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Luminescence and squeezing of a superconducting light-emitting diode
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We investigate a semiconductor p-n junction in contact with superconducting leads that is operated under
forward bias as a light-emitting diode. The presence of superconductivity results in a significant increase of the
electroluminescence in a sharp frequency window. We demonstrate that the tunneling of Cooper pairs induces an
additional luminescence peak on resonance. There is a transfer of superconducting to photonic coherence that
results in the emission of entangled photon pairs and squeezing of the fluctuations in the quadrature amplitudes
of the emitted light. We show that the squeezing angle can be electrically manipulated by changing the relative
phase of the order parameters in the superconductors. We finally derive the conditions for lasing in the system and
show that the laser threshold is reduced due to superconductivity. This reveals how the macroscopic coherence
of a superconductor can be used to control the properties of light.
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I. INTRODUCTION

Superconductors exhibit quantum coherence of electronic
degrees of freedom on a macroscopic scale. For s-wave pairing
they are characterized by a complex pairing amplitude �

with a well-defined phase φ [1]. This is a consequence of
the off-diagonal long-range order present in the two-particle
density matrix [2,3]. The electrons condense into Cooper pairs
and form entangled two-electron singlet states. The prospect of
harvesting these useful coherence and entanglement properties
for the manipulation of quantum states as required, for exam-
ple, in quantum information processing and communication
[4–6] is a motivation to integrate superconducting elements in
semiconductor solid-state nanostructures. Prominent specific
goals are the on-demand production of entangled photon pairs
due to the recombination of Cooper pairs [7–13] and the
generation of nonclassical states of light [14–16]. It further
brings about the fundamental question of how to efficiently
transfer the electronic coherence and entanglement naturally
present in a superconductor to excitonic particle-hole pairs in
a semiconductor and eventually to photons that are emitted
from the heterostructure.

While the experimental realization of superconductor-
semiconductor hybrid nanostructures has proven to be tech-
nology challenging [17], there have recently been a number
of successful experiments using semiconductor nanowires
[18,19], quantum wells [8,20], and self-organized heterosu-
perstructures in unconventional superconductors [21]. Various
desired electronic and optoelectronic properties have been
observed such as the proximity effect [8,22] and the Josephson
effect [19,23], the realization of a superconducting field-effect
transistor [18], and enhanced electro- and photoluminescence
rates [9,21,24–27].

Enhanced luminescence rates were observed in a se-
ries of experiments using superconductor-semiconductor het-
erostructures where a p-n junction was contacted with a
superconducting Niobium lead on the n side of the junction and
cooled below the superconducting transition temperature Tc

[9,20,24,25]. In addition, it was clearly shown via the Joseph-
son effect that due to the proximity effect, Cooper pairs tunnel
into the active region of the p-n junction, where they recom-
bine with normal holes [8]. More recently, enhanced photo-

luminescence below a superconducting transition temperature
was reported in self-organized superconductor-semiconductor
heterostructures that form naturallly in the iron-based su-
perconductor KxFe2−ySe2 [21]. The exciting case where the

FIG. 1. (Color online) Schematic setup of superconducting light
emitting diode with p-n junction coupled to superconducting (sc)
leads operated under forward bias voltage V0. Basic recombination
processes at low temperature T < |�c|,|�v|: (i) transfer of particle
from conduction to valence band upon radiation of a photon (red) with
energy ωq � eV0 − |�c| − |�v|, (ii) absorption of a photon (blue)
with energy ωq � eV0 + |�c| + |�v| upon transfer of a particle from
valence to conduction band, and (iii) Cooper pair tunneling upon
emission or absorption of two photons (green) with energy ωq =
eV0. The superconducting gaps are denoted �v (�c) for valence
(conduction) band.
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semiconducting region only contains a few quantum dot states
has been studied in Refs. [10,11,28–30].

Here, we investigate a superconductor-semiconductor het-
erostructure consisting of a p-n junction that is sandwiched
between two superconducting leads. The setup is shown in
Fig. 1. We focus on the properties of the light that is emitted
from such a superconducting light-emitting diode (LED) under
forward bias in the steady state. To reach a steady state, we
consider a coupling of the photons to an external photon
bath. One of our main results is a drastic enhancement of
the electroluminescence rate in a sharp spectral window in
the presence of superconductivity. This increase, which is
shown in Figs. 6 and 7, is a consequence of the van-Hove
singularities at the edges of the superconducting bands. Similar
behavior was observed in a setup with one normal and one
superconducting lead in Refs. [26,27].

We also report the formation of an additional luminescence
peak on resonance that is effectively due to transitions of
Cooper pairs from the conduction to the valence band. A
similar rich peak structure was reported for the case of
quantum dots coupled to superconducting leads in Ref. [10].
Further, we analyze the statistical properties of the emitted
photons and predict nonclassical, two-mode squeezed states
of light. Photons with momentum q and −q inherit their
squeezing correlations from the electrons forming Cooper
pairs. As shown in Fig. 10, the uncertainty of the corresponding
two-mode quadrature operators in the squeezed state falls
below the minimum uncertainty of coherent states enforced by
the Heisenberg limit. Even more importantly, the orientation
of the squeezing ellipse can be externally manipulated by
changing the relative phase between the two superconductors
that are coupled to the p-n junction [16]. This shows that
one may employ the coherence of a superconductor to tailor
the properties of a two-photon quantum state via the transfer
of Cooper pair entanglement to the photons. Two-photon
correlations in related models are theoretically discussed in
Refs. [10,12,13]. Finally, we discuss conditions for lasing in
this system and find that the lasing threshold is reduced in the
presence of superconductivity, again due to the formation of
van-Hove singularities.

The structure of the remainder of the paper is as follows.
In the next Sec. II, we introduce the superconductor-p-n-
superconductor setup and develop the many-body nonequilib-
rium field theory framework that we use to extract properties
of the photons that are emitted in such a device under forward
bias. In Sec. III, we derive the effective photonic action
by integrating over the electronic degrees of freedom. We
calculate the photonic self-energy due to the coupling to the
electrons up to one loop. We discuss in detail the structure
and the features of the self-energy both in the presence and in
the absence of superconductivity. To obtain a steady state, we
consider the leakage of photons out of the system via a coupling
to an external photon bath. This yields another contribution
to the photonic self-energy. Inverting the Dyson equation,
we sum up the complete RPA series and obtain our main
analytical result: the dressed photon Keldysh propagators. In
the following sections, we extract the physical information
they contain about the photonic system. In Sec. IV, we discuss
the luminescence and the light squeezing properties and in
Sec. V, we derive the conditions to obtain lasing in the system.

We determine the lasing threshold also in a physically very
transparent way using rate equations. To focus on our main
results and the physical consequences in the main text, we shift
details of the calculations that yield the effective photon action,
the photonic self-energy and the dressed photon propagators
to the Appendix.

II. HAMILTONIAN AND KELDYSH ACTION OF
SUPERCONDUCTING LED

A. Hamiltonian of the heterostructure

We consider a p-n junction that is coupled on each side to a
superconducting lead. The system is set under an external
forward bias voltage V0 to operate as a LED. Due to the
proximity effect Cooper pairs tunnel into the active region
of the junction, and participate in recombination processes
that lead to the emission of light. We model the active region
of the junction together with the photonic degrees of freedom
by the Hamiltonian

H = Hc + Hv + Hel-ph + Hph + H bath
ph . (1)

The Hamiltonian of the conduction and the valence electron
bands takes the form

Hα − μαNα =
∑

k,σ=↑,↓
(εα(k) − μα)α†

kσαkσ

+
∑

k

(�αα
†
k↑α

†
−k↓ + H.c.), (2)

where α
†
kσ creates for α = c(v) an electron with momentum

k and spin σ in the conduction (valence) band. The band
dispersions are given by εα(k), which we will later assume to be
of the form εc(k) = k2/2mc and εv(k) = k2/2mv with mv <

0 < mc, i.e., the conduction (valence) band is electron (hole)
like. We use � = 1 here and in the following. The proximity
induced BCS s-wave gaps are denoted by �α and the chemical
potentials by μα . We have included the chemical potentials into
Eq. (2) to be able to work with time-independent gap functions
�α . This requires that we measure the electronic energies with
respect to the two different chemical potentials μα in the two
respective bands. Their difference is equal to the applied bias
voltage

μc − μv = eV0 , (3)

which drives the system out-of-equilibrium. Formally, this
is achieved by the gauge transformation αkσ → α̃kσ =
eiμαtαkσ . This changes the dispersions from εα(k) to ξα(k) =
εα(k) − μα .

In addition, this gauge transformation leads to a time-
dependence of the electron-photon coupling constant g0 →
g(t) = g0e

ieV0t that appears in the coupling Hamiltonian

Hel-ph = −
∑

k,k′,σ

(g0bk−k′c
†
k,σ vk′,σ + H.c.) . (4)

The operator b
†
q creates a photon with frequency ωq = c|q|.

The electron-photon coupling is such that the transfer of each
electron from the upper conduction to the lower valence band
leads to an emission of a single (optical) photon with frequency
ωq ≈ eV0. We restrict ourselves to the case of spin-conserving
recombinations. The generalization to circularly polarized
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photons is straightforward and does not yield any qualitatively
new aspects to our model.

The free photon Hamiltonian is given by

Hph =
∑

q

ωqb
†
qbq . (5)

Since photons are constantly produced in the LED due to the
presence of the bias voltage, we need to include an external
photon bath to deposit the energy and reach a steady state. This
is described by the bath Hamiltonian [31,32]

H bath
ph =

∑
q

νqa
†
qaq −

∑
q,q ′

(λqq ′b†qaq ′ + H.c.). (6)

The photon bath operator a
†
q creates a photon with frequency

νq in the bath. The coupling constants between system and bath
photons are denoted by λqq ′ . We will later integrate over the
bath degrees of freedom leading to the possibility to dissipate
a (system) photon to the external bath and to create a (system)
photon from the bath.

B. Action on the closed time contour

Due to the applied bias voltage, the system that we are
considering is in a nonequilibrium state. In the following, we
want to set up the required nonequilibrium Keldysh field theory
formalism that is used to determine observable properties of
the system such as the electroluminescence or the squeezing
of the emitted light. The small parameter that controls our
(infinite-order) perturbative calculation is the electron-photon
coupling constant g0. More precisely, the small dimensionless
parameter is given by |g0|2ρF /EF � 1 for normal conducting
leads and |g0|2ρF /|�| � 1 for superconducting leads. Here,
ρF denotes the electronic density of states at the leads’ Fermi
energy EF (see Fig. 1). We further assume that we are always
below the lasing threshold and derive parametric conditions
where lasing occurs later (see Sec. V).

In nonequilibrium, it is required to begin and end the time
evolution at the initial state of the system. One thus formulates
the field theory on a closed time contour C such that the action
reads [33–36]

S =
∫
C
dt

⎡
⎣∑

k,σ

(c†k,σ i∂t ck,σ + v
†
k,σ i∂tvk,σ )

+
∑

q

(b†q i∂tbq + a†
q i∂taq) − H

]
. (7)

Here, ck,σ ,vk,σ denote Grassmann fields and bq,aq denote
complex fields arising in a path integral formulation of
the action. One can now clearly observe how the applied
bias voltage appears by performing the gauge transformation
introduced above αkσ → α̃kσ = eiμαtαkσ . The time derivative
then produces additional terms that contain the chemical
potentials such that the energy dispersions are measured with
respect to the two different chemical potentials εα(k) →
ξα(k) = εα(k) − μμ and g0 → g(t) = g0e

ieV0t . We suppress
the tilde notation from now on.

The contour C starts (and ends) at the initial time t = 0,
where we assume that g0 = 0 and the system is in thermal equi-
librium at potentially different temperatures for the electronic

and photonic subsystems. At t > 0, we consider a nonzero
electron-photon coupling g0 and a nonzero bias voltage V0 > 0
leading to photon production. In the following, we focus on
steady-state properties of the system at times t,t ′ � ts where
ts is a characteristic time-scale over which transient effects
associated with the switch-on decay. We will always check
self-consistently that our assumption of a steady state holds.

It is convenient to introduce fermionic and bosonic spinors

�



ζ

k =

⎛
⎜⎜⎜⎜⎜⎝

v
ζ

k,↑
c
ζ

k,↑(
v

ζ

−k,↓
)†

(
c
ζ

−k,↓
)†

⎞
⎟⎟⎟⎟⎟⎠ �̊

ζ
q =

(
b

ζ
q(

b
ζ
−q

)†
)

, (8)

where ζ = ± denotes that the time variable is located on the
forward (+) or the backward (−) branch of the contour C.
The � superscript denotes the fermionic combined Nambu-
conduction/valence space and the ◦ superscript describes the
photon particle-hole space, in which the complex bosons can
be described with real spinors, see Eq. (20). It is convenient
to make a transformation from the contour (+,−) basis to
the RAK (retarded-advanced-Keldysh) basis. For bosons, this
transformation to the classical and quantum fields is given by

�̊cl
q = (�̊+

q + �̊−
q )/

√
2, (9)

�̊q
q = (�̊+

q − �̊−
q )/

√
2 . (10)

For fermions, we follow Larkin and Ovchinnikov [37] and
perform the transformation to (1,2) fields as

�



1
k = (

�



+
k + �



−
k )/

√
2, (11)

�



2
k = (

�



+
k − �



−
k )/

√
2. (12)

The conjugate Grassmann variable fields (
�



ζ

k)† are not related

to the
�



ζ

k fields and one may thus choose a different
transformation for them:( �



1
k

)† = ((
�



+
k )† − (

�



−
k )†)/

√
2, (13)( �



2
k

)† = ((
�



+
k )† + (

�



−
k )†)/

√
2. (14)

Combining the two fields as usual we introduce the Keldysh

vectors �̂q = (�̊cl
q ,�̊

q
q) and 
̂k = (

�



1
k,

�



2
k). We denote these

vectors by ∧ superscripts. We can then write the Keldysh action
as

S =
∫ ∞

−∞
dtdt ′

⎡
⎣∑

k


̂
†
k(t)Ĝ−1

0,k(t,t ′)
̂k(t ′)

+ 1

2

∑
q

�̂T
q (t)D̂−1

0,q(t,t ′)�̂−q(t ′)

+
∑
k,k′


̂k(t)Vk−k′(t)
̂ ′
k(t ′)δ(t − t ′)

⎤
⎦+ Sbath

ph . (15)

The factor of 1/2 in front of the bosonic propagator arises
from our choice of “real” bosonic spinors. The unperturbed
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fermionic Green’s functions are given by

Ĝ0,k(t,t ′) = −i〈
̂k(t)
̂†
k(t ′)〉0 =

⎛
⎝�

GR
0,k(t,t ′)

�

GK
0,k(t,t ′)

0
�

GA
0,k(t,t ′)

⎞
⎠.

