnitude (or more)
larger than the theoretical limits discussed above based on the
completely random impurity scattering model. It is, therefore,
likely that the dopant layer in modulation doping structures
has substantial correlations in charged impurity locations, and
thus, without accurate direct experimental information about
impurity correlations, the precise mobility limited by remote
dopant scattering remains unknown. The issue of possible im-
purity correlations among the ionized dopants (sometimes also
referred to as “impurity clustering” in the literature) strongly
enhancing 2D mobility has been discussed occasionally in
the theoretical literature over the last 30 years [21–24], but
the current work provides the comprehensive analysis of this
important problem in the context of the achievement of the
highest possible 2D mobilities in realistic modulation-doped
semiconductor structures.

The rest of this paper is organized as follows. In Sec. II,
we consider the theoretical mobility calculated based on the
Boltzmann theory within the Born approximation, comparing
the theoretical results with experimental data produced specif-
ically to test our transport theory. In Sec. III, we provide the
basic theory for transport assuming spatial correlations in the
ionized impurity distribution in the doping layer. In Sec. IV,
we provide calculated transport properties based on a minimal
continuum impurity correlation model. In Sec. V, we develop
a numerical impurity correlation model based on a discrete
atomistic lattice simulation of MBE growth, which includes

dopant correlation effects. Finally, we conclude in Sec. VI with
a discussion of our results and a summary for future outlook.

In order to avoid any confusion, we emphasize that all
our theoretical results are based on the Boltzmann transport
theory with the scattering rate (or equivalently its inverse,
the relaxation time τ ) calculated in the leading-order Born
approximation assuming the weak scattering limit. The only
scattering mechanism we consider is the scattering by remote
ionized impurities in the doping layer interacting with the
2DEG through a statically screened (within RPA) Coulomb
interaction. All our calculations are done at T = 0 with full
effects of a finite quasi-2D layer thickness of the GaAs
quantum well quantitatively included in the calculation, which
tends to reduce somewhat the bare Coulomb potential from
the strict 2D zero-thickness limit. Our goal is to calculate
the maximum possible 2D mobility in modulation-doped
structures as limited only by carrier scattering from screened
Coulomb disorder arising from the remote ionized donors.

II. BOLTZMANN THEORY FOR 2D TRANSPORT

We consider in this section the Boltzmann transport theory
for scattering by uncorrelated random charged impurities
treated in the Born approximation [25]. The density-dependent
conductivity at T = 0 is given by

σ = ne2τ/m, (6)

where

1

τ
= 2π

�
nd

∫
d2k′

(2π )2
|u(|k − k′|; d)|2(1 − cos θk,k′)

× δ[E(k) − E(k′)]|k=kF
, (7)

where E(k) = �
2k2/2m is the 2D carrier energy dispersion,

and u(q; d) is the Fourier transform of the screened Coulomb
interaction between an electron in the 2DEG and a charged
dopant impurity in the dopant layer (at a setback distance of d

from the 2DEG) assuming a random ensemble averaging over
uncorrelated charged impurities with a density of nd per unit
area.

It is important for our later discussion to emphasize
precisely the approximations involved in Eq. (7): (1) the
semiclassical Drude-Boltzmann transport theory is assumed
neglecting all quantum interference effects; (2) the electron-
charged impurity scattering is treated in (weak-scattering)
first-order Born approximation neglecting all higher-order
multiple-scattering processes; (3) the charged impurities are
assumed to be randomly located in the dopant layer with no
spatial correlations; (4) an ensemble averaging is carried out
over the random impurity locations; (5) the electron-charged
impurity scattering potential is taken to be the RPA-screened
Coulomb interaction with all other effects of electron-electron
interaction (except for wave vector-dependent static screening
by the 2DEG) neglected in the theory; (6) consistent with
most experimental ultra-high-mobility samples, we assume
delta doping, i.e., the dopant layer is taken to be a thin 2D
layer (parallel to the 2DEG at a distance d away) where all
the ionized dopants are localized—if the dopant layer is a
narrow quantum well with a thickness much less than d, as is
sometimes the case, our results remain unaffected. We mention
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that the approximation scheme described herein is standard
and has been used extensively in the literature on transport
calculations (both by us and by others) [25]. We also mention
that we will relax the third approximation (item 3 in the list of
six items above) later in the paper by assuming specific spatial
correlations in the random charged impurity locations in the
dopant layer (in fact, this is the central point of the current
work).

The calculation of the conductivity σ (or equivalently, the
mobility μ = σ/ne) now boils down to simply evaluating
the integral in Eq. (7) which is straightforward to do once the
screened Coulomb potential u(q; d) is specified. The screened
Coulomb disorder is given by

u(q; d) = v(q; d)/ε(q), (8)

where v(q,d) and ε(q) are, respectively, the bare Coulomb
disorder and the RPA dielectric function

v(q,d) = vc(q)e−qdfi(q) (9)

and

ε(q) = 1 − vc(q)�(q)fe(q), (10)

where fi and fe are, respectively, the form-factors associated
with electron-impurity interaction and electron-electron inter-
action with vc(q) being simply the 2D Coulomb interaction

vc(q) = 2πe2/κq, (11)

where κ = (κGaAs + κAlGaAs)/2 is the background lattice di-
electric constant. The form factors fi (�1) and fe (�1) arise
from the quasi-2D quantum-mechanical nature of the quantum
well confinement (i.e., from the finite thickness of the 2D
quantum well) for the 2DEG. For a strict (and idealized) 2D
confinement of zero thickness fi = fe = 1, but assuming a
quasi-2D infinite potential quantum well confinement with a
width a, fi , and fe are calculated to be

fi(q) = 4

qa

2π2(1 − e−qa/2) + (qa)2

4π2 + (qa)2
(12)

and

fe(q) = 3(qa) + 8π2/(qa)

(qa)2 + 4π2
− 32π4[1 − exp(−qa)]

(qa)2[(qa)2 + 4π2]2
, (13)

where we assume that κGaAs = κAlGaAs (which is an excellent
approximation) so that image charge effects can be neglected.
In Eq. (10), �(q) is the T = 0 2D static RPA polarizability (or
screening) function given by [25]

�(q) = 1 −
[

1 −
(

2kF

q

)2]1/2

θ (q − 2kF ), (14)

where θ (x) is the Heaviside step function, i.e., θ (x) = 1 for
x � 0 and 0 for x < 0. Using Eqs. (6)–(14) and assuming the
strict 2D limit (or equivalently d � a), it is straightforward to
derive that the maximum mobility (i.e., the mobility limited
only by remote charged dopants with nd = n) is given by
Eq. (4), going as μmax ≈ 16

