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Charge-neutral disorder and polytypes in heterovalent wurtzite-based ternary semiconductors:
The importance of the octet rule
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We investigate lattice ordering phenomena for the heterovalent ternaries that are based on the wurtzite lattice,
under the constraint that the octet rule be preserved. We show that, with the single exception of a highly symmetric
twinned structure, all allowed lattice orderings can be described by a pseudospin model corresponding to the
two different stackings of ABAB rows of atoms in the basal plane that occur in the Pna21 and Pmc21 crystal
structures. First-principles calculations show that the difference in the energies of formation between these two
structures is 13 ± 3 meV/fu (formula unit) for ZnSnN2 and is an order of magnitude larger for ZnGeN2 and that
for both materials the Pm31 structure, which contains only octet-rule-violating tetrahedra, has a significantly
higher energy of formation and a signficantly lower band gap. We predict almost random stacking and wurtzitelike
x-ray-diffraction spectra in the case of ZnSnN2, consistent with reported measurements. The octet-rule-preserving
model of disorder proposed here predicts a band gap that for ZnSnN2 is relatively insensitive to ordering, in
contrast to the prevailing model, which invokes the random placement of atoms on the cation sublattice. The
violations of the octet rule in the latter model lead to significant narrowing of the band gap. The Raman
and photoluminescence spectra of ZnSnN2 are interpreted in light of the ordering model developed here. The
observation that ZnGeN2 orders in the Pna21 structure under appropriate growth conditions is consistent with
the larger difference in the energies of formation of the Pna21 and Pmc21 structures for this material. The
ordering model presented here has important implications for the optical, electronic, and lattice properties of all
wurtzite-based heterovalent ternaries.
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I. INTRODUCTION

The heterovalent ternaries are a large family of materials
that are close cousins of the binary zinc blende and wurtzite
semiconductors. Conceptually, either the cation or the anion
lattice of the binary material is replaced by two ordered
sublattices composed of equal proportions of two atomic
species such that the average ratio of valence electrons to atoms
equals four, and the bonding remains tetrahedral. Ideally, the
ordering of the atoms on the two sublattices of the heterovalent
compound is constrained to satisfy local charge neutrality, a
constraint referred to, in general, as the octet rule. The II-IV-V2

ternaries and their alloys thus provide an interesting alternative
to the isovalent III-V alloys for band structure engineering of
semiconductors.

While alloys of the binaries usually have a random
distribution of cations, the pure ternaries tend to form ordered
compounds. The II-IV-V2 and I-III-VI2 compounds based
on the zinc-blende lattice are well known to order in the
chalcopyrite structure [1,2] and have received significant
attention for their nonlinear optical properties and photovoltaic
applications. For example, Cu(In,Ga)(S,Se)2 thin films are
widely used in photovoltaics [3–5] and ZnGeP2, CdGeAs2, and
AgGa(Se,Te)2 single crystals are used as frequency doublers
and parametric oscillators in nonlinear optical applications
[6–8].

*Kathleen.Kash@case.edu

Order-disorder transitions of these chalcopyrite materials
have been reported, with the disordered state apparently
exhibiting the binary, parent zinc-blende structure in x-ray-
diffraction spectra [1,2]. The accepted model, first proposed
by Buerger in 1934, is that the cations undergo entropy-driven
randomization of their positions in the two cation sublattices
[9]. This randomization is necessarily accompanied by many
local violations of the octet rule, although the rule is observed
on average, for stoichiometric material. Thus, some tetrahedra
have, for example, one A and three B cations, or vice versa,
rather than two of each. Wei et al. [10] used a generalized
one-dimensional Ising model, similar to the model developed
here for the wurtzite-based ternaries, to investigate the band
structure and stability of polytypes of the zinc-blende-based
ternary materials obeying the octet rule.

Recently, the more ionic, wurtzite-based ternary nitrides
have generated renewed interest [11]. Some are predicted to
have important potential for several applications in optoelec-
tronics, from solid-state lighting [12] to photovoltaics [13].
The synthesis of ZnSnN2, in particular, has fueled interest in
its use for solar photovoltaics, especially because this material
is composed solely of earth-abundant elements [14–21]. As
is the case for the zinc-blende-based ternaries, the type of
ordering and the possibility of order-disorder transitions in the
wurtzite-based ternaries are of fundamental as well as practical
interest.