(16)

The retarded and advanced blocks, which only depend on the
time difference τ = t − t ′, explicitly read

�

G
R/A

0,k (t − t ′)

= −i
〈 �



1/2
k (t)

[ �



2/1
k (t ′)

]† 〉
0

=

⎛
⎜⎜⎜⎜⎜⎝

G
(p),R/A

0,k,v 0 P
R/A

0,k,v 0

0 G
(p),R/A

0,k,c 0 P
R/A

0,k,c

P̄
R/A

0,k,v 0 G
(h),R/A

0,k,v 0

0 P̄
R/A

0,k,c 0 G
(h),R/A

0,k,c

⎞
⎟⎟⎟⎟⎟⎠

τ

. (17)

The average 〈 · 〉0 is with respect to the free action S(g0 = 0).
The particle and hole propagators are denoted by G(p) and
G(h). The anomalous electronic propagators which arise due
to the presence of superconductivity are denoted by P and P̄ .
After Fourier transformation G(ω) = ∫∞

−∞ dτG(τ )eiωτ , they
take the explicit form(

G
(p)
0,α P0,α

P̄0,α G
(h)
0,α

)R/A

ω,k

= ω · 1 + ξα(k) · σz−�α · σ+−�∗
α · σ−

(ω ± i0)2−ξα(k)2− |�α|2

(18)

with dispersions ξα(k) = εα(k) − μα for α = c,v and Pauli
matrices σx,y,z, where σ± = 1

2 (σx ± iσy). Since the electrons
are assumed to be in thermal equilibrium, one can express
the Keldysh Green’s function via the fluctuation-dissipation
theorem as

�

G
K
0,k(ω) = F (ω)

[ �

GR
0,k(ω)− �

GA
0,k(ω)

]
, (19)

with fermionic distribution function F (ω) = 1 − 2nF (ω) =
tanh(ω/2TF ) at temperature TF .

The free Green’s function for the photons in the system
described by bq can be written as

D̂0,q(t,t ′) = −i
〈
�̂q(t)�̂T

−q(t ′)
〉
0

=
(

D̊K
0,q(t,t ′) D̊R

0,q(t,t ′)

D̊A
0,q(t,t ′) 0

)
. (20)

Note that the expectation value contains the transpose spinor
�T

−q(t ′) (and not the hermitian conjugate). The retarded and
advanced blocks take the form

D̊
R/A

0,q (t − t ′) = −i
〈
�̊cl/q

q (t)
[
�̊

q/cl
−q (t ′)

]T 〉
0

=
(

0 d
R/A

0,q (t − t ′)

d
A/R

0,q (t ′ − t) 0

)
, (21)

where [dR/A

0,q (ω)]−1 = ω − ωq ± i0. Since the photonic sub-
system is initially in equilibrium, we may write the Keldysh

component via the fluctuation-dissipation theorem as

D̊K
0,q(ω) = B0(ω)

[
D̊R

0,q(ω) − D̊A
0,q(ω)

]
. (22)

Here, B0 denotes an initial bosonic distribution function of the
uncoupled (g0 = 0) system. As shown below the distribution
function B0 will not be important in our calculation of
the photon distribution in the steady state. This is rather
determined by the interplay between the photon distribution
function in the external photon bath and the photon production
rate in the LED.

The electron-photon coupling part in the action contains
the vertex expression

Vk−k′(t) =
∑

α=cl,q

∑
i=1,2

γ̂ α
�
gi(t)�̊

α
k−k′,i(t) (23)

with matrices γ̂ cl = 1̂ and γ̂ q = σ̂x in Keldysh space. Using
Eq. (8), the components of the photon field vector read
explicitly �̊α

k−k′,1(t) = bα
k−k′(t) and �̊α

k−k′,2(t) = (bα
−k+k′ (t))†.

The coupling matrices take the form

�
g1(t) = 1√

2

⎛
⎜⎜⎜⎝

0 0 0 0

g(t) 0 0 0

0 0 0 −g(t)

0 0 0 0

⎞
⎟⎟⎟⎠ (24)

and

�
g2(t) = 1√

2

⎛
⎜⎜⎜⎝

0 ḡ(t) 0 0

0 0 0 0

0 0 0 0

0 0 −ḡ(t) 0

⎞
⎟⎟⎟⎠ (25)

with g(t) = g0e
ieV t and ḡ(t) ≡ (g(t))∗ denoting the complex

conjugate. Finally, the part of the action that describes the
coupling of the photons to the photon bath reads

Sbath
ph =

∫
C
dt

⎡
⎣∑

q

a†
q(i∂t − νq)aq +

∑
q,q ′

(λqq ′b†qaq ′ + c.c.)

⎤
⎦ .

(26)

We will later in Sec. III B integrate over the external photon
modes {aq} under the standard assumptions of an Ohmic bath
in the white noise limit of frequency-independent couplings
λqq ′ and bath density of states [32].

III. EFFECTIVE PHOTON ACTION

In this section, we want to derive an effective action for
the photonic degrees of freedom in the system Seff

ph , which
takes the coupling to the superconducting leads as well as
to the photon bath into account. Formally, we integrate over
the fermion fields 
̂k and the external bath photon fields aq .
This integration yields an electronic contribution to the photon
self-energy �̊el

q (t,t ′) and a bath contribution to the self-energy
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�̊bath
q (t,t ′). The effective photon action takes the form

Seff
ph = 1

2

∑
q

∫ ∞

−∞
dtdt ′ �̂T

q (t)

× [D̂−1
0,q(t,t ′) − �̂el

q (t,t ′) − �̂bath
q (t,t ′)

]
�̂−q(t ′). (27)

While we treat the bath self-energy exactly, we take the
electronic self-energy up to one loop into account. Importantly,
due to the presence of superconductivity there exist nonzero
anomalous fermionic Green’s functions P,P̄ . This leads to
anomalous terms in the bosonic self-energy �̊el

q (t,t ′), which
induce similarly anomalous photon expectation values such as
〈b†q(t)b†−q(t)〉.

In the following, we first derive the photon self-energies
and then solve the resulting Dyson equation in the steady state.
This corresponds to treating the electron-photon coupling in
the random-phase approximation (RPA). It provides us with
explicit expressions for the photon propagators—both for
normal conducting and for superconducting leads. Details of
the calculation are shifted to Appendices A, B, and C.

A. Electronic feedback

Let us first focus on the electronic contribution to the
effective action in Eq. (27). It is described by the self-
energy �̊el

q (t,t ′) and contains the information about the photon
absorption and emission processes that involve the transition
of electrons between conduction and valence bands.

The electronic part of the photon self-energy has the
following structure in the particle-hole basis of �̊q :

�̊el
q (t,t ′) =

(
eiφ(t+t ′)�̃el

11,q(τ ) �el
12,q(τ )

�el
21,q(τ ) e−iφ(t+t ′)�̃el

22,q(τ )

)
, (28)

where τ = t − t ′ denotes the time difference. This structure
is identical for the retarded, advanced and the Keldysh
components of the self-energy. The anomalous components
on the diagonal, which are associated with bqb−q and b

†
qb

†
−q ,

depend on the absolute time t + t ′ via the phase

φ(t + t ′) = eV0(t + t ′) − φc + φv + 2φg . (29)

Here, φc/v = arg(�c/v) denote the (constant) phases of the
superconducting gaps �α = |�α|eiφα , which depend on mi-
croscopic details at the initial time t = 0, and φg is the phase
of the coupling constant g0 = |g0|eiφg . The remaining parts
�̃el

11,q and �̃el
22,q , as well as the normal components on the

off-diagonals �el
12,q,�

el
21,q , only depend on the time difference

τ = t − t ′. They are also independent of the phases φc,v,g .
We treat these self-energies in the one-loop approximation.

As shown in detail in Appendix A 1 the self-energies are given
by

[�el]αβ

ij,q(t,t ′) = −i
∑

k

tr[γ̂ α
�
gi(t)Ĝ0,k(t,t ′)γ̂ β

�
gj (t ′)

× Ĝ0,k+q(t ′,t)]. (30)

The corresponding Feynman diagrams are shown in Fig. 2. The
remaining task is to insert the expression for the fermionic
Green’s functions, perform the traces over the Keldysh and

FIG. 2. Feynman graphs of the one-loop bosonic self-energy
�el

ij,q due to the coupling to conduction (c) and valence (v) electrons,
see Eq. (30). External photon propagators (wiggly lines) are not part
of the self-energy. Each vertex is associated with a coupling constant
|g0|. Wiggly lines denote photons, solid (dashed) lines denote con-
duction (valence) electron propagators. The anomalous contributions
�el

11,�
el
22 appear only for superconducting leads �c,�v �= 0.

Nambu indices and to carry out the summation over electronic
momenta k.

1. Energy scales in the system

Before we describe the explicit result for the self-energies in
the next sections, we want to discuss the different energy scales
that are present in the problem. To give a numerical estimate
of the different scales, we use realistic values of GaAs.

There are five important energy scales in the problem: (i)
the applied bias voltage eV0, which is of the order of the
semiconducting band gap D. This is the largest energy scale
in the problem. It sets the photon energy �ωq ≈ eV0 and the
photon momentum |q| = eV0/�c, where c denotes the speed of
light. For GaAs this energy scale is given by �ωq = 1.424 eV;
(ii) the semiconductor Fermi energy εF . It is determined by the
effective masses mc,mv and the carrier density nc,nv as εF,α =
(3π2)2/3

�
2n

2/3
α /(2mα). In GaAs, one finds mc = 0.067me and

two hole bands with mv,1 = 0.45me and mv,2 = 0.082me,
where me is the bare electron mass. Typical values for the
carrier density are n = 1016cm−3 − 1019cm−3. For this range
of doping and approximately using mc = −mv = 0.067me,
we find εF = 2.5 × 10−3–2.5 × 10−1 eV. The Fermi velocity
follows to vF = √

2εF /m = 4 × 10−4c–4 × 10−3c; (iii) the
(proximity induced) superconducting gap |�| for which we
estimate |�| ≈ 1 meV; (iv) the strength of the electron-photon
coupling |g0|2ρ with conduction band density of states ρ. For
the range of carrier densities above one finds the estimate
|g0|2ρ = 8.3 × 10−6 eV–8.3 × 10−5 eV [16]. This is the
smallest energy scale in the system, which justifies our pertur-
bative approach; (v) the coupling to an external photon bath in-
duces a photon decay rate η (for each photon mode q). Our as-
sumption of a steady state with a finite photon number requires
that η must be larger than the LED photon production rate.

A result of this estimate is that one cannot neglect the
photon momentum q. Although it is much smaller than typi-
cal electronic momenta |q|/|kF | = eV0c/(vF mcc

2) ≈ 0.01 −
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0.1, its associated energy scale is of the same order as the
superconducting gap

vF |q| ≈ |�| . (31)

In the following, we discuss the explicit result for the electronic
part of the photon self-energy �̊el

q (t,t ′). We first describe
the case of normal conducting leads and then the case of
superconducting leads. Taking a finite photon momentum into
account serves as a physical cutoff for divergences that would
otherwise occur in the imaginary part for the superconducting
case.

2. Normal conducting leads

Let us first discuss the electronic contribution to the
photon self-energy �̊el

q (t,t ′) in the case of normal conducting
leads. In this case, the diagonal elements in Eq. (28), which
are proportional to the product �c�v , vanish: �̃el

11,q(t,t ′) =
�̃el

22,q(t,t ′) = 0.
To be able to perform the summation over momenta in the

off-diagonal elements analytically, we make the symmetric
choice of assuming parabolic conduction and valence bands
with effective masses mc = −mv and equal superconducting
gap amplitudes |�c| = |�v| ≡ |�|. As a result, the electronic
dispersions fulfill ξc(k) = −ξv(k). The fermionic density of
states (DOS) ρc(ω) = ρv(ω) ≡ ρ(ω) is only weakly energy
dependent around the Fermi energy, where ρ(0) = ρF corre-
sponds to the DOS at μc,v . This situation is schematically
depicted in Fig. 3. For general dispersions the summation
can easily be performed numerically. As shown in detail
in Appendix B, one finds for the retarded and advanced
self-energies at TF = 0:

�
el,R
21,q(ω) = −iπ |g0|2 ρ

(
ω−
2

){ ω−
vF |q| for |ω−| < vF |q|
sign(ω−) for |ω−| > vF |q| ,

�
el,R
12,q(ω) = �

el,A
21,q(−ω). (32)

Here, the frequencies ω± = ω ± eV0 are measured relative to
the applied voltage. The retarded function is shown in Fig. 4.
Finite fermionic temperatures TF > 0 will smear the zero
temperature results, but do not yield qualitatively different
results. As the fermions are assumed to be in equilibrium at
temperature TF , the corresponding Keldysh self-energies are
given by

�
el,K
21,q(ω) = coth

( ω−
2TF

)[
�

el,R
21,q(ω) − �

el,A
21,q(ω)

]
,

(33)
�

el,K
12,q(ω) = coth

( ω+
2TF

)[
�

el,R
12,q(ω) − �

el,A
12,q(ω)

]
.