√
2πed3√n/� in the kF d � 1

limit.
Full numerical calculations for transport properties based

on Eqs. (6)–(14) have already been provided by us in some

1 10
n (10   cm   )

10-2

10-1

100

101

102

μ 
(1

0 
  c

m
   

/V
s)

d=150nm

10 -2

6
2

30
50
80

100

d=0

FIG. 1. Calculated mobility as a function of carrier density for
different set back distances d = 0, 30, 50, 80, 100, and 150 nm. Here,
the impurity density nd = n is used for each plot and a quantum well
width a = 300 Å is used.

details in Ref. [18], and therefore we refrain from further
discussion of the theory except to provide in Fig. 1 one set
of numerical results for the calculated (maximum possible)
mobility based on Eqs. (6)–(14) for a 2D GaAs-AlGaAs
quantum well of thickness a = 300 Å for a series of values of
set back distance (d = 0, 300, 500, 800, 1000, and 1500 Å)
as a function of 2D carrier density n, explicitly assuming
n = nd for each plot. For larger values of kF d, the mobility
shown in Fig. 1 is slightly below the analytical kF d � 1 result
given in Eq. (4), approaching it asymptotically for very large
kF d (kF d � 1, d � a, kF � qT F ). We mention, as noted
already earlier, that the calculated mobility in the very best 2D
modulation-doped GaAs structures [14,15] routinely falls well
below the experimentally measured mobility for large values
of d although the vast majority of 2D GaAs samples obviously
has mobility lower that the theoretical predictions in Fig. 1
which, in principle, should be an absolute upper limit on the
maximum possible mobility for given values of n and d for all
samples.

To establish that the Boltzmann theory developed in
Eqs. (6)–(14) is quantitatively reliable for high-mobility
(kF l � 1) samples (at least in some situations), we show in
Fig. 2 a comparison between the theory and experimental
data. These experimental results are specifically obtained in
order to assess the quantitative validity of the Boltzmann
transport theory in a 2D HIGFET (heterostructure insulated
gate field effect transistor) structure [26] where the 2D carrier
density can be tuned by changing the voltage on an external
gate (thus, the HIGFET is the GaAs-AlGaAs version of
the Si-SiO2 MOSFET–metal oxide semiconductor field effect
transistor) [25]. Before describing the results in any details
(see below) we emphasize that Fig. 2 directly establishes
the quantitative accuracy and the qualitative validity of the
Boltzmann transport theory for 2D transport calculations
through the comparison of the density dependent mobility
in 2D GaAs between theory and experiment without any
adjustable parameters.
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FIG. 2. (Color online) The measured 2D mobility compared with
the theoretical Boltzmann calculation (solid lines). In (a) and (b),
ni = 1014 cm−3 and ni = 5 × 1014 cm−3 of C atoms, respectively,
are introduced in a = 300 Å wide 2D GaAs channel. In (c),
ni = 1017 cm−3 of C atoms are introduced in the AlGaAs barrier
over a 10-nm-wide strip located at a set back distance of 10 nm
from the GaAs-AlGaAs interface. The experiments are carried out at
T = 300 mK.

The key differences between HIGFETs [26] and
modulation-doped structures (of interest in the current work)
are the following: (1) there are no remote dopants in HIGFETs
in contrast to modulation-doped structures; (2) the carrier
density can be tuned in HIGFETs by the external gate (similar
to MOSFETs) which supplies the 2D carriers in contrast to
modulation-doped structures where the carriers are induced
by the remote dopants in the doping layer; (3) the 2D mobility
in high-quality HIGFETs is limited entirely by background
unintentional charged impurity scattering and the whole issue
of spatial correlations among donor charged impurity locations
(in the dopant layer of the modulation-doped system) is
moot in HIGFETs since the unintentional background charged
impurities are most likely distributed randomly spatially in
an uncorrelated manner; (4) the random uncorrelated spatial
distribution of background impurities (in contrast to possible
spatially correlated charged impurities in the dopant layer)
can be treated using our Boltzmann transport theory within
the Born approximation as long as the mean free path is
sufficiently long so that the higher-order impurity scatter-
ing effects (beyond the leading-order Born approximation)
are neglected; (5) these differences between HIGFETs and
modulation-doped high mobility structures indicate that while
the mobility in the former is limited entirely by scattering from
unintentional background charged impurities (which are likely
to be distributed in spatially uncorrelated random locations),
the mobility in the latter is limited by the combined Coulomb
scattering from both unintentional background charged impu-
rities and remote charged dopants.

In Fig. 2, we show that the measured 2D mobility
compared with the theoretical Boltzmann calculation (using
the Born approximation and random ensemble averaging
over uncorrelated background impurity positions). Results for
three distinct experimental measurements are shown where
we have taken care to experimentally introduce calibrated

background disorder into the HIGFET sample. First, we
introduce 1014 cm−3 of carbon atoms in the 2D GaAs channel
itself; second, we introduce 5 × 1014 cm−3 of C atoms in the
2D GaAs channel, and finally, we introduce 1017 cm−3 of C
atoms in the AlGaAs barrier over a 10 nm wide strip located at
a set back distance of 10 nm from the GaAs-AlGaAs interface.

We note that the residual background impurity concentra-
tion (i.e., before the controlled incorporation of additional
impurities) in our HIGFET sample is, of course, unknown
by definition (since these are unintentional impurities), but
is thought to be rather small (�1013 cm−3). What is clear
from Fig. 2 is that the theory, based on the Boltzmann
theory and Born approximation, agrees quantitatively with
the experimental data in the sense that (1) increasing the
background impurity density by a factor of 5 (from 1014

cm−3 to 5 × 1014 cm−3) exactly decreases the mobility by
a factor of 5, and (2) the calculated carrier density dependence
of mobility (μ ∼ n0.8 or μ ∼ n1.9) agrees very well with the
experimental measurement over a broad range of intermediate
density (where the theory is particularly well valid) in all
the experimentally investigated situations including the lowest
mobility case, where μ ∼ n1.9, involving a larger density
(=1017 cm−3) of added charge impurities in the barrier [27].
We note that the theory becomes progressively inaccurate
at both high and low densities (and hence the systematic
disagreement between theory and experiment at high and
low carrier density regimes in Fig. 2) since other physical
mechanisms (beyond screened Coulomb disorder scattering
arising from random background charged impurities) come
into play in these regimes. In the high-density regime, the
self-consistent electric field generated by the combined 2D
electrons themselves becomes important which pushes the
electrons closer to the GaAs-AlGaAs interface as the 2D
confinement becomes tighter. This tighter confinement at
higher density leads to the carrier scattering from the interface
roughness and from the alloy disorder in the barrier which
become quantitatively important [25], eventually reducing
the mobility with increasing density at high enough carrier
density. Although it is straightforward to include this short-
range disorder effect in the theory, it is beyond the scope of
the current work where we are only considering effects of
Coulomb disorder. At low carrier densities, where screening
is weak, the random charged impurities could lead to strong
density inhomogeneity (“puddle”) in the sample (and associ-
ated carrier localization and metal-insulator transition) [28].
These low-density effects of incipient carrier localization and
percolation through inhomogeneous density fluctuations are
not included in the Boltzmann transport theory with Coulomb
disorder treated in the static RPA screening approximation.
Thus the measured mobility eventually falls below the cal-
culated mobility at low and high carrier densities, but the
agreement between theory and experiment is excellent in the
intermediate density regime where the theory is particularly
well valid.