For ZnGeN2 and ZnSnN2 the parent binary materials are
the III nitrides, and the parent binary phase is wurtzite.
ZnGeN2 was first synthesized in 1970, and its crystal structure
was reported initially to be monoclinic [22,23]. Subsequent
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FIG. 1. (Color online) Projection of the ABC2 Pna21 and
Pmc21 crystal structures on the c plane, with principal axes as
indicated and the unit cells outlined. Large spheres are the cations,
small spheres are the anions.

reports variously reported the structure to be monoclinic
[22], orthorhombic [24], or hexagonal. The currently accepted
crystal structure is the 16-atom orthorhombic unit cell pictured
in Fig. 1 on the left. The relation between this superstructure,
with the Pna21 space group, and the wurtzite unit cell in
the ideal case (that is, with no relaxations of the wurtzite
atomic positions) is ao = 2aw1, bo = aw1 + 2aw2, co = cw,
where the subscripts w denote the wurtzite lattice vectors and
the subscripts o denote the orthorhombic lattice vectors. The
band gap calculated by the quasiparticle self-consistent GW
(QSGW) method [25,26] is in close agreement with the ex-
perimental value obtained from near-band-gap luminescence
[27] of 3.40 ± 0.01 eV.

Comparison of the calculated Raman frequencies, inten-
sities, and polarization selection rules for ZnGeN2 yielded
close agreement with measurements [28], but the experimental
spectra intriguingly included additional features that were
identified with peaks in the phonon density of states, indicating
that some form of disorder is present in the samples. It has
been demonstrated that the x-ray-diffraction spectra could be
varied from wurtzitic to the fully ordered orthorhombic Pna21

structure through the choice of growth conditions [29].
Reported calculations of the band gap of ZnSnN2 in the

Pna21 structure differ widely, from 1.4 to 2 eV [14,17,26].
At least some of these differences may simply be due
to differences in the lattice parameters and computational
methods used. (Different hybrid functionals [30–32] were used
in Refs. [14] and [17] and QSGW was used in Ref. [26].) Syn-
thesis of ZnSnN2 was first reported in 2012 by molecular beam
epitaxy [14], soon afterward by radio frequency (RF) sputter
deposition [16,17] and by a vapor-liquid-solid method [19],
and more recently by direct current (dc) magnetron sputtering
[21]. All four methods yielded wurtzitic x-ray-diffraction spec-
tra, implying considerable disorder on the cation sublattices
that was presumed to involve many violations of the octet
rule. It was suggested that controlling the degree of this
disorder would allow the controlled variation of the band gap
from 1 to 2 eV [15]. However, measurement of the band
gap by photoluminescence excitation spectroscopy [19] of
material that looked wurtzitic in x-ray diffraction gave a gap in
close agreement with accurately predictive quasiparticle band
structure calculations for perfectly ordered Pna21 crystals,
using experimentally determined lattice parameters [13,26].
The main question we address in this paper is how to reconcile
these seemingly contradictory observations.

A second possible octet-rule-preserving orthorhombic
structure, with the Pmc21 space group and consisting of an

eight-atom unit cell with vectors ao = aw1, bo = aw1 + 2aw2,
and co = cw, was recently proposed [17] and is depicted in
Fig. 1 on the right. For ZnSnN2, the calculated energy of
formation of the Pmc21 structure was reported to be equal
to that of the Pna21 structure to within the computational
accuracy of 10 meV per nitrogen atom. Observation of the
Pmc21 structure, however, has not yet been reported.

In this paper, we propose that the lattice disorder in ZnSnN2

evident in the x-ray-diffraction spectra results not from the
random placement of cations on the group III sublattice, but
from a more constrained type of disorder that preserves local
charge neutrality. This proposal is based on first-principles
calculations for the Pna21 and Pmc21 structures, which obey
the octet rule, and the Pm31 structure, which does not. The
two structures that obey the octet rule have very close energies
of formation and band gaps, while the structure violating the
octet rule has a substantial cost in the energy of formation and
a much lower band gap. Based on these calculations, we then
investigate the possible orderings of cations on the wurtzite
cation sublattice with the restriction that the octet rule must be
obeyed. We demonstrate that all possible orderings under this
constraint can be viewed as combinations of the row stackings
in the basal plane occurring in Pna21 and Pmc21. Regular
arrangements of these stackings define a polytype ordering
and, in the case of random stacking, a new type of disorder
for these materials. Using this approach, we find that ordered
ZnSnN2 is thermodynamically unfavorable. Furthermore, the
band gap of ZnSnN2 should be relatively insensitive to this
type of disorder. Thus, the ZnSnN2 paradox mentioned earlier
is resolved. In the case of ZnGeN2 the lattice has been observed
to range from ordered Pna21 to disordered, depending on
growth conditions. This situation is likely the result of kinetic
rather than thermodynamic factors.