As can be seen easily, the Keldysh self-energies obey the sym-
metry �

el,K
12,q(ω) = �

el,K
21,q(−ω). In Eq. (32), we have neglected

the real part, which depends only weakly on frequency. It
gives an unimportant renormalization of the photon resonance
frequency ωq . The imaginary part of the self-energy �R

21,q(ω)
describes the production and decay of photons due to the
coupling to the electrons. From Fig. 3, we see that for T = 0
there are two possible transitions: (i) photons with energy
ωq < eV0 are emitted due to transitions of an electron in the
conduction band to the valence band, or (ii) photons with
energy ωq > eV0 are absorbed by raising an electron from
the valence band to the conduction band. The absorption
is associated with a negative imaginary part of the retarded
self-energy in Eq. (32), while the emission is associated with a
positive imaginary part. The linear dependence of �

el,R
21,q(ω)

around ω = eV0 arises due to the restricted phase space
of decay and absorption processes for photons with energy∣∣ωq − eV0

∣∣ < vF |q|. For larger energies
∣∣ωq − eV0

∣∣ > vF |q|,
on the other hand, the self-energies reach a constant value
because we linearize around the Fermi energies.

We have seen that the production of photons is described by
a retarded self-energy �R

21,q(ω) with a positive imaginary part
for frequencies 0 < ω < eV0. It changes sign at the applied
bias voltage eV0. If there was no further contribution to the

FIG. 3. (Color online) Schematic of the symmetric electronic band dispersion model for normal conducting (left) and superconducting
leads (right). Normal state conduction and valence band dispersions are assumed to obey ξc(k) = −ξv(k), vF denotes the Fermi velocity, kF

the Fermi momentum, B the filling factor of the bands and eV0 is the applied bias voltage. Electronic transitions involving photon emission
(absorption) are possible at photon energies ωq < eV0 (ωq > eV0). Photon momentum q is properly taken into account and results in electronic
transitions that are not vertical. In the presence of superconductivity the electrons at the Fermi energies are gapped out, resulting in allowed
transitions for |ωq − eV0| > 2|�|, where � denotes the superconducting gap.
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FIG. 4. (Color online) Normal retarded photon self-energy
�

el,R
21,q(ω) at fixed momentum q as a function of frequency ω.

For normal conducting leads, the imaginary part is shown in
dashed green. The self-energy changes sign at ω = eV0; positive
(negative) sign corresponds to photon production (absorption). For
superconducting leads the imaginary part (blue solid) exhibits jumps
at ω = eV0 ± 2|�| (here |�c| = |�v| ≡ |�|), remains constant over
an interval of width (vF |q|2/2)2/|�| and then falls off towards the
normal state solution. For superconducting leads, the real part (red
dashed) exhibits logarithmic divergences at the position of the jumps
in the imaginary part.

total photon self-energy this would be nonphysical, since it
does not correspond to the analytic structure required by a
retarded bosonic self-energy, which must have a negative
imaginary part for ω > 0. Physically, this corresponds to
the fact that the assumption of a steady state breaks down
if photons are produced at a constant rate but there is no
photon decay mechanism considered. The photon number
would simply grow without bound. Therefore, in Sec. III B,
we take a coupling of the photons to an external photon bath
into account. The associated bath induced photon self-energy
�bath

ij,q (ω) will be added to the electronic contribution to the
self-energy. The total self-energy will then have a negative
imaginary part at positive frequencies ω > 0 as required.

3. Superconducting leads

In the superconducting state, the anomalous diagonal
elements of the photon self-energy in Eq. (28) are nonzero.
They depend on the total time T = (t + t ′)/2 and it is thus
convenient to perform a Wigner transformation f (ω,T ) =∫∞
−∞ dτf (τ,T )eiωτ , which yields

�̊el,R
q (ω,T ) =

(
eiφ(2T )�̃

el,R
11,q(ω) �

el,R
12,q(ω)

�
el,R
21,q(ω) e−iφ(2T )�̃

el,R
22,q(ω)

)
(34)

with phase φ(2T ) = 2eV0T + φv − φc + 2φg . The self-
energy elements obey the relation �̃

el,R
11,q(ω) = �̃

el,R
22,q(ω) and

�
el,R
12,q(ω) = �

el,A
21,q(−ω).

As shown in Appendix B 2, the one-loop self-energies at
TF = 0 take the form

�̃
el,R/A

11,q (ω) = 2
∣∣g2

0

∣∣∑
k

[
uk,vvk,vuk+q,cvk+q,c

ω − Ev(k) − Ec(k + q) ± i0

− uk,vvk,vuk+q,cvk+q,c

ω + Ev(k) + Ec(k + q) ± i0

]
, (35)

FIG. 5. (Color online) Anomalous retarded photon self-energy
�̃

el,R
11,q(ω) as a function of frequency ω. Real part (red dashed) and

imaginary part (blue solid) are nonzero only for superconducting
leads and exhibit features similar to the normal self-energy (see
Fig. 4). Note that features occur around ω = 0 here.

�
el,R/A

21,q (ω) = 2
∣∣g2

0

∣∣∑
k

[
v2

k,vu
2
k+q,c

ω− − Ev(k) − Ec(k + q) ± i0

− u2
k,vv

2
k+q,c

ω− + Ev(k) + Ec(k + q) ± i0

]
, (36)

where uk,α =
√

1
2 (1 + ξk,α

Eα(k) ) and vk,α =
√

1
2 (1 − ξk,α

Eα (k) ) are
the superconducting coherence factors for the conduction
and valence band. They contain the Bogoliubov quasiparticle
dispersion relation Eα(k) =

√
ξα(k)2 + |�α|2.

The normal component is shown in Fig. 4 and the anoma-
lous component in Fig. 5. From the retarded self-energies
�̃

el,R
ij,q (ω), we easily get the Keldysh self-energies as

�̃
el,K
11,q(ω) = �̃

el,K
22,q(ω) = coth

(
ω

2TF

)[
�̃

el,R
11,q(ω) − �̃

el,A
11,q(ω)

]
,

�
el,K
21,q(ω) = �

el,K
12,q(−ω) = coth

(
ω−
2TF

)[
�

el,R
21,q(ω)−�

el,A
21,q(ω)

]
.

(37)

Let us discuss the retarded self-energies in some detail.
The combination uk,αvk,α = |�α|/(2Eα(k)) and the diagonal
elements �̃

el,R/A

jj,q are therefore proportional to the product
|�v||�c|, i.e., they are nonzero only if both leads exhibit su-
perconductivity. In the following, we assume for convenience
a momentum independent gap function, which is identical for
the two bands |�c| = |�v| ≡ |�|. Note that the phases of the
superconducting order parameters φc and φv are factored out
explicitly in Eq. (34).

Both diagonal and off-diagonal elements of the self-energy
show similar behavior. Their imaginary part vanishes in a
region of width 4|�|. While the normal components are
zero for |ω−| < 2|�| the anomalous components vanish for
|ω| < 2|�|. At the border of these regions the functions exhibit
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a jump in the imaginary part, then they remain constant over
a frequency window of the order of v2

F |q|2/|�| and finally
decay towards the result for normal conducting leads [see Eq.
(32)] further away from the gapped region.

Explicitly, the real (imaginary) part of the normal self-
energy �

el,R
21,q(ω) is (anti)symmetric around the region ω =

eV0. The imaginary part is zero for |ω − eV0| < 2|�|. At the
border it exhibits a jump of size

lim
δ→0+

∣∣Im �
el,R
21,q(eV0 + 2|�| + δ)

∣∣ = π2

2
|g0|2 ρF

|�|
vF |q| . (38)

Here and in the following, we consider vF |q|/2 < |�|, which
holds for our realistic choice of parameters (see Sec. III A 1).
A jump in the imaginary part yields via the Kramers-Kronig
relations a logarithmic divergence in the real part at ω = eV0.
If we define the functions

R(w,χ ) = −π

2
|g0|2 ρF

χ
ln

[√
1 + χ2

|2 − |w|| + χ√|2 − |w||
]
,

I (w,χ ) = −π

2
|g0|2 ρF

χ
θ (|w| −2) arcsin

[
min[χ,

√|w| −2√|w| −2

]
,

(39)

the self-energy for frequencies ω ≈ eV0 ± 2|�| can be ex-
pressed as

�
el,R
21,q(ω) = R

(
ω−
|�| ,

vF |q|
2|�|

)
+ i sign(ω−)I

(
ω−
|�| ,

vF |q|
2|�|

)
.

(40)

Since |g0|2 ρF � |�| (see Sec. III A 1), the real part is only
important around its logarithmic divergence. It quickly decays
towards the normal conducting result away from the resonance.
The imaginary part of �el

21 is given by Eq. (40) close to the
jump and also approaches the constant result that we found for
normal conducting leads [see Eq. (32)].

The vanishing of the imaginary part for |ω−| < 2|�| can
easily be understood if we look at Fig. 1. For zero temperature,
there is no possibility for one photon to be either absorbed
or emitted within this energy range {eV0 − 2|�|,eV0 + 2|�|}
due to the superconducting gaps in the conduction and the
valence bands. On the other hand, in a superconductor, the
DOS diverges at energies ±|�| relative to the Fermi energy and
there are thus many electronic states leading to an enhanced
emission and absorption of photons coupling to those states.
The imaginary part of the self-energy is therefore enhanced in
this region compared to the normal conductor.

We note that it is absolutely essential that we take the finite
photon momentum q into account. Otherwise, the imaginary
part would exhibit a square-root divergence at |ω−| = 2|�|.
This divergence is cut off by finite q at ||ω−| − 2|�|| =
(vF |q|/2)2

|�| leading to a finite jump instead. Since the imaginary
part corresponds to the photon production rate in the super-
conducting LED, this rate would diverge if one neglects the
photon momentum.

The anomalous diagonal components of the self-energy �̃el
jj

are shown in Fig. 5. Close to |ω| = 2|�| they can also be

expressed by the functions defined in Eqs.(39) as

�̃
el,R
11,q(ω) = R

(
ω

|�| ,
vF |q|
2|�|

)
+ i sign(ω)I

(
ω

|�| ,
vF |q|
2|�|

)
.

(41)

Away from |ω| ≈ 2|�| the imaginary part decays like 1/ω2 to
zero. This is a faster decay than predicted by Eq. (41).

At finite but small temperatures TF � |�|, these results ac-
quire small corrections such as as an exponentially suppressed
imaginary part in the gapped regions. At higher temperatures,
the described features are suppressed, but this also leads to
the breakdown of superconductivity and one approaches the
results for normal conducting leads.

B. Influence of the photon bath

To achieve a steady state in the system, it is required that the
photons, which are produced by electrons making a transition
from conduction to valence band, may also be absorbed. We
thus consider the coupling to an external photon bath as a
decay mechanism [31,32]. As shown in Appendix A 2, the
coupling to the bath [see Eq. (6)] gives rise to an additional
contribution to the photon self-energy, which corresponds to a
finite photon lifetime τ−1

ph = η. If we neglect the unimportant
real part, which has no divergent features, the bath induced
photon self-energy reads

�̊bath,R
q (ω) =

(
0 −�bath,R

q (−ω)

�bath,R
q (ω) 0

)
(42)

with

�bath,R
q (ω) = −iπ |λ(ω)|2 ρbath(ω) . (43)

We assumed that the coupling λ p, p′ = λ(ω p) depends only on
the photon frequency and introduced the DOS of the external
photon bath ρbath(ω). The imaginary part is determined by the
spectral function of the external bath, which we assume to be
of the Ohmic form

π |λ(ω)|2 ρbath(ω) = η θ (ω)
ω2

ω2 + �2
(44)

with � � eV0. The spectral function is constant η > 0 for
ω � � and a vanishing function for ω → 0. The fact that it
decays to zero at small frequency is important since otherwise
the Keldysh self-energy

�̊bath,K
q (ω,T ) =

(
0 �bath,K

q (−ω)

�bath,K
q (ω) 0

)
(45)

with component

�bath,K
q (ω) = coth

(
ω

2TB

)[
�bath,R

q (ω) − �bath,A
q (ω)

]
(46)

would diverge as 1/ω for small ω. Here, we have assumed
that the external photon bath is in thermal equilibrium with
photon temperature TB . One can easily incorporate a different
external photon distribution by replacing coth(ω/2TB) with
an arbitrary bath distribution function B(ω) = 1 + 2nbath(ω),
where nbath(ω) denotes the number of bath photons in a state
of energy ω.
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C. Dressed photon propagators

To calculate observable quantities such as the luminescence
or the statistical properties of the light emitted from the
superconducting LED, we need to find the dressed photon
propagator D̂q . The photon self-energies �̂el and �̂bath

determine the dressed photon propagator D̂q via the Dyson
equation, which reads in Keldysh space [36](

D̂−1
0,q − �̂q

) ◦ D̂q = 1̂, (47)

where �̂q = �̂el
q + �̂bath

q . Here, ◦ denotes a convolution in
time. Explicitly, this corresponds to three coupled integral
equations for the retarded, advanced and Keldysh components
of the dressed propagator([