Before concluding the discussion of the experimental
results (and their comparison with the Boltzmann theory with
Coulomb disorder scattering) in HIGFETs, we mention that
the theoretical results for the lowest mobility sample in Fig. 2,
where 1017 cm−3 of C atoms are inserted into the AlGaAs
barrier region in a 10-nm strip located 10 nm away from the
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interface, are easily obtained through a minor modification of
Eq. (7) where nd |u(k − k′)|2 is replaced by∫ ∞

−∞
dzNi(z)|u(k − k′,z)|2, (15)

inside the k′ integration with Ni(z) being the 3D impurity
density in the system. For the lowest mobility sample of
Fig. 2, we have Ni(z) = Ni = 1017 cm−3 only for the strip
z = 200–300 Å, where z is now measured from the GaAs-
AlGaAs interface. The theoretical calculations for the HIGFET
use realistic HIGFET quasi-2D confinement effect with the
form-factors fi and fc [see Eqs. (12) and (13)] being calculated
variationally for the appropriate triangular 2D confinement
in HIGFETs in contrast to the square well confinement in
modulation-doped quantum wells. Since these details are
well established in the literature, we refrain from giving the
relevant theoretical formula instead referring to the existing
literature [25].

We emphasize that the theory describes well both the
quantitative aspects of the measured mobility as well as the
qualitative aspect namely the fact, that the mobility limited by
channel impurities (barrier impurities) manifests completely
different density scaling behavior with μ ∼ n0.8 for channel
impurities and μ ∼1.9 for barrier impurities. This density
scaling behavior of 2D transport has recently been discussed
in details by us elsewhere [27] and we refrain from further
discussion of this point except to note that the power law
exponent α with μ ∼ nα can be used experimentally to
distinguish whether the mobility in a particular sample in a
given density range is being dominated by nearby channel (or
far away barrier) impurities by measuring whether α < 1 or
α > 1, respectively.

III. GENERAL THEORY FOR IMPURITY CORRELATIONS

Having established in the last section the basic validity
of the Boltzmann transport theory (with impurity scattering
treated in Born approximation) for spatially uncorrelated
random impurity scattering (both in the 2D GaAs channel
and in the AlGaAs barrier region) by directly comparing
experiment and theory, we now face the conundrum produced
by some of the highest mobility modulation-doped quantum
well structures reported in the literature, where the measured
mobility exceeds the theoretically allowed maximum mobility
calculated within the Boltzmann theory assuming spatially
uncorrelated random scattering by the remote charged dopants
(without any other scattering). Making the situation even
more mysterious is the fact that the mobility in these extreme
high mobility (μ > 2 × 107 cm2/V s for n ∼ 3 × 1011 cm−2)
modulation-doped structures is known to be limited not by the
remote dopant scattering, but by the scattering from uninten-
tional background charged impurities in the GaAs layer itself
since the density dependence of the mobility, μ ∼ nα , follows
a power law with the scaling exponent α ∼ 0.7–0.8 indicating
the strong dominance of background scattering over remote
scattering [27]. If remote dopant scattering (i.e., kF d � 1) is
the dominant scattering mechanism, then the density power
law exponent α should be larger, α � 1.5, which is never seen
in these extreme high-mobility modulation-doped structures.
On the other hand, as emphasized in depth in Introduction

(and as can be seen in Fig. 1), the calculated mobility for
n = 3 × 1011 cm−2 due to remote dopant scattering (with
nd = n) gives μth ≈ 1.3 × 107 cm2/V s, which is less that
the measured mobility, μ ≈ 2 − 4 × 107 cm2/V s. Obviously,
something is missing in the theory!

We now consider spatial correlations among the locations
of the charged dopants as the main physical mechanism
enhancing the 2D mobility limited by remote scattering
(compared with the theoretical results shown in Fig. 1, which
are obtained by ensemble averaging over random spatially
uncorrelated positions of the ionized donor impurities in
the remote doping layer). Formally, it is straightforward
to modify the Boltzmann transport theory including spatial
correlations among the impurity locations within the leading-
order Born approximation. In the presence of inter-impurity
spatial correlations [21,22], Eq. (7) for the transport scattering
rate changes to

1

τ
= 2π

�

∫
d2k′

(2π )2
sd (k − k′)|u(k − k′; d)|2

× (1 − cos θkk′)δ
(
E(k) − E(k′)

) |k=kF
, (16)

where the remote dopant charged impurity density nd in Eq. (7)
has been replaced by the spatially correlated impurity structure
factor sd (q) defined by

sd (q) =
∣∣∣∣∣

Ni∑
i=1

e−iq·Ri

∣∣∣∣∣
2

, (17)

where Ri is the 2D location of the ith ionized dopant in the
doping layer with i denoting the individual ionized dopant site
with the sum ranging over all Ni of the ionized dopants (i.e.,
Ni is the total number of ionized dopants in the modulation
doping layer whereas nd is their 2D areal density).