The ordering model developed here has broad implications
for the optical, electronic, and lattice properties of all wurtzite-
based ternary materials and possibly even calls for a reexam-
ination of the question of ordering in the zinc-blende-based
ternaries.

The remainder of the paper is organized as follows. First,
we introduce the lattice ordering pseudospin model in Sec. II,
while relegating the details of the proofs to the Appendix. Next,
we provide the details of the computational and experimental
methods in Sec. III. Finally, new experimental and calculated
results for ZnSnN2 and ZnGeN2 are presented in Sec. IV. A
brief summary (Sec. V) concludes the paper.

II. LATTICE ORDERING IN WURTZITE-BASED
HETEROVALENT TERNARIES

Based on first-principles results for the energies of forma-
tion, we focus on orderings of the cations that preserve the octet
rule in every nearest-neighbor tetrahedron. In this section, we
show that all of these can be described in terms of a layered
pseudospin model.

We first illustrate that one can build octet-rule-preserving
polytypes of the Pmc21 and Pna21 unit cells (Fig. 1). If the
Pmc21 unit cell is rotated from its orientation in Fig. 1 by
120◦, as shown in Fig. 2, the rows of cations have ABAB

periodicity, as do the rows of cations along the a axis in the

205207-2



CHARGE-NEUTRAL DISORDER AND POLYTYPES IN . . . PHYSICAL REVIEW B 91, 205207 (2015)

(a) (b)

(d)

(e)

(c)
+1 -1

FIG. 2. (Color online) The Pmc21 crystal structure rotated, in (a)
clockwise and (b) counterclockwise directions by 120◦ with respect
to Fig. 1, with the unit cell outlined. Panel (c) defines the +1 and (d)
the −1 pseudospin layer, with the eight-atom repeat units outlined
in dashed black. (e) The octet-rule-preserving twinned structure. The
twin boundaries are shown by the dashed lines.

Pna21 structure. Thus, the Pna21 and Pmc21 structures can
be obtained by stacking such rows along the b axis.

We define the s = ±1 pseudospin layers as shown in
Figs. 2(c) and 2(d). The dashed lines outline primitive cells
of the Pmc21 structure. One can clearly see that the two layers
are mirror images of each other for a vertical mirror plane.
The Pna21 structure results from +1, − 1 stacking of these
pseudospin layers along the Pna21 b axis, and the Pmc21

structure results from +1,+1 or −1,−1 stacking. It follows that
an infinite number of polytypes can be built from larger repeat
units. In the Appendix we show rigorously that the only ternary
crystal structures based on the wurtzite lattice that observe
local charge neutrality are those described by sequences of the
±1 pseudospin layers, with the sole exception of the structure
shown in Fig. 2(e). This unique structure is a sixfold twinning
of the Pmc21 crystal structure about the central axis of the
figure. The dashed lines show the interfaces between the six
crystals.

We note, parenthetically, that it is straightforward to prove
by similar methods that the only heterovalent ternary structures
based on the zinc-blende lattice that are consistent with the
octet rule are the polytypes identified and modeled by Wei
et al. [10]. In that case, the structures are the Cu-Au ordering
(along [001]) and the chalcopyrite structure.

In the thermodynamic approach used in modeling poly-
types, the differences in the free energies are the most
important quantities. A major contribution to the free en-
ergy is the energy of formation, which is expressed for

a crystal of N pseudospin layers in terms of the layer
interactions:

E = E0 + 1

N

M∑

n=1

N−1∑

i=1

Jnsisi+n. (1)

Here the Jn are the energies of interaction between the nth
nearest-neighbor spin layers, with a range up to M , and E0

is a convenient reference energy. The spins here are isospins
pointing up or down. Nontrivial polytypes, i.e., long-range
ordered patterns of spins, result from competition between
different range interactions, as occurs, for example, in SiC.
In other cases, including the one considered here, the sign of
J1 determines which of the two alternative stackings has the
lowest energy. No long-range polytypes have been observed
for either ZnSnN2 or ZnGeN2, which suggests that for both
of these cases the series can be restricted to nearest-neighbor
interactions. We note that while this thermodynamic model
can, in principle, predict the energetic ordering of different
polytypes, in practice, kinetics can play a decisive role in the
formation of polytypes.