D̊
R/A

0,q

]−1 − �̊R/A
q

) ◦ D̊R/A
q = 1̊, (48)([

D̊R
0,q

]−1 − �̊R
q

) ◦ D̊K
q = �̊K

q ◦ D̂A
q . (49)

One can omit the infinitesimal component [D̊−1
0,q]K ∼ i0,

which acts as a regularization in the noninteracting system,
since the coupling to the electrons and the bath induces a
finite Keldysh self-energy. Since the anomalous components
of the self-energy �̂el(τ,T ) depend on the absolute time T , we
perform a Wigner transformation with the ansatz for the full
propagator (see Appendix C for details)

D̊R,A,K
q (ω,T ) =

(
e−iφ(2T )D̃

R,A,K
11,q (ω) D

R,A,K
12,q (ω)

D
R,A,K
21,q (ω) eiφ(2T )D̃

R,A,K
22,q (ω)

)
,

(50)

with the phase factor given in Eq. (29). The dependence on the
absolute time is similar but of opposite sign to the one found in
the self-energy matrices. The explicit forms of the full retarded
and advanced photon propagators read

D̃R
11,q(ω) = D̃R

22,q(ω) = −�̃R
11,q(ω)[

ω + eV0 − ωq − �R
21,q(ω + eV0)

][
ω − eV0 + ωq + �R

12,q(ω − eV0)
]+ [�̃R

11,q(ω)
]2 , (51)

DR
12,q(ω) = DA

21,q(−ω) = ω − 2eV0 + ωq + �R
12,q(ω − 2eV0)[

ω − ωq − �R
21,q(ω)

][
ω − 2eV0 + ωq + �R

12,q(ω − 2eV0)
]+ [�̃R

11,q(ω − V )
]2 . (52)

The Keldysh components are given by

D̃K
11,q(ω) = −[D̃K

22,q(ω)
]∗ = D̃R

11,q(ω)
[
�̃K

11,q(ω)D̃A
11,q(ω) + �K

12,q(ω − V )DA
21,q(ω − V )

]
+ DR

12,q(ω + V )
[
�K

21,q(ω + V )D̃A
11,q(ω) + �̃K

22,q(ω)DA
21,q(ω − V )

]
, (53)

DK
12,q(ω) = −[DK

21,q(−ω)
]∗ = D̃R

11,q(ω − V )
[
�̃K

11,q(ω − V )DA
12,q(ω) + �K

12,q(ω − 2V )D̃A
22,q(ω − V )

]
+ DR

12,q(ω)
[
�K

21,q(ω)DA
12,q(ω) + �̃K

22,q(ω − V )D̃A
22,q(ω − V )

]
. (54)

By inverting the Dyson equation, we have summed up the
complete RPA series of bubble diagrams with the electronic
contribution to the photon self-energy given in Fig. 2 and
the bath contribution given by Eq. (43). In fact, the ex-
pressions for the dressed propagators are formally exact
if the self-energy was known exactly. This follows from
the fact that the structure of the self-energy in Eq. (34)
holds to all orders in perturbation theory. By inverting
the Dyson equation, we have only employed this general
structure.

From Eq. (52), we find that the photon particle propagator
DR

12,q(ω) shows features at ω ≈ ωq and ω ≈ eV0 ± 2|�|. In
the case that the photon is off-resonant with the applied
voltage, which is determined by the semiconductor band gap,
ωq �≈ eV0 ± 2|�| the photon can just propagate through the
system and is only weakly interacting with the electrons.
In contrast, if the photon is resonant ωq ≈ eV0 ± 2|�|, the
enhanced spectral weights around ω ≈ eV0 ± 2|�| correspond
to photon-exciton bound states or polaritons. Here, a photon
can excite a quasiparticle from the superconducting edges
of the valence band to the conduction band, which again
recombines under emission of a photon. This process may
repeat itself an arbitrary number of times thus forming an

electron-photon bound state, a polariton. Since the DOS of the
two superconducting bands diverge at ±|�| (measured from
the Fermi energy), only scattering processes with a photon
matching the energy difference ωq ≈ eV0 ± 2|�| give rise to
a large effective coupling between photons and electrons and
to the formation of polaritons.

IV. LUMINESCENCE AND SQUEEZING PROPERTIES OF
THE SUPERCONDUCTING LED

In this section, we investigate the photon luminescence
L(ωq) = 〈b†qbq〉 of the superconducting LED, i.e., the number
of photons present in the system in the steady state. We
consider both the case of normal conducting leads and the one
of superconducting leads. Superconductivity leads to a strong
enhancement of the luminescence in a frequency window close
to ωq = eV0 − 2|�|. We demonstrate that the superconducting
LED emits entangled photon pairs and produces squeezed
light of frequency ωq = eV0. The squeezing occurs in certain
two-mode quadrature operators of the light field defined below
and implies that the fluctuations in one of the quadrature
components falls below the minimal uncertainty of coherent
states.
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FIG. 6. (Color online) Luminescence L(ωq) = 〈b†
qbq〉 as a func-

tion of photon frequency ωq = c|q|. We show the luminescence of the
LED with normal conducting leads (blue) and superconducting leads
(red). Temperature of the external photon bath is kept at TB = 0.
Enhanced luminescence around ωq = eV0 − 2|�| in presence of
superconductivity is due to quasiparticles tunneling from conduction
to valence band and larger density of states at the edges of the
superconducting gap (see Fig. 1). Inset enlarges region around
resonance ωq = eV0 showing luminescence peak due to Cooper pair
tunneling.

A. Photon luminescence

The photon luminescence is defined as the expectation value
〈b†qbq〉, which can be expressed via the lesser photon Green’s
function D<

12,q(t,t ′) = −i〈b+
q (t)b̄−

q (t ′)〉 as

L(ωq) = 〈b†qbq〉 = i

∫ ∞

−∞

dω

2π
D<

12,q(ω). (55)

The lesser propagator D<
12,q = 1

2 (DK
12,q − DR

12,q + DA
12,q) is a

linear combination of the retarded, advanced and Keldysh
propagators given in Eqs. (51)–(53).

In Fig. 6, we present the luminescence in the normal and
in the superconducting state for an external photon bath at
TB = 0. In Fig. 7, we show the luminescence in the presence
of bath photons for a bath kept at temperature TB = eV0/2.
Those photons can be absorbed in the semiconductor junction
and transfer electrons from valence to conduction bands.

Let us first focus the case of TB = 0. For normal conducting
leads, we then observe that only photons with frequency
ωq < eV0 are present in the system. This follows from the
fact that electronic transitions are only available with energy
difference ωq � eV0 (see Fig. 3). The frequency scale on which
the luminescence increases from zero to its constant value is
given by the photon momentum vF |q| with |q| = eV0/c. In
the case of superconducting leads, we clearly observe a strong
enhancement of the number of photons with frequency close
to ωq = eV0 − 2|�|. This derives from the large number of
electronic states that are pushed out of the gapped region
in the superconductor to the border. Photons are produced
via a recombination of (Bogoliubov) quasiparticles from the
conduction band to the valence band as depicted in Fig. 1. The
behavior of the luminescence can be traced back to the photon
self-energy shown in Fig. 4, if one notices that the imaginary

FIG. 7. (Color online) Luminescence L(ωq) = 〈b†
qbq〉 as a func-

tion of photon frequency ωq = c|q|. External photon bath is kept at
temperature TB = eV0/2. Thermal bath photons (green dashed) with
frequency ωq > eV0 + 2|�| can be absorbed by the p-n junction
both for normal conducting (blue) and for superconducting leads
(red). Inset enlarges frequency region where the Cooper pair peak
and the absorption can be seen.

parts of the self-energies correspond to photon production
rate (for positive imaginary part) and decay rate (for negative
imaginary part).

In addition to the enhanced photon production at the band
edges, the luminescence also exhibits a Cooper pair peak at
ωq = eV0 in the presence of superconductivity. This stems
from Cooper pairs that are transferred from the conduction
to the valence band. This process is of the order |g0|4 and
arises from the diagram shown in Fig. 8 that contains two
anomalous self-energy bubbles. This contributions is taken
into account in the RPA summation. The luminescence peaks
are characterized by a width δω = max[η,( vF |q|

2|�| )2|�|], which
is also the width of the plateau of the imaginary part of the
retarded photon self-energies in Eq. (36).

To obtain the numerical result in Fig. 6, we have used
parameters that are consistent with our general discussion of
energy scales in Sec. III A 1. Specifically, we have expressed
all energies in units of the superconducting gap |�| (a
realistic value is |�| = 1 meV). We have set |g0|2 ρF =
|�|/50, vF /c = 0.001, and eV0 = 1000|�| = 1 eV. We fur-
ther assume a simple quadratic conduction band with a band
edge that lies at a distance B = V0/10 below the chemical

FIG. 8. Feynman graphs for photon emission processes of order
O(g4

0) that contribute to the luminescenceL(ωq ). Part (b) contains two
anomalous self-energy loops �11,�22 and gives rise to the Cooper
pair peak seen at ωq = eV0.
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potential μc. The electronic density of states thus reads ρ(ε) =
ρF

√
1 + ε/B. For a nonlasing steady state to exist, the photon

decay rate due to the bath η must be larger than [see Eq. (38)]

ηmin = π2 |g0|2 ρF |�|
2(vF /c)ωq

. (56)

We choose η = 1.5 ηmin as even larger decay rates (in
particular η > |�|) result in a photon linewidth that is larger
than the superconducting gap, which smears the features
observed in Fig. 6. As soon as η < ηmin the system exhibits
lasing and the photon number diverges at a particular
frequency. We discuss this possibility in detail in Sec. V.

If the bath contains real photons they can be absorbed by the
heterostructure. This case is shown in Fig. 7 where we assume
a thermal photon bath at temperature TB = eV0/2. Photons
of frequency ωq � eV0 + 2|�| may be absorbed promoting
electrons from the valence to the conduction band. This occurs
both for normal conducting as well as for superconducting
leads. Here, we neglect the effect on the fermionic distribution
and assume that the fermionic distribution functions remains
at TF = 0. This can be realized in practice by a fermionic
bath of this temperature. In addition to the photon emission
peaks, which are unaffected by the presence of bath photons,
we now clearly observe an additional absorption dip at ωq =
eV0 + 2|�| in the presence of superconductivity.

B. Light squeezing

In this section, we investigate the statistical properties
of the light that is emitted from the superconducting LED.
We find that the photons inherit the anomalous correlations
that are present between electrons in a superconductor. In
particular, the photon expectation value 〈b†qb†−q〉 is nonzero,
which reduces the quantum fluctuations of certain two-mode
quadrature operators of the light field to a value below
that found for a coherent state [15]. The fluctuations of
the conjugate operator are of course increased such that the
Heisenberg uncertainty limit is obeyed. The superconducting
LED therefore emits two-mode squeezed light, which can
act as a resource for quantum information processing and
metrology [5,38–40].

The light squeezing in this setup was studied in Ref. [16]
within lowest order perturbation theory in the electron-photon
coupling g0. To this order, the luminescence 〈b†qbq〉 vanishes
on resonance ωq = eV0 (at TB = 0) where the lowest order
terms are O(g4

0). The amount of squeezing is then solely
determined by the anomalous expectation value 〈bqb−q〉.
Here, we consider the effect of the diagonal (photon number)
expectation values 〈b†qbq〉 on the squeezing by summing the
complete RPA series. We make a quantitative prediction for the
maximal reduction of quantum fluctuations that is achievable
in this setup.