An easy way to derive Eqs. (16) and (17) is to use the
Fermi’s golden rule and the weak-scattering Born approxima-
tion to calculate the transport relaxation rate from the total
scattering potential created by the ionized dopants

1

τ
= 2π

�

∫
d2k′

(2π )2
|ũ(k − k′; d)|2(1 − cos θkk′)

× δ[E(k) − E(k′)]|k=kF , (18)

where ũ(q; d) is the Fourier transform of the electrostatic
potential created by the ionized dopants

ũ(q; d) =
Ni∑
i=1

∫
d2ru(r − Ri ,d)e−iq·(r−Ri )e−iq·(r−Ri ), (19)

where (Ri ,d) is the position of the ith ionized dopant with
Ri being the 2D position vector and d the set-back distance
of the dopant layer. The potential u(r − Ri ,d) is the screened
Coulomb potential arising from the ith charged donor in the
dopant layer at the 3D position vector (x,y) ≡ Ri and z = d

at the electron position r in the 2DEG. Rewriting Eq. (19) as

ũ(q; d) =
Ni∑
i=1

e−iq·Ri

∫
d2r ′u(r′,d)e−iq·r′

, (20)
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where r′ = r − Ri has been used, we get immediately

ũ(q; d) = u(q,d)

(
Ni∑
i=1

e−iq·Ri

)
. (21)

Substituting Eq. (21) into Eq. (18) leads to Eq. (16). The
basic idea of including the structure factor in the scattering
formula [Eq. (16) above] is that the scattering cross section
is not determined by a sum over individual scattering by
each independent point scatterer, but instead by the scattering
from the total potential created by all the scattering centers
together. Since there could be considerable interference among
the scattering events from the individual charged impurities,
particularly when there are spatial correlations among their
locations, the correlated theory as defined by Eq. (16) would in
general have suppressed scattering compared with the simple
ensemble averaged random impurity formula summing up
all the individual scattering events. Thus, spatial correlations
would make sd < nd , leading in general to higher mobility.

If the impurities are completely uncorrelated, then sd (q) =
nd , which leads to Eq. (18) for scattering by random spatially
uncorrelated charged impurities. In general, however, spatial
correlations lead to sd < nd because the presence of corre-
lations leads to some interference between scattering from
different impurity locations. Thus spatial impurity correlations
always reduce the scattering rate, and hence enhance τ , thus
leading to increased conductivity (∝τ ) and mobility (∝τ ).
The magnitude of the actual mobility enhancement due to
impurity correlations in a specific sample depends entirely on
the level of inter-impurity correlations in the sample itself.
A very special case is that of the ionized donors in the
dopant layer being spatially arranged in a perfect 2D periodic
structure (e.g., a 2D square lattice or a honeycomb structure)
where the only possible scattering by the ionized impurities
is Bragg scattering, and therefore, the scattering rate τ−1

vanishes identically (at T = 0), leading to infinite mobility or
conductivity! Thus the actual 2D mobility is limited by remote
ion scattering from below by the results shown in Fig. 1 where
the remote ions are assumed to be randomly located in the
modulation doping layer with no spatial correlations and is
bounded from above by infinite mobility where the ionized
dopants form a perfect 2D crystal (so that the random location
of one impurity determines the spatial positions of all the other
impurities).

The actual 2D mobility lying between its random impurity
value (in Fig. 1) and infinity is going to depend on the
delicate details of the spatial correlations among the charged
impurities in specific samples. Obviously, the precise impurity
spatial correlations could never be known experimentally (or
otherwise). In the next two sections, we will discuss various
approximations for incorporating impurity spatial correlations
in the transport theory. It is, however, clear that any spatial
correlations among the ionized donors in the modulation
doping layer will enhance the 2D mobility above its value
shown in Fig. 1 bringing theory and experiment closer.

IV. CONTINUUM MODEL OF IMPURITY CORRELATIONS

In the continuum model, the impurity structure factor sd (q)
of Eq. (17) can be rewritten in terms of the real-space pair

correlation function gd (r) defining the spatial correlations
among the charged donors

sd (q) = nd

{
1 + nd

∫
d2reiq·r [gd (r) − 1]

}
. (22)

The transport calculation in the presence of impurity spatial
correlations now boils down to making suitable approxima-
tions for the charged dopant pair correlation function gd (r).

The simplest possible approximation one can make for the
pair correlation function gd (r) is the following:

gd (r) = 0,|r| � r0

= 1,|r| > r0 (23)

with r0 < ri = (πnd )−1/2 by definition. The approximation
defined by Eq. (23) asserts that any two charged donors in the
dopant layer simply cannot be separated by a distance closer
than a minimum distance r0, for example, two ionized dopants
are not allowed to be on top of each other (i.e., r0 = 0), which
is permissible for an uncorrelated random distribution of the
donor ions. This minimal spatial correlation model defined by
Eq. (23) leads to

sd (q) = nd

[
1 − 2πnd

r0

q
J1(qr0)

]
, (24)

where J1(x) is the Bessel function of the first kind. The
simplicity of the continuum model defined by Eq. (23) enables
us to characterize the impurity spatial correlation effects by a
single length parameter r0, the minimum interimpurity sepa-
ration allowed among the spatially correlated ionized donors.
Note that in Ref. [22], the scattering time was calculated
by considering the correlation effect of charged impurities,
taking into account both fluctuations in the distribution of
the impurity sites (impurity configuration) and the charge
state (negative os positive) of a given impurity. In addition,
the Thomas-Fermi screening approximation was used to treat
the charged impurity scattering potential. It was shown [22]
that an enhancement in the mobility was observed when the
impurity charge state fluctuations were large. However, the
mobility enhancement arising from the spatial correlations
among the charged donors was not discussed. In our model,
we consider one type of charged impurities (positively charged
dopants) and therefore only the spatial correlations among the
charged impurities in contrast to Ref. [22].

Inserting Eq. (24) in Eq. (16), and carrying out the
momentum integration in the kF d � 1 regime of interest for
modulation-doped quantum wells, we get (for ndr

2
0 � 1)

τ−1 ∝ nd

(kF d)3

(
1 − πndr

2
0

) + O(kF d)−5. (25)

The spatial impurity correlation induced suppression of
the transport scattering rate by the correlation factor of
(1 − πndr

2
0 ) leads to the following relationship between the

theoretical mobility calculated using the uncorrelated random
impurity model (μr ) as obtained from Eq. (7) (and given
in Fig. 1) and that calculated (μc) using spatially correlated
impurities to be

μc

μr

≈ 1

1 − πndr
2
0

. (26)
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FIG. 3. (Color online) Calculated (a) transport scattering time τt

and (b) quantum scattering time τq as a function carrier density
for different correlation length r0 = 0, 0.3, 0.5, 0.7ri , where ri =
1/(πnd )1/2. The results are calculated with d = 0 and a fixed impurity
density nd = 1011 cm−2. (c) and (d) show the same as (a) and (b),
respectively, but with a set back distance of d = 500 Å.

For r0 � 1/
√

πnd , μc ≈ μr (1 + πndr
2
0 ), but for r0 � 1/√

πnd , when impurity spatial correlations are strong, μc �
μr . We believe that the ultrahigh mobility modulation-doped
structures typically are in this latter situation with πndr

2
0 � 1.