III. EXPERIMENTAL AND COMPUTATIONAL METHODS

A. First-principles calculations

The calculations of the lattice parameters and total energy
differences between different structures were carried out using
a pseudopotential plane wave method as encoded in the ABINIT

code [33–35]. We used the Fritz-Haber pseudopotentials of
Ref. [36]. A high cutoff of 110 hartree ensured convergence
of the plane wave basis set. The k-point mesh was chosen to
be a shifted 4 × 4 × 4 Monkhorst-Pack mesh for the Pna21

structure. To have exactly equivalent energies, an 8 × 4 × 4
mesh was used for the Pmc21 structure because that mesh
has half the a-lattice constant and hence twice the size in
that direction in reciprocal space. For the Pm31 structure,
we relaxed the structure in the primitive four-atom cell but
afterwards calculated the energy differences in the same cell as
for the Pmc21 structure so that we could use exactly equivalent
k-points. Calculations were performed both in the local-
density approximation (LDA) [37] and generalized gradient
approximation (GGA) [30], which respectively underestimate
and overestimate the lattice constants. This procedure allowed
us to ascertain the effect of these errors on the energy
differences. We found the errors to largely cancel out, which
demonstrates that the LDA and GGA calculations provide
consistent estimates of the energy differences.

The calculations of the energies of formation were per-
formed using the LDA [38–40] and using the full-potential
linearized muffin-tin orbital (LMTO) band structure method
[41]. The energies of formation were defined with respect to the
elements in their ground-state phases at ambient conditions.
For N this was with respect to the molecule N2, while for Ge
and Sn it was with respect to the diamond structure and for
Zn, it was with respect to the hcp phase. For Sn we used the α

phase, which has the diamond structure and which is stable
below 13.2 ◦C. Details of our calculations of the energies
of formation can be found in Ref. [11]. In particular, we
point out that these calculations give acceptable accuracy for
the cohesive energies and molecular binding energies of the
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individual elements, taking into account the usual overbinding
of the LDA. Here we need only the differences in the energies
of formation between the different structures considered. Any
systematic errors due to LDA overbinding are expected to
drop out of these differences. However, the contrast with
previous work [11,26] is that here we used structures that
were fully relaxed with respect to a, b, and c in addition to
the internal atomic coordinates as obtained from the ABINIT

method. This procedure gave us more accurate energies of
formation, in particular for ZnSnN2, where the differences
are small. We could, of course, also use the LMTO method
to calculate the energy differences between the structures.
However, convergence of the basis set to within the required
precision of a few meV is harder to establish systematically.
The differences agree with the ABINIT results on the order of a
few tens of meV but we prefer to base our conclusions about
the total energy differences on the ABINIT results, because these
were deemed to be better converged with respect to the basis
set.

The band structures were calculated using the QSGW
approach, developed by van Schilfgaarde et al. [25] and as
applied to the current materials in Punya et al. [26]. This
method gives gaps to a precision of about 0.1 eV without
any adjustable parameters for most tetrahedrally bonded
semiconductors. Because this method tends to underestimate
the screening and hence overestimates the gaps typically by
20% for semiconductors, 80% of the self-energy was applied
to the LDA calculation.

The calculations were done for the two crystal structures
shown in Fig. 1 and for a four-atom unit cell with space group
Pm31. This latter structure is composed of alternating planes
of A and B cations stacked along the c axis and thus is an
extreme case of the violation of local charge neutrality; all
anions are bound to either three A atoms and one B atom, or
vice versa.