Squeezing occurs in the two-mode quadrature operators

A±
q = N±[b̃†q + b̃

†
−q ± H.c.], (57)

where N+ = 2−3/2 and N− = −i2−3/2. The photon operators
are defined in the rotating frame b̃q = bqe

iωq t . The fluctuations
of these two-mode quadrature operators are given by [16]

〈(�A±
q )2〉 = 1

4 [1 + 2〈b̃†q b̃q〉 ± 2Re 〈b̃q b̃−q〉], (58)

FIG. 9. (Color online) Anomalous photon expectation value
LA(ωq) = 〈bq(t = 0)b−q(t = 0)〉 as a function of photon frequency
ωq = c|q|. We show the real part (red), imaginary part (blue), and
absolute value (green). External bath temperature is set to TB = 0.

where (�A)2 = (A − 〈A〉)2. The state is truly squeezed if the
fluctuations in one of the quadrature operators fall below the
Heisenberg uncertainty limit: 〈(�Ai

q)2〉 < 1
4 for either i = +

or i = −. If the number of photons 〈b†qbq〉 in a mode q is zero,
a finite anomalous expectation value of Re 〈b̃q b̃−q〉 always
results in squeezing. On the other hand, in the presence of
photons, one must compare the expectation values 〈b̃†q b̃q〉 and
〈b̃†q b̃†−q〉 to each other. Since the number of photons is smaller
at low temperature, the resulting squeezing amplitudes are
larger. We thus focus on the case of TB = 0 in the following. A
crucial observation is that close to resonance ωq = eV0 it holds
that the luminescence 〈b̃†q b̃q〉 = O(g4

0) while the anomalous
expectation values are already of order 〈b̃q b̃−q〉 = O(g2

0). We
obtain the anomalous photon expectation value

〈b̃q(t)b̃−q(t)〉 = e2iωq t

∫
dω

2π
iD<

11,q(ω,T = t)

= ei[2ωq t−φ(2t)]
∫

dω

2π
iD̃<

11,q(ω) (59)

by an integral over the lesser anomalous propagator D<
11,q =

1
2 (DK

11,q − DR
11,q + DA

11,q). We define the anomalous lumines-

cence by LA(ωq) = eiφ(2t)〈bq(t)b−q(t)〉 = ∫ dω
2π

iD̃<
11,q(ω) =

eilq |LA(ωq)| to arrive at

〈(�A±
q )2〉 = 1

4 {1 + 2L(ωq) ± 2 cos[2(ωq − eV0)t + φq]

× |LA(ωq)|}. (60)

Here, the initial phase of the last terms reads φq =
arg[�v�

∗
cg

2LA(ωq)] = φv − φc + 2φg + lq and the time de-
pendence vanishes for photons on resonance ωq = eV0. The
anomalous luminescence LA(ωq) is shown in Fig. 9. At
TB = 0, it exhibits two main peaks: one at ωq = eV0 − 2|�|
corresponding to the transition of a Bogoliubov quasiparticle
from the conduction to the valence band and one at ωq = eV0

corresponding to the transition of a Cooper pair. It is important
to note that the peak at ωq = eV0 − 2|�| implies that breaking
up (two) different Cooper pairs still leads to the emission of
correlated and phase coherent photons due to the presence

205303-11



PATRIK HLOBIL AND PETER P. ORTH PHYSICAL REVIEW B 91, 205303 (2015)

FIG. 10. (Color online) Fluctuations 〈(�A±
q )2〉 of the two-mode

quadrature operators A±
q for |q| = eV0/c (on resonance) as a function

of superconducting phase difference φc − φv + 2φg . The phase φg

denotes the constant phase of the electron-photon coupling constant
g0. For a range of phase differences one of the fluctuation amplitudes
falls below the Heisenberg uncertainty minimum for the symmetric
case 〈(�A±

q )2〉 = 1/4. This shows that a superconducting LED emits
squeezed light. Inset shows mean and uncertainty of two-mode
quadrature operators A±

q . The orientation of the squeezing ellipse
is controlled by φc − φv .

of macroscopic electronic BCS condensates. Both processes
are depicted in Fig. 1. Due to the finite number of photons
at ωq = eV0 + 2|�| which are produced in the system (see
luminescence in Fig. 6), we observe a small peak of LA(ωq)
at ωq = eV0 + 2|�|. This peak corresponds to an absorption
process of a Bogoliubov quasiparticle from the valence to the
conduction band.

In order to obtain squeezing for the mode with photon
momentum q, it is required that |LA(ωq)| > |L(ωq)|. Com-
paring the normal luminescence L(ωq) in Fig. 6 with the
anomalous luminescence LA(ωq) in Fig. 9, we find that
squeezing is maximal for photons on resonance ωq = eV0,
which corresponds to the transitions involving Cooper pairs.

In Fig. 10, we show the amount of squeezing on resonance
at TB = 0. It shows that squeezing can be controlled by the
relative phase between the two superconductors φc − φv . The
fluctuations of either �A+

q or �A−
q fall below the Heisenberg

uncertainty limit for a broad range of relative phases. The
maximal amount of squeezing for our realistic choice of
parameters is about 10%.

In the experimental setup of the p-n junction the relative
phase �φ = φc − φv depends on microscopic details such as
the initial switch-on time. In an experiment, it will be random
from experiment to experiment but fixed within one run. If
one places two superconducting p-n junctions in parallel in
a SQUID geometry one can control the relative phase �φ1 −
�φ2 between the two junctions. Since this will essentially
change the individual relative phases �φ1, �φ2 as well, this
provides a way to change φc − φv with a magnetic field.

V. STEADY STATE AND LASING THRESHOLD

In our calculation, so far, we have assumed that the system
reaches a steady state with a finite number of photons in the
system. This requires that the bath absorbs the photons that

are produced in the LED sufficiently fast. In this section,
we derive the exact requirements that have to be fulfilled for
this to be the case. Otherwise, the luminescence diverges at
certain frequencies and the system exhibits lasing. We discuss
the lasing conditions and give the frequency window where
lasing occurs. Finally, we calculate the steady-state photon
distribution using rate equations.

A. Lasing condition

To derive the conditions that are required for a steady state
with a finite photon number to exist, we follow a discussion
given in Ref. [41]. The key idea is to determine when and
for which frequencies the luminescence exhibits a divergence.
This corresponds to a transition into a lasing regime. We first
consider the case of normal conducting leads and then the one
of superconducting leads.

The luminescence L(ωq) = 〈b†qbq〉 can be obtained via
the lesser Green’s function D<

12,q = 1
2 (DK

12,q − DR
12,q + DA

12,q)
[see Eq. (55)]. We can parameterize the inverse retarded,
advanced, and Keldysh Green’s functions as[

D
R/A

12,q (ω)
]−1 = Aq(ω) ± iBq(ω), (61)[

DK
12,q(ω)

]−1 = iCq(ω). (62)

Using the matrix structure in Keldysh space [see Eq. (20)] one
obtains immediately

D
R/A

12,q (ω) = [Aq(ω) ± iBq(ω)]−1, (63)

DK
12,q(ω) = −

[
DK

12,q(ω)
]−1[

DR
12,q(ω)

]−1[
DA

12,q(ω)
]−1 . (64)

The zeros of Aq(ω) describe the excitations of the system
and Bq(ω) their linewidth. Let us assume that there exists
a resonance at the renormalized photon frequency ω = ω∗

q
such that Aq(ω∗

q) = 0. It is then required that the imaginary
part fulfills Bq(ω∗

q) > 0 to obtain a proper retarded Green’s
function with the poles lying in the lower complex frequency
plane.

In Eqs. (51)–(54), we have given the propagators within the
RPA approximation. For normal conducting leads, the retarded
function reduces to [DR

12,q(ω)]−1 = ω − ωq − �R
21,q(ω) and

thus

Aq(ω) = ω − ω∗
q, (65)

Bq(ω) = −Im �
el,R
21,q(ω) − Im �

bath,R
21,q (ω). (66)

Here, ω∗
q = ωq + Re �R

21,q denotes the renormalized photon
frequency, where the real part of the self-energy is only
weakly frequency dependent. The imaginary part Im �

el,R
21,q(ω)

is given in Eq. (32) and Im �
bath,R
21,q (ω) in Eq. (43). The bath

contribution to the self-energy fulfills Im �
bath,R
21,q (ω) ≈ −η <

0 for all frequencies ω. In contrast, the electronic contribution
Im �

el,R
21,q(ω) changes sign at ω = eV0 and is positive for

frequencies below resonance ω < eV0 (see Fig. 4). This
follows from the electronic population inversion and describes
photon production via transitions of conduction electrons to
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the valence band (see Fig. 3). Depending on the size of the
bath decay rate η the total imaginary part Bq(ω) may now
be negative for frequencies ω < eV0. Photon excitations with
a resonance energy ω∗

q for which this is the case violate the
analytical requirements of a retarded propagator. This indicates
the breakdown of our assumption of a steady state with a finite
photon number. At this point, the system exhibits lasing [41].

This breakdown can also be observed as a divergence of the
luminescence L(ωq) = 〈b†qbq〉 = i

2π

∫∞
−∞ dωD<

12,q(ω), where

D<
12,q(ω) = − i

2

Cq(ω) − 2Bq(ω)

Aq(ω)2 + Bq(ω)2
. (67)

If the bath decay rate η < max |Im �
el,R
21,q(ω)| ≈ π |g0|2 ρF ,

the imaginary part vanishes Bq(μq) = 0 for some frequency
μq = eV0 − ηvF |q|/(π |g0|2 ρF ). Around μq one can lin-
earize Bq(ω) ≈ β(ω − μq) with β = π |g0|2 ρF /(vF |q|). If
the excitation energy ω∗

q ≈ μq is close to this critical energy,
we can approximate the luminescence as

L(ω∗
q) = 1

2

∫ ∞

−∞

dω

2π

Cq(ω) − 2Bq(ω)

Aq(ω)2 + Bq(ω)2

≈ 1

2

∫ ∞

−∞

dω

2π

Cq(μq) − 2Bq(μq)

(ω − ω∗
q)2 + β2(ω − μq)2

= Cq(μq)

4β|ω∗
q − μq | . (68)

We have used that the dominant part of the integral comes
from the region around ω ≈ μq,ω

∗
q . We note that the renor-

malization of the photon frequency is a small effect for normal
conducting leads ωq ≈ ω∗

q .
As shown in Fig. 11, the photon number diverges like

L(ω∗
q) ∼ (ω∗

q − μq)−1 from above, where the luminescence
is finite. This behavior is reminiscent of Bose-Einstein con-
densation in an ideal gas. The divergence occurs for photons
with momentum qc where the zeros of the real part Aq(ω) and
of the imaginary part Bq(ω) occur at the same frequency ω∗

qc
.

Neglecting any frequency renormalization ωq = ω∗
q , we find

|qc| = eV0

c + η vF

π |g0|2ρF

. (69)

Due to its population inversion the electronic system induces
an effective chemical potential μqc

= c |qc| for the photons.
Within our approach, we cannot calculate the luminescence for
frequencies ωq < ωqc

since our assumption of a steady state
with a finite photon number breaks down. The LED produces
more photons in these modes as the external bath can absorb.
For these frequencies, one needs to perform perturbation
theory around a lasing state instead.

To summarize, the system exhibits lasing if the imaginary
part of the retarded self-energy becomes positive for positive
frequencies. The luminescence diverges for that photon mode
qc for which both real and imaginary part of the retarded
photon propagator exhibits zeros Aqc

(ω) = Bqc
(ω) = 0 for at

least one ω.
Turning to the case of superconducting leads, we observe

that the electronic contribution to the self-energy is strongly
increased around ω = eV0 − 2|�| (see Fig. 4). The laser
threshold thus corresponds to a larger value of the bath

FIG. 11. (Color online) Lasing condition for normal conducting
leads. Upper panel shows nearly momentum independent imaginary
part Bq(ω) ≈ Bqc

(ω) (green dashed) of inverse retarded propagator
[DR

12,q(ω)]−1. Lasing occurs for momenta larger than |qc| ≈ eV0/c.
Corresponding real part Aq(ω) is shown for different momenta q
around qc. The photon bath decay rate is chosen η < π |g0|2 ρF to
fulfill the laser threshold relation for frequencies ωq � eV0. Lasing
occurs for mode with momentum q = qc where both real part Aqc

(ω)
(red) and imaginary part Bqc

(ω) have simultaneous zeros. Lower
panel shows the luminescenceL(ωq ) = 〈b†

qbq〉 as a function of photon
energy ωq = c|q|. At ωq < ωqc

, the luminescence diverges, which
denotes a violation of our assumption of a (nonlasing) steady state
with finite photon number. In the lasing regime ωq < ωqc

(light
blue region), the system produces photons at a faster rate than the
absorption η due to the bath occurs.

absorption rate

ηc =
{

π |g0|2 ρF , normal conducting leads

π |g0|2 ρF
π |�|

2vF |q| , superconducting leads
, (70)

where π |�|/(2vF |q|) > 1 for our realistic choice of param-
eters (see Sec. III A 1). In Fig. 12, we show Aq(ω),Bq(ω)
and the luminescence L(ω∗

q) for superconducting leads for

π |g0|2 ρF < η <
π2|g0|2ρF |�|

2vF |q| such that there is no lasing in the
absence of superconductivity. As the simultaneous zeros in the
upper panel of the figure indicate, superconductivity leads to
lasing in the frequency range ωq1 < ωq < ωq2 ≈ eV0 − 2|�|.
The luminescence clearly diverges as 1/(ωq − ωq1,2

) at the
border of this region. Within this region, one needs to perform
perturbation theory around a lasing state, which is beyond the
scope of this work.

To conclude, superconductivity leads to a sharp increase of
the photon production rate of the LED around the frequency
ωq ≈ eV0 − 2|�|. This induces a sharp increase of the elec-
troluminescence L(ωq) and a smaller laser threshold ηc.
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FIG. 12. (Color online) Lasing condition for superconducting
leads. Upper panel shows nearly momentum independent Bq(ω)
(red dashed) and real part Aq(ω) of inverse retarded propagator
[DR

12,q(ω)]−1 for different momenta q with energy close to ωq ≈
eV0 − 2|�|. The photon decay rate η is chosen to fulfill the laser
threshold relation in Eq. (70) in the superconducting state. The
lasing regime is bounded by momenta q1 and q2 which correspond
to the photon modes where Aq(ω) and Bq(ω) have simultaneous
zeros (for some frequency ω). Note the strong renormalization of the
photon frequency close to ω = eV0 − 2|�| which increases the lasing
frequency window shown in the lower panel (in light blue). Lower
panel shows divergence of luminescence for photon modes q1 and q2

and lasing regime (light blue) in between.

B. Lasing conditions from analyzing rate equations

The lasing condition in Eq. (70) can also be derived
using rate equations. This approach is appealing due to its
simplicity and physical transparency. It begins with calculating
the change of the number of bosons n̂b =∑q b

†
qbq , which is

given by

� = d

dt
〈n̂b(t)〉 = −i〈[n̂b(t),Ĥ (t)]〉 , (71)

where the time-dependent operators n̂b(t),Ĥ (t) are defined
in the Heisenberg picture. The expectation value 〈O〉 of an
operator O is defined with respect to the full Hamiltonian H

in Eq. (1). The commutator can be evaluated to

[n̂b(t),Ĥ (t)] =
∑

k,k′,σ

[ḡ(t)v†
k,σ (t)b†k′−k(t)ck′,σ (t)

−g(t)vk,σ (t)bk′−k(t)c†k′,σ (t)]

+
∑
p,q

[λ p,qb
†
p(t)aq(t) − λ̄q, pa

†
p(t)bq(t)].