We note that the specific form of Eq. (26) applies only in the
ro � (πnd )−1/2 limit.

In Figs. 3–8, we show our full numerical results from the
calculated scattering time τ limited only by remote scattering
in the presence of ionized dopant spatial correlation effects
characterized by the dimensionless correlation parameter
r0/ri ≡ r0/(πnd )−1/2 (i.e., ri = (πnd )−1/2) with 0 � r0/ri � 1
with the lower (ri = 0) and the upper (ri = r0) bound indicat-
ing the standard uncorrelated random impurity distribution
and the (hypothetical) perfectly periodic impurity distribution,
respectively. Since there are four distinct length variables,
τ = τ (n,nd,d,r0), characterizing the 2D transport properties
(even at T = 0 and neglecting all scattering processes other
than scattering by charged impurities of 2D density nd located
at a distance d), there is a vast amount of different results
our numerics can produce. We, therefore, only provide some
snapshots of representative results in order to establish the
importance of impurity correlations in determining the 2D
transport behavior.

In addition to showing the transport scattering time (τt in
Figs. 3–8) discussed above in Eqs. (1)–(26) defining the 2D
conductivity and mobility σ = ne2τt/m and μ = eτt/m (with
σ = neμ as usual), we also show the so-called “quantum” (or
“single particle”) scattering time τq , which is an independent
relaxation time defining the single-particle level-broadening
γq (e.g., the Dingle temperature TD = �q/kB) through �q =
�/2τq in the system, in our results. The quantum scattering
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FIG. 4. (Color online) Calculated (a) transport scattering time τt

and (b) quantum scattering time τq as a function carrier density
for different correlation length r0 = 0, 0.5, 0.7ri . The results are
calculated with d = 0 and nd = n. (c) and (d) show the same as (a)
and (b), respectively, but with d = 500 Å.

time τq is simply obtained by replacing the factor (1 − cos θ )
in the equations above for τ [e.g., Eqs. (7), (16), (18)] by
unity [i.e., without the (1 − cos θ ) factor inside the integral
over 2D wave vector on the right hand side]—thus τ = τt

(τq) with the (1 − cos θ ) factor being present (absent) inside
the wave vector integral for τ . The presence (absence) of the
(1 − cos θ ) factor implies the absence (presence) of forward
scattering contributions to the scattering rate τ−1, respectively,
indicating the irrelevance (relevance) of carrier scattering in
the forward direction (i.e., θ = 0) contributions to τ−1

t (τ−1
q ).

It is obvious that τt � τq with the equality holding only when
the scattering potential u(q) is purely symmetric (i.e., pure s

wave) being independent of q, which happens only for zero-
range isotropic scatterers. It is clear (and well-known) that
for remote scattering by ionized dopants in the modulation
doping layer, τt � τq since essentially all the scattering is
in the forward direction [29], and it is easy to show that in
the limit kF d � 1, τt/τq ∼ (kF d)2. On the other hand, for
unintentional background impurity scattering, kF d � 1 and
τt ∼ τq since screening makes the Coulomb disorder arising
from the background charged impurities to be effectively short-
ranged in nature, whereas screening is relatively ineffective
when the charged impurities are very far away and most of the
scattering is basically small-angle forward scattering [17].

The full numerical results in Figs. 3–8 clearly show the great
importance of spatial correlations, particularly for r0/ri � 0.8
(see Fig. 8). Although the spatial correlation effects are fairly
modest for r0/ri < 0.8, the mobility (i.e., τt ) could still
easily be enhanced by factors of 2–3 even for r0/ri ≈ 0.7
compared with the uncorrelated random scattering situation
(Fig. 1) of r0 = 0. For larger r0/ri (> 0.7), however, both τt

and τq are strongly enhanced compared with their random
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FIG. 5. (Color online) (a), (b), and (c) show scaled scattering times [τt,q (r0)/τt,q (0)] as a function of correlation length r0/ri for (a) d = 0, (b)
100, and (c) 500 Å, and for n = nd = 1011 cm−2. Here τt,q (0) = τt,q (r0 = 0). (d), (e), and (f) show τt,q (r0)/τt,q (0) for (d) d = 0, (e) d = 100 Å,
and (f) d = 500 Å with n = 1011 cm−2 and nd = 1010 cm−2, i.e., n > nd . (g), (h), and (i) show τt,q (r0)/τt,q (0) for (g) d = 0, (h) 100, and
(i) d = 500 Å with n = 1010 cm−2 and nd = 1011 cm−2, i.e., n < nd .

uncorrelated impurity scattering values. In addition, it is
apparent, particularly from Figs. 5–8, that a very small change
in r0/ri (for r0/ri > 0.7) could have a large effect on τt and
τq (and hence, on the mobility and the level broadening).

This extreme sensitivity of modulation-doped samples
to spatial correlations among the dopant ions in ultrahigh
mobility modulation-doped structures could, in principle, be a
possible reason for the unexpected (and unexplained) observed
large variations (by upto a factor of 2) in the low-temperature
mobility of 2D modulation-doped GaAs-AlGaAs systems (in
the highest mobility structures) in various samples of identical
carrier density cut from the same large wafer [30]. It is, in
principle, possible for the value of the spatial correlation
parameter r0 to vary slightly over the large area wafer, and
our results in Figs. 5–8 show that even a small variation in
r0 could lead to large variations in the mobility in the highest
quality 2D samples. A similar explanation could also apply
(at least as a matter of principle) to the observed variation
in the mobility of the same sample (again, only in ultrahigh
mobility samples with μ > 107 cm2/V s) as the sample is
thermally cycled between room temperatures and cryogenic
temperatures. Warming the sample to the room temperature
(∼300 K) and then cooling it back down to ∼50 mK could
certainly slightly modify the spatial correlations among the

ionized donor impurities in the dopant layer with a concomitant
slight change in the value of the correlation parameter r0

leading to a change (again by up to a factor of 2 or so) in
the 2D mobility. Of course, whether the underlying reason for
the observed variation in the sample mobility under thermal
cycling (or in the sample to sample variation in the mobility
over a large wafer) is some small variation in r0 as proposed
here can only be ascertained by future controlled experiments
focusing on this issue. We, however, raise this possibility as a
matter of principle.