B. Calculation of the x-ray-diffraction spectra

We followed the formulation of Kopp et al. [42] to calculate
analytically the x-ray-diffraction spectra for a ZnSnN2 crystal
with one-dimensional disorder due to random stacking along
the b axis, as a function of the total thickness of the crystal and
as a function of the proportion of Pna21 to Pmc21 stacking.
This is a transfer matrix method that generates an analytical
solution equivalent to a Monte Carlo generation of the averaged
diffraction peak intensities for an ensemble of crystals. The
solution is specific to the case of a random distribution of
stacked layers described by a stationary Markov chain; that is,
the probability of layer i + 1 stacking upon layer i is dependent
only upon layer i. In this case, the probability is determined by
specifying the relative proportions of the Pna21 and Pmc21

phases.
The information required for the calculation includes

the number of pseudospin layers N , the probability Ns/N

associated with each pseudospin type s = ±1, the structure
factors for each of the pseudospin layers, and the conditional
probabilities governing the likelihood of layer j ′ of pseudospin
character sj ′ occurring after layer j with pseudospin character
sj . Because the two spin states are mirror symmetric, they are

equally probable, and thus N+1/N and N−1/N are both equal
to 1/2.

The structure factors for the two pseudospin layers were
calculated using the atomic form factors for Zn, Sn, and N
from the International Union of Crystallography database. The
atomic positions were referenced to the orthorhombic lattice
parameters a = 0.6749 nm, b = 0.5845 nm, c = 0.554 43 nm
and the Wyckoff positions for the ideal wurtzite lattice.

The relative peak intensities were calculated using
the standard Lorentz polarization factor Lp(θ ) = (1 +
cos2 2θ )/(sin2 θ cos θ ). While Kopp et al. [42] avoided the
Bragg vectors that resulted in singularities, we dealt with
the singularities by replacing each reciprocal lattice vector
k(h,k,l) with k′ = k(h,k + �,l), letting � = 10−6.

C. Experimental methods

The polycrystalline ZnSnN2 material for the Raman and
photoluminescence measurements was grown by a vapor-
liquid-solid method described in Ref. [19]. Briefly, the method
involved the exposure to a nitrogen plasma of a Zn-Sn melt
held at 485 ◦C. The grown material was a polycrystalline
layer, approximately 300 nm thick, covering most of an area
approximately 0.5 cm in diameter. The average crystallite
diameter, estimated using the x-ray-diffraction linewidths,
was approximately 70 nm. The measurement of the Raman
spectrum was done in ambient conditions using a solid-state
laser with photon energy at 532 nm focused to a 1–2-μm
diameter spot. Neither the incident nor the scattered radiation
was polarization resolved. The excitation source for the
measurement of the photoluminescence spectrum was a 633-
nm He-Ne laser with incident intensity 1.4 kW/cm2. The
measurement was done at 77 K.

Polycrystalline ZnGeN2 samples were grown on Ge sub-
strates exposed to Zn and NH3 at near-atmospheric pressure.
The growth processes are described more fully in Ref. [29].
X-ray-diffraction measurements were done on the as-grown
samples using a diffractometer in Bragg-Brentano configura-
tion, with Cu Kα(1,2) irradiation and a two-dimensional xenon
detector with a step size of 0.02◦. The instrumental broadening
was measured to be 0.275 ± 0.02◦, using an alumina standard.

IV. RESULTS

As mentioned in the Introduction, the paradox that led us
to abandon the model of a fully disordered cation sublattice
was that ZnSnN2 was found to have a band gap close to
that predicted for the perfectly ordered Pna21 structure,
while at the same time the material appeared to have a
disordered wurtzitelike lattice structure [19]. Because the
Pna21 and Pmc21 structures are superlattices of the wurtzite
structure, distorted by deviations from the ideal wurtzite
atomic positions, their x-ray-diffraction spectra should be char-
acterized by specific superlattice peaks absent in the disordered
structure and peak splittings arising from deviations in the
ratios of the lattice parameters from the ideal wurtzite ratios.
The strongest of the predicted superlattice peaks are the (101)
peak for Pna21 ordering and the (111) peak for Pmc21

ordering, as shown in Fig. 7. None of the superlattice peaks
or expected peak splittings have been observed for ZnSnN2
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[15,17,19], while superlattice peaks and the expected peak
splittings for Pna21 ordering have been reported for ZnGeN2

[29]. Because the calculated ratios of the lattice parameters are
closer to the ratios for the ideal wurtzite lattice for ZnSnN2

than for ZnGeN2, as shown later in Table I, the splittings of the
degeneracies in the diffraction peaks due to distortions from
the idealized wurtzite structure are expected to be larger for
ZnGeN2 than for ZnSnN2. On the other hand, the superlattice
peak intensities depend on the differences in the atomic form
factors between the group-IV and group-II cations. These are
larger for Sn relative to Zn than for Ge relative to Zn, and
consequently the predicted superlattice peak intensities for
ordered ZnSnN2 are roughly an order of magnitude larger
than for ordered ZnGeN2.