(72)

FIG. 13. Feynman graphs contributing to the rate equation of the
photon number [see Eq. (72)]. Solid (dashed) lines denote conduction
(valence) electron propagators, solid double wiggly lines denote
dressed photon propagators given in Eqs. (51)–(54) and dashed
wiggly lines denote bath photon propagators. The first three diagrams
represent the contribution to the rate from emission and absorption of
photons involving electronic transitions in the superconducting LED.
The fourth graph describes the photon exchange with the external
bath.

The expectation value of this commutator can be conveniently
evaluated within perturbation theory in g0 using the Keldysh
formalism [42]. The total photon production rate � = �SLED +
�bath is composed of two contributions: first, �SLED which
describes the emission and absorption of photons due to
electronic transitions in the LED and second, �bath, which
characterizes the photon exchange with the external bath. An
explicit calculation, which takes the diagrams shown in Fig. 13
into account, yields

�bath = −2
∑

q

∫
dω

π
Im �bath,R

q (ω)Im DA
12,q(ω)

× [nbath(ω) − nq(ω)], (73)

�SLED = 2
∑

q

∫
dω

π
Im �

el,R
21,q(ω)Im DA

12,q(ω)

×{[1 + nq(ω)]θ (eV0 − ω) + nq(ω)θ (ω − eV0)}

− 1

π

∑
q

∫
dω

π
Re
[
�̃

el,R
11,q(ω)DA

11,q(ω)
]
. (74)

Here, nq(ω) denotes the photon distribution function in the
(superconducting) LED system and nbath(ω) denotes the
photon distribution in the external bath. For a thermal bath,
nbath(ω) is given by the Bose-Einstein distribution function.
The coupling to the bath drives the photon distribution
in the system nq towards the external bath distribution
nq(ω) → nbath(ω). In contrast, the LED produces photons via
spontaneous as well as stimulated emission for ω < eV0 and
absorbs them for ω > eV0.

We evaluate the integrals in Eq. (73) and (74) to leading
order in the electron-photon coupling g0. To this order, we
only get an on-shell contribution Im DA

12,q(ω) = πδ(ω − ωq),
because higher-order terms in Im D̃A

11,q(ω) ∼ g2
0 are neglected

as the self-energies are already of order O(g2
0). As a result, the

frequency integration enforces nq(ω) = n(ωq) and the total
photon production rate simplifies to

� = 2
∑

q

[− Im �bath,R
q (ωq)[nbath(ωq) − n(ωq)]

+ Im �
el,R
21,q(ωq){[1 + n(ωq)]θ (eV0 − ωq)

+ n(ωq)θ (ωq − eV0)}]. (75)
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In a steady state, the photon emission and absorption are balanced and the total rate � =∑q �q is zero for all photon modes q.

Employing that Im �bath,R
q (ωq) < 0 and sign[Im �

el,R
21,q(ωq)] ∼ sign(eV0 − ωq), we can infer the photon distribution in the steady

state as

n(ωq) =
∣∣Im �

el,R
21,q(ωq)

∣∣θ (eV0 − ωq) + ∣∣Im �bath,R
q (ωq)

∣∣nbath(ωq)

−Im �
bath,R
q (ωq) − Im �

el,R
21,q(ωq)

. (76)

For ωq > eV0, the distribution function is positive and finite.
For ωq < eV0, however, the imaginary part of the total self-
energy Im �R

21,q(ωq) = Im �bath,R
q (ωq) + Im �

el,R
21,q(ωq) in the

denominator of Eq. (76) may become zero. At this point, the
production rate of the LED is exactly equal in magnitude to
the decay rate into the bath. This results in the divergence
of the photon distribution for energies ωq for which
Im �R

21,q(ωq) = 0. It follows that the laser threshold in the (su-
perconducting) LED is given by our previous result in Eq. (70).

VI. CONCLUSIONS

We have investigated the electroluminescence and photonic
properties of a forward biased p-n junction in proximity to
superconducting leads. We have shown that superconductivity
leads to a significant enhancement of the luminescence of
the light-emitting diode in a frequency window of the order
of (vF eV0)2/(c2|�|) ≈ 10−3eV . This effect stems from the
increased density of states at the edges of the supercon-
ducting gap in the electronic bandstructure of the valence
and conduction bands. The increased photon production rate
also reduces the lasing threshold in the system. By summing
the complete infinite order RPA perturbation series in the
photon-electron coupling, we were able to show that an
additional luminescence peak occurs on resonance due to
the tunneling of Cooper pairs from the conduction to the
valence band. In addition, such a superconducting light-
emitting diode emits two-mode squeezed light. The squeezing
angle is controlled by the superconducting phase difference
between conduction and valence band. This proves that one
may transfer the macroscopic coherence of an electronic
superconducting condensate to photon pairs and manipulate
the photonic coherence electronically.
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APPENDIX A: EFFECTIVE PHOTON ACTION

The unperturbed fermionic and bosonic part of the action
in Eq. (7) can be written in the basis of the R,A,K fields as

Sc + Sv =
∑

k

∫ ∞

−∞
dtdt ′ 
̂†

k(t)Ĝ−1
0,k(t,t ′)
̂k(t ′), (A1)

Sph = 1

2

∑
q

∫ ∞

−∞
dtdt ′ �̂T

q (t)D̂−1
0,q(t,t ′)�̂−q(t ′), (A2)

where we defined the fermionic and bosonic spinors and matrix
Green’s functions in Sec. II. The electron-photon interaction
and photon-bath interaction can also be written in terms of
these spinors.

1. Integrating out the electrons

Let us consider first the electron-photon coupling

Sint =
∑

k,k′
σ

∫
C
dt(g(t)bk−k′(t)c̄k,σ (t)vk′,σ (t) + H.c.)

=
∑
k,k′

∫
C
dt

�



†
k(t)

[∑
i=1,2

√
2

�
gi(t)�̊k−k′,i(t)

]
�


k′(t),

(A3)

where �̊k = (�̊k,1,�̊k,2)T = (bk,b̄−k)T and we define the
matrices in the extended Nambu space as

�
g1(t) = 1√

2

⎛
⎜⎜⎜⎝

0 0 0 0

g(t) 0 0 0

0 0 0 −g(t)

0 0 0 0

⎞
⎟⎟⎟⎠ ,

�
g2(t) = 1√

2

⎛
⎜⎜⎜⎝

0 ḡ(t) 0 0

0 0 0 0

0 0 0 0

0 0 −ḡ(t) 0

⎞
⎟⎟⎟⎠ . (A4)

The Keldysh contour can now be expressed by two integrations on the real axis for the + and − fields

Sint =
∑
k,k′

∫ ∞

−∞
dt
∑
α=±

α × [ �



α
k (t)
]† [∑

i=1,2

√
2

�
gi(t)�

α
k−k′,i(t)

]
�



α
k′(t)

=
∑
k,k′

∫ ∞

−∞
dt 
̂

†
k(t)

⎡
⎢⎣∑

α=q,cl
i=1,2

γ̂ α
�
gi(t)�

α
k−k′,i(t)

⎤
⎥⎦

︸ ︷︷ ︸
V̂k,k′ (t)


̂k′(t), (A5)
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and finally, we have rewritten the action in the R,A,K basis using γ̂ cl = 1̂ and γ̂ q = σ̂x in Keldysh space. Here, we use the
convention that we always first evaluate the Keldysh matrix structure and after that the structure of the fermionic Nambu-space
� or bosonic particle hole space ◦. Now, we can integrate out the fermions easily as we have a quadratic action∫

D[
,
̄]eiSphei[Sc+Sv+Sint] = eiSph

∫
D[
,
̄]ei

∑
k,k′
∫∞
−∞ dtdt ′ 
̂†

k(t)(Ĝ−1
0,k(t,t ′)δk,k′+V̂k,k′ (t)δ(t−t ′))
̂k(t ′) = eiSph+tr ln[1+Ĝ0V̂ ] = eiSel

ph,eff . (A6)

Expanding the trace log we find in leading order in g that

tr ln[1 + Ĝ0V̂ ] =
∞∑

n=1

(−1)n+1

n
tr[(Ĝ0V̂ )n] = −1

2
tr[(Ĝ0V̂ )2] + . . .

≈ −1

2

∫
dtdt ′

∑
k,k′

tr[Ĝ0,k(t ′,t)V̂k,k′(t)Ĝk′(t,t ′)V̂k′,k(t ′)]

= −1

2

∫
dtdt ′

∑
k,q

tr

⎡
⎢⎣Ĝ0,k(t ′,t)

⎡
⎢⎣∑

α=q,cl
i=1,2

γ̂ α
�
gi(t)�

α
q,i(t)

⎤
⎥⎦ Ĝ0,k−q(t,t ′)

⎡
⎢⎣∑

β=q,cl
j=1,2

γ̂ β
�
gj (t ′)�β

−q,j (t ′)

⎤
⎥⎦
⎤
⎥⎦

= −1

2

∫
dtdt ′

∑
q

∑
i,j=1,2
α,β=q,cl

�α
q,i(t)

(∑
k

tr[Ĝ0,k(t ′,t)γ̂ α
�
gi(t)Ĝ0,k−q(t,t ′)γ̂ β

�
gj (t ′)]

)
︸ ︷︷ ︸

:=i[�el]αβ

ij,q (t,t ′)

�
β

−q,j (t ′)

= − i

2

∫
dtdt ′

∑
q

�̂T
q (t)�̂el

q (t,t ′)�̂−q,j (t ′), (A7)

where we still have to evaluate the trace over the Keldysh and Nambu structure. We get

Sel
ph,eff = 1

2

∑
q

∫ ∞

−∞
dtdt ′ �̂T

q (t)
[
D̂−1

0,q(t,t ′) − �̂el
q (t,t ′)

]
�̂−q(t ′) (A8)

with

�̂el
q (t,t ′) =

(
0 �̊el,A

q (t,t ′)

�̊el,R
q (t,t ′) �̊el,K

q (t,t ′)

)
, �̊el,R

q (t,t ′) =
⎛
⎝[�el]q,cl

11,q(t,t ′) [�el]q,cl
12,q(t,t ′)

[�el]q,cl
21,q(t,t ′) [�el]q,cl

22,q(t,t ′)

⎞
⎠ ,

�̊el,A
q (t,t ′) =

⎛
⎝[�el]cl,q

11,q(t,t ′) [�el]cl,q
12,q(t,t ′)

[�el]cl,q
21,q(t,t ′) [�el]cl,q

22,q(t,t ′)

⎞
⎠ , �̊el,A

q (t,t ′) =
⎛
⎝[�el]cl,cl

11,q(t,t ′) [�el]cl,cl
12,q(t,t ′)

[�el]cl,cl
21,q(t,t ′) [�el]cl,cl

22,q(t,t ′)

⎞
⎠ , (A9)

[�el]αβ

ij,q(t,t ′) = −i
∑

k

tr[γ̂ α
�
gi(t)Ĝ0,k(t,t ′)γ̂ β

�
gj (t ′)Ĝ0,k+q(t ′,t)].

2. Integrating out the photon bath

Following the same lines as the previous calculation, we want to integrate out the bath photons in (6) to find the corresponding
self-energy for the SLED photons, see also Ref. [31,32]. It is straightforward to show that the corresponding self-energy is then
given by

�̂bath
q (t,t ′) =

⎛
⎝ 0 �̊bath,A

q (t,t ′)

�̊bath,R
q (t,t ′) �̊bath,K

q (t,t ′)

⎞
⎠ , �̂bath,R/A/K

q (t,t ′) =
∑

p

|λq, p|2
⎛
⎝ 0 d

A/R/K

bath, p (t ′,t)

d
R/A/K

bath, p (t,t ′) 0

⎞
⎠ ,

(A10)
d

R/A

bath,q(ω) = 1

ω − ωq ± i0
, dK

bath,q(ω) = B0(ω)
[
dR

bath,q(ω) − dA
bath,q(ω)

]
.