One aspect of the results presented in Figs. 3–8 needs
special emphasis. The quantum scattering time τq is more
sensitive to spatial correlation effects than the transport
scattering time τt since τq is affected by the forward scattering
process which is obviously more strongly influenced by spatial
correlations. An immediate corollary of this finding is that
the ratio τt/τq , which is very high (τt/τq � 1) in ultra
high mobility modulation doped structures, would be much
lower in the presence of spatial impurity correlations than
in its absence. This is exactly the experimental observation,
i.e., typically the theory based on completely uncorrelated
random scattering by the remote charged impurities always
gives calculated values of τt/τq which are much larger than
those found experimentally, and spatial correlations among
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FIG. 6. (Color online) (a), (b), and (c) show τt,q (r0)/τt,q (0) as a function of correlation length r0/ri for a fixed set back distance d = 700 Å
and for (a) n = nd , (b) n > nd , and (c) n < nd . (d), (e), and (g) show τt,q (r0)/τt,q (0) for d = 1000 Å and for (d) n = nd , (e) n > nd , and (f)
n < nd .

the dopant ions could be (at least partially) a reason for this
behavior.
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FIG. 7. (Color online) (a) and (b) show scattering times
τt,q (r0)/τt,q (0) as a function of correlation length r0/ri for n =
nd = 3 × 1011 cm−2 and for different set back distances (a) d = 800
and (b) 1600 Å. (c) and (d) show τt,q (r0)/τt,q (0) for a fixed set
back distance d = 2000 Å, and (c) n = nd = 6 × 1010 cm−2 and (d)
n = nd = 1011 cm−2. Insets show the ratio of scattering times, τt/τq ,
as a function of correlation length.

The great advantage of the continuum model is its
phenomenological nature where a single effective length
parameter r0 [<(πnd )−1/2] completely characterizes the spa-
tial correlations qualitatively and quantitatively. This great
simplicity of the theory comes at the price that the continuum
theory provides no explicit mechanism for calculating the
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FIG. 8. (Color online) The same results of Fig. 7 shown only for
the range of 0.8 < r0/ri < 1.
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phenomenological r0 parameter from a microscopic model. In
the next section, we consider a highly sophisticated (and highly
numerically demanding) discrete lattice theory for dopant
correlations which is completely microscopic and allows for
an ab initio estimation of spatial correlations as a matter of
principle (although as a matter of practice, all the growth
parameters for modulation-doped semiconductor structures
are not known precisely enough for the discrete microscopic
theory to lead to a purely theoretical quantitative evaluation of
the spatial correlations).

V. DISCRETE ATOMISTIC MODEL
OF IMPURITY CORRELATIONS

Molecular beam epitaxy (MBE) growth technique utilized
in making ultrahigh mobility GaAs-AlGaAs semiconduc-
tor structures, being an atomistic growth process, entails
a minimal spatial correlation among the deposited dopant
atoms (e.g., the deposited dopant atoms must be separated
by lattice distances from each other), but such a minimal
spatial correlation is completely insufficient to describe the
actual existing charged impurity correlations in the dopant
layer [21,22]. For example, we can put r0 = a0 (or even a few
times a0), where a0 is the typical unit cell size or lattice unit
in GaAs or AlAs (a0 < 1 nm), leading to r0/ri ≈ 0.1–0.3,
which (according to Figs. 3–7) should not have a very strong
quantitative effect on the 2D mobility compared with the
random scattering results shown in Fig. 1. The atomistic
physics of dopant impurity correlations must lie in some other
physical mechanism for it to be relevant for our consideration
of donor impurity correlation effects on the 2D mobility.

The key physical mechanism is provided by the fact that
the dopant layer is not completely, but only partially, ionized,
i.e., only a fraction f (<1) of the deposited dopant atoms
in the modulation doping layer is ionized. This fractional
ionization of the dopant layer very strongly enhances the
possible spatial correlations among the charged or ionized
donor impurities even if the spatial correlations among all
the donor impurities (both charged and neutral) may be
much weaker (as discussed above). If f = 1, i.e., all the
deposited donor atoms are somehow ionized in the modulation
doping layer, then the impurity spatial correlations would
indeed be rather small corresponding only to what the MBE
growth process itself can impose (i.e., r0/ri < 0.3). Partial
ionization of donors (f < 1) allows donor electrons to hop
around the donor atoms to find suitable donor sites in order
to try to minimize the total energy of the whole collection
of the charged donor atoms which interact with each other
via the classical long-range Coulomb interaction whereas the
neutral donors interact via weak short-range interaction. Such
interdonor hopping of electrons in order to achieve an apparent
thermal equilibrium of the charged donor system is facilitated
by the fact that high-quality MBE growth is a high-temperature
process enabling inter-donor thermal activation of the electrons
toward a local thermal equilibrium among the available donor
impurities as enforced by the long-range Coulomb interaction.

To calculate the transport properties of a system with
impurity correlations we need to calculate the pair correlation
functions, gd (r) and sd (q). Once gd (r) and sd (q) are obtained,
we can calculate scattering times (τtq), mobility (μ), and
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FIG. 9. The actual real-space charged dopant distributions at the
corresponding freezing temperatures: (a) 1.2 Tm, (b) 12 Tm, (c) 120
Tm, and (d) ∞. The axes are labeled in units of

√
nd .

conductivity (σ ) from the equations and formalism given
in Sec. IV. We have calculated the pair correlation function
gd (r) for the ionized dopants using direct atomistic numerical
Monte Carlo (MC) simulations [23,24] on a system of charged
dopants interacting via the classical Coulomb interaction on
a 2D lattice. We consider a system of Ni dopants obeying
classical statistics, confined to an area A. The Hamiltonian,
neglecting the kinetic energy, is given by

HI =
∑
i<j

v(rij ), (27)

where v(rij ) = e2/κrij with κ being the background dielectric
constant and rij = |ri − rj |. Then, the pair correlation function
gd (r) is defined by the equation

gd (r) = Ni(Ni − 1)

n2
dQNi

∫
· · ·

∫
exp

⎡
⎣−β

∑
i<j

v(rij )

⎤
⎦

d2r3 · · · d2rNi
, (28)

where β = 1/kBT , nd = Ni/A is the 2D dopant density, and

QNi
=

∫
· · ·

∫
exp

⎡
⎣−β

∑
i<j

v(rij )

⎤
⎦ d2r1 · · · d2rNi

. (29)

The MC simulations were carried out on a 2D square lattice of
Ni = N2 (with N = 32 or 64 in most situation) where Ni is
number of ionized dopants (e.g., Si). These (infinitely heavy
classical) charged particles were allowed to occupy points on
a uniform fine grid that had c2 (c = 42 was used most often)
points per unit area. This discretization was used to enable
the construction of a look-up table for the interaction potential
between two arbitrary particles in the system. This obviously
results in an upper bound for the wave vector values in the
calculation. The potential used (and tabulated) is the Ewald
summed ideal Coulomb interaction, which is the result of
applying periodic boundary conditions to a parallelogram.
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FIG. 10. The MC calculated pair correlation function gd (r) as a
function of the spatial separation r between the ionized dopants for
various values of the freezing temperature, 1.2 Tm, 12 Tm, 120 Tm,
and ∞ (bottom to top). The results for higher temperatures are shifted
upward for clarity. Here, a0 = r0.