In the first section we present additional evidence from
Raman spectroscopy that the lattice of ZnSnN2 is indeed
disordered and that the band gap is close to 1.7 eV. In the
second section we present the computational results for the
lattice parameters, the energies of formation, and the band
gaps of the different ordered structures. Comparison of the
band gaps and energies of formation shows that violations of
the octet rule cost substantial energy and lower the band gaps.
Finally, we apply the pseudospin model to the calculation of
the x-ray-diffraction spectra of ZnSnN2 for different numbers
of layers and proportions of the Pna21 and Pmc21 phases and
resolve the apparent paradox involving the band-gap energy
and x-ray-diffraction spectra of ZnSnN2.

A. Photoluminescence and Raman spectroscopy

Previously reported photoluminescence excitation (PLE)
spectroscopy of ZnSnN2 done at room temperature yielded an
estimated band gap of 1.7 ± 0.1 eV that was measured using
a broad defect luminescence peak centered at 1.5 eV. At room
temperature there was no near-band-edge luminescence peak
present [19]. At 77 K the defect peak at 1.5 eV is still evident
[Fig. 3(a)], but the photoluminescence spectrum is dominated
by the near-band-edge peak centered at approximately 1.72 eV.
The relative increase in the near-band-edge luminescence at
the lower temperature, a commonly observed phenomenon,
results from the slowing of the transfer of photoexcited carriers
to the defect states responsible for radiative recombination.
The band gap inferred from the 77 K photoluminescence
spectrum is consistent with the octet-rule-preserving model of
disorder and is inconsistent with a model for the disorder that
violates the octet rule. Figure 3(b) shows the dependence of
the defect and near-band-edge peak intensities as a function of
excitation intensity, with the defect peak height normalized
to that of the near-band-edge peak at the lower range of
excitation intensity, in order to best compare the dependence
of the two peak intensities on excitation intensity. At lower
excitation intensity the dependence is linear, while at higher
intensity the dependence becomes superlinear, an indication
that defect recombination channels are becoming saturated at
this still-low range of excitation intensity. Deconvolution of
the two peaks proved unnecessary to obtain the defect peak
intensity accurately, as the near-band-edge peak intensity at
1.5 eV was negligible.

We turn now to the results of calculations and measurement
of the Raman spectrum of ZnSnN2. The calculated Raman
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FIG. 3. (a) Photoluminescence spectrum of ZnSnN2 at 77 K.
The peak at 1.72 eV is near-band-edge recombination. The peak
at 1.5 eV is defect recombination, as was identified in previous
work [19]. (b) Photoluminescence peak intensities versus incident
intensity. The defect peak intensity at 1.5 eV has been scaled to the
peak intensity of the 1.72-eV near-band-edge peak intensity at low
excitation intensities.

spectrum in Fig. 4(a) was obtained by adding the calculated
intensities of all modes (a1, b1, b2, and a2), with equal weights,
taken from Ref. [43]. This spectrum is dominated by a peak
at approximately 590 cm−1, identified with a wurtzite-E2-
highlike vibrational pattern. The measured Raman spectrum
of Fig. 4(b) shows none of the predicted Raman peaks, not
even the dominant one.

We emphasize that this result is quite different from the
Raman spectra of polycrystalline ZnGeN2, for which all of the
predicted Raman peaks were observed. Instead, the ZnSnN2

Raman spectrum closely resembles the phonon density-of-
states spectrum, shown Gaussian broadened in Fig. 4(c) and
with high energy resolution in Fig. 4(d), although the peak
shapes are somewhat different. The experimental spectrum is
strikingly phonon-glass-like, showing complete breakdown of
the k-vector selection rule. This result is consistent with the
x-ray-diffraction results showing a highly disordered lattice.
However, the Raman spectrum does not give information on
the type of disorder, and in particular does not, in the absence
of quantitative modeling, distinguish between our model for
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FIG. 4. Raman spectra and calculated phonon density of states
of ZnSnN2. Calculated (a) and measured (b) Raman spectra and
calculated density of states: (c) Gaussian broadened and (d) high
resolution.

disorder due to random stacking of pseudospin layers and
one for which the cations are fully disordered on the wurtzite
lattice.