The assumed (SLED photon) momentum-independent coupling λ p, p′ = λ(ω p′) then leads to the simple relation (we omit the
unimportant since featureless real part)

�̂bath,R/A
q (ω) =

(
0 ±iη(−ω)

∓iη(ω) 0

)
, (A11)

�̂bath,K
q (ω) = B0(ω)

[
�̂bath,R

q (ω) − �̂bath,A
q (ω)

]
, (A12)
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with

η(ω) = Im

[∑
p

|λ(ω p)|2dA
bath, p(ω)

]
= π

∑
p

|λ(ν p)|2δ(ω − ω p) = π

∫
dε Nbath(ε) |λ(ε)|2 δ(ω − ε)

= π |λ(ω)|2 Nbath(ω), (A13)

where Nbath =∑ p δ(ω − ν p) is the DOS of the photon bath. We choose an Markovian (or Ohmic) bath, where the DOS and the
coupling are constant in frequency for all ω � � (where � � eV0) and thus give rise to a constant absorption rate of the bath
for the photons produced by the SLED (with characteristic energy ωq ≈ eV0). We use the parametrization

η(ω) = η · ω2

ω2 + �2
θ (ω) (A14)

with η(0) = 0 (which is important as explained in the main text). The derivation from the constant behavior for small ω � eV0

does not change the results and features of the SLED presented in this paper as we are interested at photons with ωq ≈ eV0.
The total effective action then reads

Sph,eff = 1

2

∑
q

∫ ∞

−∞
dtdt ′ �̂T

q (t)
[
D̂−1

0,q(t,t ′) − �̂el
q (t,t ′) − �̂bath

q (t,t ′)
]
�̂−q(t ′). (A15)

APPENDIX B: CALCULATION OF THE SELF-ENERGY �̂el

We already derived the expressions for the bosonic self-energy caused by the superconducting electrons in the system in (A9).
Let us now first derive the causal structure of this self-energy by performing the trace over the Keldysh indices

[�el]Rij,q(t,t ′) = [�el]q,cl
ij,q(t,t ′) = −i

∑
k

tr[γ̂ q �
gi(t)Ĝ0,k(t,t ′)γ̂ cl �

gj (t ′)Ĝk+q(t ′,t)]

(19)= −i
∑

k

tr�tr∧

⎡
⎣(0 1

1 0

)
�
gi(t)

⎛
⎝�

GR
0,k(t,t ′)

�

GK
0,k(t,t ′)

0
�

GA
0,k(t,t ′)

⎞
⎠(1 0

0 1

)
�
gj (t ′)

⎛
⎝�

GR
0,k+q(t ′,t)

�

GK
0,k+q(t ′,t)

0
�

GA
0,k+q(t ′,t)

⎞
⎠
⎤
⎦

= −i
∑

k

tr�[
�
gi(t)

�

G
R
0,k(t,t ′)

�
gj (t ′)

�

G
K
0,k+q(t ′,t)+ �

gi(t)
�

G
K
0,k(t,t ′)

�
gj (t ′)

�

G
A
0,k+q(t ′,t)], (B1)

[�el]Aij,q(t,t ′) = −i
∑

k

tr�[
�
gi(t)

�

G
A
0,k(t,t ′)

�
gj (t ′)

�

G
K
0,k+q(t ′,t)+ �

gi(t)
�

G
K
0,k(t,t ′)

�
gj (t ′)

�

G
R
0,k+q(t ′,t)], (B2)

[�el]Aij,q(t,t ′) = −i
∑

k

tr�
{ �

gi(t)
�

G
K
0,k(t,t ′)

�
gj (t ′)

�

G
K
0,k+q(t ′,t)− �

gi(t)
[ �

G
R
0,k(t,t ′)− �

G
A
0,k(t,t ′)

] �
gj (t ′)

× [ �

G
R
0,k+q(t ′,t)− �

G
A
0,k+q(t ′,t)

]}
, (B3)

which are just the usual forms of the retarded, advanced and Keldysh self-energies as known from standard text books. The next
step will be the evaluation of the Nambu trace. Let us first write define the absolute anomalous propagator (α = R,A,K)

P α
0,k,v/c(t,t ′) = e−iφv/c |P |α0,k,v/c (t − t ′),

P̄ α
0,k,v/c(t,t ′) = eiφv/c |P |α0,k,v/c (t − t ′), (B4)

|P |R/A

0,k,v/c (ω) = − |�c/v|
(ω ± i0)2 − ξv/c(k)2 − |�c/v|2 ,

where we separated the phase of the superconducting gaps �v/c = eiφv/c |�v/c|. Defining also the phase of the electron-photon
coupling g0 = eiφg |g0|, the absolute time T = (t + t ′)/2 and relative time τ = t − t ′ we can evaluate

tr�
[�
g1(t)

�

G
α
0,k(t,t ′)

�
g1(t ′)

�

G
β

0,k+q(t ′,t)
] = −g(t)g(t ′)

2

[
P α

0,k,v(t,t ′)P̄ β

0,k+q,c(t ′,t) + P̄ α
0,k,c(t,t ′)P β

0,k+q,v(t ′,t)
]

= −eiφ(2T ) |g0|2
[|P |α0,k,v (τ ) |P |β0,k+q,c (−τ ) + |P |α0,k,c (τ ) |P |β0,k+q,v (−τ )

]
,
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tr�
[�
g1(t)

�

G
α
0,k(t,t ′)

�
g2(t ′)

�

G
β

0,k+q(t ′,t)
] = g(t)ḡ(t ′)

2

[
G

(p),α
0,k,v(t,t ′)G(p),β

0,k+q,c(t ′,t) + G
(h),α
0,k,c(t,t ′)G(h),β

0,k+q,v(t ′,t)
]

= eieV0τ |g0|2
[
G

(p),α
0,k,v(τ )G(p),β

0,k+q,c(−τ ) + G
(h),α
0,k,c(τ )G(h),β

0,k+q,v(−τ )
]
,

tr�
[�
g2(t)

�

G
α
0,k(t,t ′)

�
g1(t ′)

�

G
β

0,k+q(t ′,t)
] = ḡ(t)g(t ′)

2

[
G

(h),α
0,k,v(t,t ′)G(h),β

0,k+q,c(t ′,t) + G
(p),α
0,k,c (t,t ′)G(p),β

0,k+q,v(t ′,t)
]

= e−ieV0τ |g0|2
[
G

(h),α
0,k,v(τ )G(h),β

0,k+q,c(−τ ) + G
(p),α
0,k,c (τ )G(p),β

0,k+q,v(−τ )
]
,

tr�
[�
g2(t)

�

G
α
0,k(t,t ′)

�
g2(t ′)

�

G
β

0,k+q(t ′,t)
] = − ḡ(t)ḡ(t ′)

2

[
P̄ α

0,k,v(t,t ′)P β

0,k+q,c(t ′,t) + P α
0,k,c(t,t ′)P̄ β

0,k+q,v(t ′,t)
]

= −e−iφ(2T ) |g0|2
[|P |α0,k,v (τ ) |P |β0,k+q,c (−τ ) + |P |α0,k,c (τ ) |P |β0,k+q,v (−τ )

]
, (B5)

with the rotating phase

φ(2T ) = 2eV0T + [�v�
∗
cg

2] = 2eV0T − φc + φv + 2φg. (B6)

From (A9) and (B5), we see that we indeed find the structure presented in Eq. (28) in the photon particle-hole space ◦. Performing
the Wigner transformation f (ω,T ) = W{f (τ,T )}τ,ω = ∫∞

−∞ dτf (τ,T )eiωτ , which is just a Fourier transformation in relative time
τ , we have the identity

W{eiaT eibτA(τ )B(−τ )}τ,ω = eiaT

∫ ∞

−∞

dω1

2π
A(ω1)B(ω1 − ω − b). (B7)

In total, we can write down the photon self-energy part from the coupling to the electrons as

�̊el,R/A
q (ω,T ) =

(
eiφ(2T )�̃

el,R/A

11,q (ω) �
el,R/A

12,q (ω)

�
el,R/A

21,q (ω) e−iφ(2T )�̃
el,R/A

22,q (ω)

)
(B8)

with

�̃
el,R/A

11,q (ω) = i
∣∣g2

0

∣∣∑
k

∫ ∞

−∞

dω1

2π

[ |P |R/A

0,k,v (ω1) |P |K0,k+q,c (ω1 − ω) + |P |K0,k,v (ω1) |P |A/R

0,k+q,c (ω1 − ω)
]
, (B9)

�
el,R/A

12,q (ω) = −i
∣∣g2

0

∣∣∑
k

∫ ∞

−∞

dω1

2π

[
G

(p),R/A

0,k,v (ω1)G(p),K
0,k+q,c(ω1 − ω+) + G

(p),K
0,k,v (ω1)G(p),A/R

0,k+q,c(ω1 − ω+)
]
, (B10)

�
el,R/A

21,q (ω) = −i
∣∣g2

0

∣∣∑
k

∫ ∞

−∞

dω1

2π

[
G

(h),R/A

0,k,v (ω1)G(h),K
0,k+q,c(ω1 − ω−) + G

(h),K
0,k,v (ω1)G(h),A/R

0,k+q,c(ω1 − ω−)
]
, (B11)

�̃
el,R/A

22,q (ω) = i
∣∣g2

0

∣∣∑
k

∫ ∞

−∞

dω1

2π

[ |P |R/A

0,k,v (ω1) |P |K0,k+q,c (ω1 − ω) + |P |K0,k,v (ω1) |P |A/R

0,k+q,c (ω1 − ω)
]
, (B12)

where we defined ω± = ω ± eV0 and used several symmetry properties

G
(p),R/A/K

0,k,v/c (ω) = −G
(h),A/R/K

0,k,v/c (−ω), (B13)

|P |R/A/K

0,k,v/c (ω) = |P |A/R/K

0,k,v/c (−ω) (B14)

of the fermionic propagators. The corresponding Feynman graphs are presented in Fig. 2. Using the symmetries (B12), it is easy
to show that

�̃
el,R/A

11,q (ω) = �̃
el,R/A

22,q (ω), (B15)

�
el,R/A

12,q (ω) = �
el,A/R

21,q (−ω). (B16)

The Keldysh self-energies can be easily shown to be given by the thermal equilibrium expressions (37).

1. Normal conductor

In the normal conductor, the propagators simplify to |P |v/c = 0 and

G
(p),R/A

0,k,v/c (ω) = 1

ω − ξv/c(k) ± i0
, G

(p),K
0,k,v/c(ω) = −2πi[1 − 2nF (ω)]δ[ω − ξv/c(k)], (B17)
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q

q

Fermi surface

FIG. 14. Linearization of dispersion at the Fermi surface and finite momentum transfer by photon.

where nF (ω) is the Fermi function of the system, such that we find the standard results for the occurring particle-hole bubbles
(the anomalous self-energies �11,q = �22,q vanish in the normal conductor):

�
el,R/A

21,q (ω) = 2
∣∣g2

0

∣∣∑
k

nF [ξv(k)] − nF [ξc(k + q)]

ω− + ξv(k) − ξc(k + q) ± i0
. (B18)

As depicted in Fig. 3, let us now consider an isotropic electron band ξc(k) = ξc(|k|) and a symmetric hole band ξv(k) = −ξc(k)
and linearize around the Fermi surface:

ξc(k) ≈ vF (φ,θ ) · [k − kF (φ,θ )] = vF (k − kF ), (B19)

where φ,θ parameterize the orbital direction of k in spherical coordinates and we can define the DOS as usual ρ(ξ ) =∑k δ[ξ −
ξc(k)]. Let us now consider a finite momentum transfer with q = |q| � k = |k| ≈ |kF |. Due to the rotational invariance of the
Fermi surface we can choose q to lie along the z axis, see Fig. 14, such that

ξc(k + q) ≈ vF (φ,θ ) · [k + q − kF (φ,θ )] = vF (k − kF ) + vF (φ,θ ) · q = vF (k − kF ) + vF q cos(θ ) = ξc(k) + vF q cos(θ ),

(B20)

which allows us to write the above sum of momenta as

∑
k

f [ξv(k),ξc(k + q)] = 1

(2π )3

∫ 2π

0
dφ

∫ 1

−1
d cos θ

∫ ∞

0
dk k2 f [−ξc(k),ξc(k) + vF q cos(θ )]

=
∫ 1

−1

d cos θ

2

∫ ∞

−B

dξ ρ(ξ )f [−ξ,ξ + vF q cos(θ )] =
∫ vF q

−vF q

dα

2vF q

∫ ∞

−B

dξ ρ(ξ )f [−ξ,ξ + α], (B21)

where B is the energy distance from the lower band edge to the Fermi energy in the conduction band. We will now explicitly
calculate the imaginary part of (B18) for the symmetric particle and hole bands in the normal conducting state and omit the
real part since it is featureless and gives just a small unimportant correction to the dispersion of the photons. We find for zero
fermionic temperature TF = 0 the imaginary part

Im �
el,R/A

21,q (ω) = ∓2π
∣∣g2

0

∣∣ ∫ vF q

−vF q

dα

2vF q

∫ ∞

−B

dξ ρ(ξ )[nF (−ξ ) − nF (ξ + α)]δ(ω− − 2ξ − α)

= ∓π
∣∣g2

0

∣∣
2vF q

∫ vF q

−vF q

dα ρ

(
ω− − α

2

)
︸ ︷︷ ︸

≈ρ(ω−/2)

[
nF

(−ω− + α

2

)
− nF

(
ω− + α

2

)]

≈ ∓π
∣∣g2

0

∣∣
2vF q

ρ(ω−/2)
∫ vF q

−vF q

dα[θ (ω− − α) − θ (−ω− − α)]

= ∓π
∣∣g2

0

∣∣ ρ(ω−/2) sign(ω−) min

[
1,

|ω−|
vF q

]
. (B22)

The real part will be neglected in the normal state as it is only weakly energy and momentum dependent and gives no important
renormalization of the photon excitation energies ω∗

q ≈ ωq .
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2. Superconductor

In the superconducting state, we can use the standard parametrization of the normal and anomalous Greens functions (TF = 0)

A
R/A

0,k,v/c(ω) = αA,k,v/c

ω − Ev/c(k) ± i0
+ βA,k,v/c

ω − Ev/c(k) ± i0
, AK

0,k,v/c(ω) = [1 − 2nF (ω)]
(
AR

0,k,v/c(ω) − AA
0,k,v/c(ω)

)
= −2πi(αA,k,v/cδ(ω − Ev/c(k)) + βA,k,v/cδ[ω + Ev/c(k)]), (B23)

where we defined the superconducting dispersion Ev/c(k) =
√

ξv/c(k)2 + ∣∣�v/c

∣∣2 and the coherence factors for the different
Green’s functions are given by

A G(p) G(h) |P |
αA,k,v/c u2

k,c/v v2
k,c/v −uk,c/vvk,c/v

βA,k,v/c v2
k,c/v u2

k,c/v uk,c/vvk,c/v

uk,c/v =
√

1
2

(
1 + ξc/v (k)

Ec/v (k)

)
,

vk,c/v =
√

1
2

(
1 − ξc/v (k)

Ec/v (k)

)
.