The simulations start with the particles in the ideal 2D
Coulomb crystal (2D triangular lattice) configuration. We used
the standard METROPOLIS MC algorithm to dynamically evolve
the system with attempts to move particles serially one after
another. The observed acceptance rate for our MC simulation
is ∼0.65.

The single key variable (other than the ionized dopant
density nd ) defining the converged results of the MC sim-
ulations (i.e., the calculated gd and sd , for example) is the
simulation “temperature” (T0), which is determined by the
details of the MBE growth process (and not necessarily
the growth temperature in the MBE chamber during the
dopant impurity deposition in the modulation doping layer),
and is the characteristic temperature at which the spatial
correlations among the ionized dopants are frozen in. The
basic idea is that, depending on the details of the prevailing
growth conditions, electrons manage to hop around among the

donor impurity sites so as to reach a global equilibrium at
some temperature T0 for the given ionized dopant density nd

(which is smaller than the total dopant atom density allowing
such an equilibrium configuration to be reached). Once this
T0 equilibrium is achieved, the system is frozen in and no
further modifications in spatial correlations among the charged
dopants can occur in the sample (unless, of course, the sample
is heated to actual temperatures well above T0 itself). Thus T0

is a “nonequilibrium freezing or annealing temperature” where
the spatial correlations set in and are frozen in. Unfortunately,
T0 itself is unknown (similar to r0 in the continuum theory
of Sec. IV) since it depends sensitively on the MBE growth
conditions, but very crudely speaking T0 should be of the order
of the growth temperature (provided the growth temperature is
not too low so that electrons can actually thermally hop around
among the donor atoms to create thermal equilibrium at T0)
during the dopant incorporation.

The dimensionless quality characterizing the temperature
T0 is T0/Tm (similar to r0/ri in the continuum model),
where kBTm = e2(πnd )1/2 is the melting temperature of 2D
classical Coulomb crystal. Obviously, T0/Tm > 1 for the
theory to be sensible because, otherwise (i.e., T0 < Tm), the
ionized dopants will essentially form (if in equilibrium) a 2D
crystalline solid leading to vanishing resistivity and infinite
mobility (at least, as limited by remote dopant scattering).
A more likely scenario for actual low-temperature (<Tm)
growth is that the effective freezing temperature T0 will be
relatively high (and unknown) since the electrons are unlikely
to be able to hop among the donor atoms to reach the global
equilibrium periodic crystalline structure at the lower growth
temperature forming instead a random glassy distribution of
ionized donors which would correspond to an equilibrium
structure for an elevated effective temperature T0 (>Tm) and
a nonequilibrium metastable structure at the actual growth
temperature (<Tm). Our calculated interimpurity correlations
(i.e., gd and sd ) in the ionized donor spatial distribution will be
characterized by T0/Tm with T0 being the (generally unknown)
nonequilibrium freezing temperature, which can be roughly
taken as the MBE deposition temperature for the donor atoms
in the modulation doping layer (provided that the growth
temperature is much higher than Tm for the relevant ionized
dopant density nd in the 2D doping layer, which is always
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the case). More details on the MC simulation can be found in
Ref. [24].

To obtain the ionized dopant distribution from the MC
simulation, we calculate the pair correlation function gd (r)
and the associated structure factor sd (q) for the dopant ions
parametrized by the freezing temperature T0 (>Tm) with
T0 = ∞ being the completely random uncorrelated impurity
distribution with the correlations increasing strongly and
monotonically as T0 is lowered toward Tm with T0 = Tm

being the almost periodically perfectly correlated Coulomb
crystalline phase of the dopant ions. In Fig. 9, we show
the actual real-space charged dopant distributions at the
corresponding freezing temperatures as obtained from our
detailed MC simulations. In Fig. 10, we show the MC
calculated pair correlation function gd (r) as a function of the
spatial separation r between the ionized dopants for various
values of the freezing temperature between Tm and ∞. Clearly,
the correlations are very strong for low temperatures (e.g.,
1.2 Tm) and very weak for high temperatures (e.g., 120 Tm)
with the infinite temperature situation showing no correlations
whatsoever (i.e., the uncorrelated random impurities).

Once gd (r) is obtained from the MC calculations, the
correlation structure factor, sd (q), is calculated as a two
dimensional (fast) Fourier transform of qd (r),

s(q) =
∫

A

g(r)e−iq·rNid
2r. (30)

Using the structure factor we can immediately calculate τt ,
τq , mobility (μ) and conductivity (σ ) from the equations
and formalism already given in Sec. IV. In Figs. 11–18, we
show our representative numerical results for the spatially
correlated transport theory using the MC simulated values
for the correlation structure factor sd (q) characterized by the
nonequilibrium freezing temperature. We note that to calculate
the quantum scattering time the MC simulation has been
carried out in Ref. [23]. However, scattering time results were
calculated as a function of charge state fluctuations. In this
paper we provide the mobility results (and scattering times,
τt,q) in terms of all possible relevant parameters to experiment
(i.e., n, nd , d, and correlation parameter T0).

In Figs. 11 and 12, we show the calculated mobility as a
function of carrier density for two fixed values of ionized donor
densities: 5 × 1010 cm−2 (Fig. 11) and 1011 cm−2 (Fig. 12). In
each figure, the different panels give the results for different
set-back distances (350, 700, 1400 Å) as shown. Each figure
provides results for four different sets of spatial correlations
among the ionized dopants as characterized by four distinct
freezing temperatures (1.2Tm, 12Tm, 120Tm, and ∞). It is
clear that spatial correlations could lead to huge enhancements
of 2D mobilities compared with the uncorrelated random
impurity scattering results. Even a modest level of spatial
correlations (e.g., T0 = 120 Tm) produces an order of mag-
nitude enhancement in the mobility (except for the smallest
set back distance). The overall behavior of the mobility can be
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expressed by

μ(n,d,nd,T0) ∼ n3/2d3

n
1/2
d

f (T0/Tm), (31)

where f (T0/Tm) is a function of the dimensionless param-
eter T0/Tm. Apart from the function f (T0/Tm) the above
approximation formula of the mobility describes very well the
numerically calculated results in Figs. 11 and 12. The empirical
form of the function f is given by f (x) = (x + A)/(x − 1),
where A ∼ 103 is the fitting constant. By directly comparing
these results with the results of the continuum model we
find that T0/Tm ∼ 10, 100, ∞ approximately correspond to
(r0/ri)2 ∼ 0.99, 0.9, 0, respectively.

In Fig. 13, we show the results as a function of carrier
density making the standard n = nd assumption, again show-
ing a large mobility enhancement due to spatial correlations.
In this case (n = nd ) the mobility approximately increases
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FIG. 15. (Color online) The calculated mobility as a function of
the set-back distance (i.e., the separation between the dopant layer and
the 2DEG) for n = nd = 1011 cm−2 and for different temperatures,
1.2 Tm, 12 Tm, 120 Tm, and ∞ (top to bottom).

with carrier density n as n1/2, as represented in Eq. (31). In
Fig. 14, we show the mobility as a function of the ionized
dopant density at a fixed carrier density (n = 1011 cm−2).
We show in Figs. 15 and 16 the calculated mobility as a
function of the set-back distance (i.e., the separation between
the dopant layer and the 2DEG) for n = nd = 1011 cm−2

(Fig. 15) and n = nd = 5 × 1011 cm−2 (Fig. 16) for various
spatially correlated impurity distributions.

Finally, in Figs. 17 and 18, we show our calculated τt /τq as a
function of carrier density (Fig. 17) and as a function of setback
distance (Fig. 18) including spatial correlation effects. The
asymptotic behavior of the scattering time ratio is expressed
by τt/τq ∼ nd2 for kF d � 1. This expression fits very well
the numerically calculated results of Figs. 17 and 18. The most
important qualitative message from Figs. 17 and 18 is that even
a modest amount of impurity correlations drastically reduces
the ratio τt/τq compared with its values for the completely
random situation. This finding is in good qualitative agreement
with all experimental measurements in the literature where
τt/τq is always found to be less than 100 in all high mobility
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FIG. 16. (Color online) The same as Fig. 15 but for n = nd =
5 × 1011 cm−2.
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systems independent of the values of carrier density and spacer
thickness.

Before concluding this section, it may be useful to discuss
the expected range of T0 in experimental samples. Of course,
the precise value of T0 depends on all the details of the sample
growth and preparation conditions, and cannot therefore be
reliably theoretically established. On the other hand, Tm =
e2(πnd )1/2 can be expressed in degrees Kelvin as

Tm(K) = e2(πnd )1/2 ≈ 230ñd , (32)

where ñd = nd/1012. Thus Tm = 230 K (23 K) for nd =
1012 (1011) cm−2. If we take nd ≈ 5 × 1011 cm−2, we get
Tm ≈ 115 K, and a growth temperature of 500 ◦C–700◦C
then corresponds to T0 � 10Tm. Given that the ultrahigh
mobility 2D modulation-doped structures typically have n �
1011 cm−2, we conclude that the reasonable range for the
freezing temperature would be T0/Tm = 10–100. Thus the
actual mobility limited by remote scattering could easily be
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FIG. 18. (Color online) The calculated τt/τq as a function of
set back distance for n = nd = 5 × 1010 cm−2 and for different
temperatures.

a factor of 10 or larger than the random scattering results
given in Fig. 1. The precise estimate of the 2D mobility
limited by the remote ionized dopant scattering necessitates
a precise knowledge of T0, which is obviously unknown for
the experimental samples.

VI. CONCLUSION

We have developed a theory for 2D transport in high-
mobility modulation-doped structures assuming the resistive
scattering to arise exclusively from remote ionized dopant
scattering so that the calculated mobility is, by definition, the
highest possible mobility in the system since all other resistive
scattering mechanisms invariably present in the real structures
are neglected. By carefully taking into account possible spatial
correlations among the ionized dopant atoms in the modulation
doping layer, we have tried to resolve the long-standing prob-
lem of why theoretically calculated highest possible mobility
based on scattering from uncorrelated random disorder turns
out to be always lower than the actual mobility values measured
experimentally in ultrahigh mobility 2D modulation-doped
structures. After establishing through a direct comparison
with experiments that the Boltzmann transport theory along
with the leading-order Born approximation calculation for the
scattering rate is an excellent quantitative approximation for
high-mobility 2D systems, we show that spatial correlations
among the ionized dopants typically enhance the calculated
mobility by more than an order of magnitude compared with
the purely uncorrelated random scattering model. Thus, for
a 2D system with a density of 3 × 1011 cm−2, the random
scattering model predicts [18] a mobility of 13 × 106 cm2/V s
for a 2D GaAs quantum well of width 300 Å in a modulation-
doped structure with a set-back dopant layer separation of
800 Å, to be compared with the maximum experimentally
measured [14,15] mobility of 36 × 106 cm2/V s for the same
sample parameters. Inclusion of reasonable spatial correlations
among the ionized dopants enhances the mobility limited by
remote dopant scattering to around 150–200 × 106 cm2/V s
indicating that remote Coulomb scattering is irrelevant for the
transport properties of ultrahigh mobility modulation-doped
structures. This finding of the irrelevance of remote ionized
dopant scattering in determining the 2D mobility in the best
current modulation-doped samples has a number of impli-
cations beyond bringing experiment [14,15] and theory [18]
together. It establishes that the mobility in the best current 2D
modulation-doped structures is indeed limited by unintentional
background charged impurities, as already demonstrated by
the measured density-dependence of the mobility in the highest
mobility 2D samples [27]. This leads to the possibility that the
2D mobility could be enhanced to as high as 100 million
cm2/V s simply by purifying the background GaAs material
for MBE growth since the maximum achievable mobility
limited only by remote dopant scattering increases to ∼150
million cm2/V s once the dopant impurity correlations are
taken into account (in contrast to Ref. [18] where the random
dopant scattering puts a limit to the maximum mobility of
around 13 million cm2/V s only). The sensitive dependence
of the 2D mobility on the spatial correlations among the
remote ionized dopants also provides a possible explanation
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for the variation in the 2D mobility among various samples
cut from the same 2D wafer for the highest mobility systems
[30].

An additional important result of our theory is that spatial
correlations among the charged remote donors enhance τq , the
single-particle or the quantum scattering time, much more
strongly than it enhances τt , the mobility or the transport
scattering time. This implies that the effective value of the ratio
τt/τq is much smaller (∼10–100) in the spatially correlated
transport theory of modulation-doped structures than in the

usual pure random scattering theory. We find that spatial
correlations among the remote charged impurities always
enhance τq more than it enhances τt since τq is much more
sensitive to forward scattering, which is strongly suppressed
by correlation effects.
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