(B24)

An explicit calculation of the normal and anomalous self-energy show that

�̃
el,R/A

11,q (ω) = 2
∣∣g2

0

∣∣∑
k

[
uk,vvk,vuk+q,cvk+q,c

ω − Ev(k) − Ec(k + q) ± i0
− uk,vvk,vuk+q,cvk+q,c

ω + Ev(k) + Ec(k + q) ± i0

]
,

�
el,R/A

21,q (ω) = 2
∣∣g2

0

∣∣∑
k

[
v2

k,vu
2
k+q,c

ω− − Ev(k) − Ec(k + q) ± i0
− u2

k,vv
2
k+q,c

ω− + Ev(k) + Ec(k + q) ± i0

]
,

(B25)

and the other two self-energies are related via the symmetries (B16).

a. Anomalous self-energy

Let us now consider first the anomalous self-energy �̃
el,R/A

11,q (ω) that can only occur in the presence of superconducting
quasiparticles. We can use the linearization (B21) for the symmetric bands to write the retarded self-energy as

�̃
el,R
11,q(ω) = 2

∣∣g2
0

∣∣ ∫ vF q

−vF q

dα

2vF q

∫ ∞

−B

dξ

≈ρ(0)=ρF︷︸︸︷
ρ(ξ )

|�|2
4
√

ξ 2 + �2
√

(ξ + α)2 + �2

×
[

1

ω −
√

ξ 2 + �2 −
√

(ξ + α)2 + �2 + i0
− 1

ω +
√

ξ 2 + �2 +
√

(ξ + α)2 + �2 + i0

]

=
∣∣g2

0

∣∣ ρF �

4vF q

∫ vF q/�

−vF q/�

dα

∫ ∞

−B/�

dx
1√

x2 + 1
√

(x + α)2 + 1

[
1

ω̃ − √
x2 + 1 −

√
(x + α)2 + 1 + i0

− . . .

]
, (B26)

where we assumed |�c| = |�v| = �, defined ω̃ = ω/� and approximated the DOS to lie near the Fermi surface since the
dominant part of the integral will come from there. The real part of the integral is obviously symmetric and the imaginary part
antisymmetric in frequency

Re �̃
el,R
11,q(ω) = Re �̃

el,R
11,q(−ω), Im �̃

el,R
11,q(ω) = −Im �̃

el,R
11,q(−ω), (B27)

such that we will continue to focus on positive frequencies ω̃ > 0. Let us first calculate the real part

Re �̃
el,R
11,q(ω) =

∣∣g2
0

∣∣ ρF �

4vF q
P
∫ vF q/�

−vF q/�

dα

∫ ∞

−B/�

dx
1√

x2 + 1
√

(x + α)2 + 1

[
1

ω̃ − √
x2 + 1 −

√
(x + α)2 + 1

+ {ω → −ω}
]

(B28)

for ω > 0. We see that the integrand will have a singularity if

ω̃ =
√

x2 + 1 +
√

(x + α)2 + 1 � 2
√

1 + (α/2)2 = ω̃α, for xmin = −α/2, (B29)

and we therefore expect that at ω̃ = 2 some important feature can occur. Let us now consider this case ω ≈ 2�, where it is
convenient to separate the singular region xmin ≈ −α/2 of the integrand

Re �̃
el,R
11,q(ω ≈ 2�) = gq(ω) +

∣∣g2
0

∣∣ ρF �

4vF q
P
∫ vF q/�

−vF q/�

dα

∫ −α/2+δx

−α/2−δx

dx
1√

x2 + 1
√

(x + α)2 + 1

1

ω̃−√
x2+1−

√
(x+α)2+1

x≈−α/2≈ gq(ω) +
∣∣g2

0

∣∣ ρF �

4vF q
P
∫ vF q/�

−vF q/�

dα

∫ −α/2+δx→∞

−α/2−δx→−∞
dx

4

ω2
α

1

ω̃ − ω̃α − 8(x+α/2)2

ω̃3
α
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= gq(ω) − π
∣∣g2

0

∣∣ ρF �√
2vF q

∫ vF q/�

0
dα

θ (ω̃α − ω̃)√
ω̃α

√
ω̃α − ω̃

≈ gq(ω) − π
∣∣g2

0

∣∣ ρF �

vF q
ln

⎡
⎣
√

1 +
(

vF q

2�

)2
|2 − ω̃| +

vF q

2�√|2 − ω̃|

⎤
⎦ . (B30)

The contribution gq(ω) will just give a small unimportant term as
∣∣g2

0

∣∣ ρF � � is small and therefore our dispersion is just
changed slightly. The important contributions will come from the divergences at ω = ±2�, which are captured well by the
expression (B30), such that we approximate

Re �̃
el,R
11,q(ω) ≈ −π|g2

0|ρF

2
(

vF q

2�

) ln

[√
1 +

(
vF q

2�

)2

|2−|ω̃|| +
vF q

2�√|2−|ω̃||

]
. (B31)

The imaginary part can be calculated using the same methods as just explained for the real part and is given by

Im �̃
el,R
11,q(ω > 0) = −

∣∣g2
0

∣∣πρF �

4vF q

∫ vF q/�

−vF q/�

dα

∫
dx

1√
x2 + 1

√
(x + α)2 + 1

δ[ω̃ −
√

x2 + 1 −
√

(x + α)2 + 1]. (B32)

Obviously, there is a gap of 2� for the imaginary part of the particle-hole bubble Im �̃
el,R
11,q(ω) ∼ θ (ω − 2�). Let us again focus

on the region ω � 2�, where the dominant contributions come again from x ≈ −α/2 such that

Im �̃
el,R
11,q(ω � 2�) ≈ −

∣∣g2
0

∣∣πρF �

4vF q

∫ vF q/�

−vF q/�

dα

∫
dx

4

ω̃2
α

δ

[
ω̃ − ω̃α − 8(x + α/2)2

ω̃3
α

]

= −
∣∣g2

0

∣∣πρF �

2
√

2vF q

∫ vF q/�

−vF q/�

dα

∫
dy

1√
ω̃α

δ[ω̃ − ω̃α − y2]

= −
∣∣g2

0

∣∣πρF �

2
√

2vF q

∫ vF q/�

−vF q/�

dα
θ (ω̃ − ω̃α)√
ω̃α

√
ω̃ − ω̃α

≈ −
∣∣g2

0

∣∣πρF

2
(

vF q

2�

) arcsin

(
min
[

vF q

2�
,
√

ω̃ − 2
]

√
ω̃ − 2

)
, (B33)

where in the end, we approximated the integral for small α due to the integrand restrictions. Far away from the gap region
ω � 2�, it is easy to show that the imaginary part Im �̃

el,R
11,q(ω � 2�) ∼ 1/ω2 falls down rapidly and is therefore not important,

such that we can approximate Im �̃
el,R
11,q(ω) for all ω with (B33) as stated in the main text.

b. Normal self-energy

The normal self-energy �
el,R/A

21,q (ω) around ω− = ω − eV0 = ±2� can easily be shown to behave exactly like the anomalous

self-energy �̃
el,R/A

11,q (ω) around ω = ±2�. Far away from this region, |ω−| � 2�, it just behaves like in the normal conductor
(B22). In between, we interpolate between these two by replacing the self-energy as the maximum of the two limits:

�
el,R/A

21,q (ω) ≈ −π
∣∣g2

0

∣∣ ρF

2
(

vF q

2�

) ln

⎛
⎝
√

1 +
(

vF q

2�

)2
|2 − |ω̃|| +

vF q

2�√|2 − |ω̃||

⎞
⎠

∓i max

[∣∣g2
0

∣∣πρF

2
(

vF q

2�

) arcsin

(
min
[

vF q

2�
,
√|ω̃| − 2

]
√|ω̃| − 2

)
,π |g0|2 ρ(ω−/2)

]
sign(ω−)θ (|ω̃| − 2). (B34)
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APPENDIX C: DERIVATION OF THE DRESSED PROPAGATORS

Let us first consider the Wigner transformation of a convolution of two bosonic matrices C̊ = Å ◦ B̊ with time dependence:

Å(t,t ′) =
(

eiφ(2T )A11(τ ) A12(τ )

A21(τ ) e−iφ(2T )A22(τ )

)
, Å(ω,T ) =

(
eiφ(2T )A11(ω) A12(ω)

A21(ω) e−iφ(2T )A22(ω),

)
(C1)

B̊(t,t ′) =
(

e−iφ(2T )B11(τ ) B12(τ )

B21(τ ) eiφ(2T )B22(τ ),

)
B̊(ω,T ) =

(
e−iφ(2T )B11(ω) B12(ω)

B21(ω) eiφ(2T )B22(ω),

)

where as usual we set φ(2T ) = 2eV0T − φc + φv + 2φg , defined T = t+t ′
2 and τ = t − t ′. The Wigner-transform of a convolution

C̊ = Å ◦ B̊ can be expressed conveniently by the Wigner transforms of Å and B̊ as

C̊(ω,T ) = Å(ω,T )e
i
2 [

←−
∂ T

−→
∂ ω−←−

∂ ω

−→
∂ T ]B̊(ω,T ). (C2)

Using the identities

e
i
2 a·∂T e±iφ(2T ) = e∓a·eV0eiφ(2T ), e±a∂ωf (ω) = f (x ± a), (C3)

we get

C̊(ω,T ) =
(

eiφ(2T )A11(ω) A12(ω)

A21(ω) e−iφ(2T )A22(ω)

)
e

i
2 [

←−
∂ ω

−→
∂ T −←−

∂ T

−→
∂ ω]

(
e−iφ(2T )B11(ω) B12(ω)

B21(ω) eiφ(2T )B22(ω)

)

=
⎛
⎝eiφ(2T )A11(ω)e− i

2

←−
∂ T

−→
∂ ω A12(ω)

A21(ω) e−iφ(2T )A22(ω)e− i
2

←−
∂ T

−→
∂ ω

⎞
⎠
⎛
⎝e

i
2

←−
∂ ω

−→
∂ T e−iφ(2T )B11(ω) B12(ω)

B21(ω) e
i
2

←−
∂ ω

−→
∂ T eiφ(2T )B22(ω)

⎞
⎠

=
⎛
⎝eiφ(2T )A11(ω)eeV0

−→
∂ ω A12(ω)

A21(ω) e−iφ(2T )A22(ω)e−eV0
−→
∂ ω

⎞
⎠
⎛
⎝eeV0

←−
∂ ωe−iφ(2T )B11(ω) B12(ω)

B21(ω) e−eV0
←−
∂ ωeiφ(2T )B22(ω)

⎞
⎠

=
(

A11(ω + eV0)B11(ω + eV0) + A12(ω)B21(ω) eiφ(2T )[A11(ω)B12(ω + eV0) + A12(ω − eV0)B22(ω)]

e−iφ(2T )[A21(ω + eV0)B11(ω) + A22(ω)B21(ω − eV0)] A21(ω)B12(ω) + A22(ω − eV0)B22(ω − eV0)

)
.

(C4)

The Dyson equation in Keldysh space is formally given by the convolution(
D̂−1

0,q − �̂q
) ◦ D̂K

q = 1̂ , (C5)

where �̂q = �̂el
q + �bath

q is the full self-energy of the system. The three coupled equations for the full retarded, advanced and
Keldysh propagators of the photon([

D̊
R/A

0,q

]−1 − �̊R/A
q

) ◦ D̊R/A
q = 1̊ ,

([
D̊R

0,q

]−1 − �̊R
q

) ◦ D̊K
q = �̊K

q ◦ D̂A
q (C6)

can now be solved with the ansatz that

D̊R,A,K
q (ω,T ) =

(
e−iφ(2T )D̃

R,A,K
11,q (ω) D

R,A,K
12,q (ω)

d
R,A,K
21,q (ω) eiφ(2T )D̃

R,A,K
22,q (ω)

)
, (C7)

has the structure of B̊. Since both

([
D̊R

0,q

]−1
(ω,T ) − �̊R

q (ω,T )
) =

⎛
⎜⎜⎜⎜⎜⎝

−eiφ(2T )�̃R
11,q(ω)

[dA
0,q (−ω)]−1︷ ︸︸ ︷

−ω − ωq − i0 −�R
12,q(ω)

ω − ωq + i0︸ ︷︷ ︸
[dR

0,q (ω)]−1

−�R
21,q(ω) −e−iφ(2T )�̃R

22,q(ω)

⎞
⎟⎟⎟⎟⎟⎠ ,

(C8)

�̊K
q (ω,T ) =

(
eiφ(2T )�̃K

11,q(ω) �K
12,q(ω)

�K
21,q(ω) e−iφ(2T )�̃K

22,q(ω)

)

have exactly the structure of Å, we can use (C4) to calculate the Wigner transform of the convolutions in (C6) exactly, which
leads to the propagators defined in (54).

205303-22



LUMINESCENCE AND SQUEEZING OF A . . . PHYSICAL REVIEW B 91, 205303 (2015)

[1] J. R. Schrieffer, Theory of Superconductivity (Westview Press,
Boulder, CO, 1971).

[2] C. N. Yang, Rev. Mod. Phys. 34, 694 (1962).
[3] A. J. Leggett, Quantum Liquids: Bose Condensation and Cooper

Pairing in Condensed-Matter Systems (Oxford University Press,
Oxford, UK, 2006).

[4] D. Bouwmeester, A. K. Ekert, and A. Zeilinger, The Physics of
Quantum Information: Quantum Cryptography, Quantum Tele-
portation, Quantum Computation, 1st ed. (Springer, Heidelberg,
Germany, 2010).

[5] J. L. O’Brien, A. Furusawa, and J. Vučković, Nat. Photon. 3,
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