B. Results of first-principles calculations

In Table I we compare our calculated lattice constants,
for different computational methods and different structures,
with measured results. The calculated lattice constants were
obtained using the ABINIT code with full relaxation of the
structure. As an average measure of the uncertainty we use
[(δa/a)(δb/b)(δc/c)]1/3 = (δV/V )1/3, with δa the deviation
from experiment for the a lattice constant, etc. We see that
the LDA calculations underestimate the lattice constants of
ZnGeN2 by 1.6 % and those of ZnSnN2 by 2.4%. On the other
hand, the GGA calculations overestimate the lattice constants
by 1.3% for ZnGeN2 and 1.1% for ZnSnN2. These are typical
errors for the LDA and GGA methods. Within each of these
methods the predicted lattice constants for the Pmc21 and
Pna21 structures are the same, on average, to within 0.1%, for
both materials. While there are some larger differences in the
individual lattice constants, the volumes agree to about 0.3%.
Similar results are obtained for the Pm31 structure, which has
a slightly larger unit cell volume. For ZnGeN2, both b/a and
c/a are larger by about 6% and 3%, respectively, relative to
the Pna21 structure, but the a lattice parameter is smaller. The
lattice parameters for the two ZnSnN2 structures are closer
than for ZnGeN2, as expected, since the Zn-N and Sn-N bonds
are closer in length than are the Zn-N and Zn-Ge bonds.

The energies in Table II were calculated using the relaxed
lattice constants for each phase. We see from Table II that
the difference in the energy of formation between Pmc21

and Pna21 is extremely small in ZnSnN2, amounting to only
16 meV per formula unit in the LDA calculations. The LDA
and GGA calculations agree on this small difference to within
a few meV precision. In contrast, the difference between the
energies of formation of the Pm31 and the Pna21 structures
is over 0.5 eV, taking the average of the LDA and GGA
calculations. This result confirms that the two structures that

TABLE I. Lattice constants in Å and unit cell volumes in Å
3

for ZnGeN2 and ZnSnN2 for
the different structures and computational methods, compared with experiment. Note that the
ideal wurtzite b/aw and c/aw ratios are b/a = √

3 ∼ 1.732 and c/a = √
8/3 ∼ 1.633.

Compound Structure Method a b c b/aw c/aw V

ZnGeN2 Pna21 Expt.a 6.44 5.45 5.19 1.693 1.612 182.16
LDA 6.327 5.358 5.115 1.694 1.617 173.40
GGA 6.521 5.522 5.264 1.694 1.615 189.55

Pmc21 LDA 6.102b 5.532 5.127 1.813 1.680 173.07
GGA 6.294 5.699 5.275 1.801 1.676 189.21

Pm31 LDA 6.238c 5.402 5.238 1.732 1.679 176.48
GGA 6.447 5.581 5.388 1.731 1.671 193.89

ZnSnN2 Pna21 Expt.d 6.753 5.842 5.462 1.730 1.618 215.48
LDA 6.573 5.698 5.342 1.733 1.625 200.07
GGA 6.812 5.905 5.534 1.734 1.625 222.60

Pmc21 LDA 6.562 5.689 5.344 1.734 1.629 199.50
GGA 6.804 5.896 5.536 1.733 1.627 222.08

Pm31 LDA 6.604 5.718 5.340 1.732 1.617 201.62
GGA 6.848 5.929 5.544 1.732 1.619 225.07

aFrom Ref. [27].
bNote that for the Pmc21 structure, this parameter is twice the Pmc21 lattice constant ao′ .
cNote that we give the lattice constants corresponding to those for the Pna21 structure.
dFrom Ref. [19].
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TABLE II. The energies of formation per formula unit (fu) relative
to the energies of formation of the Pna21 structures and the band gaps
Eg . The labels LDA and GGA in the column method only refer to
the total energy differences; the gaps were obtained in the QSGW
method using 0.8�� at the relaxed lattice constants for each phase
in the LDA.

Compound Structure Method �Etot (eV/fu) Eg (eV)

ZnGeN2 Pna21 0 3.65
Pmc21 LDA 0.120 3.00

GGA 0.111
Pm31 LDA 0.945 1.21

GGA 0.815

ZnSnN2 Pna21 0 1.81
Pmc21 LDA 0.016 1.69

GGA 0.011
Pm31 LDA 0.564 0

GGA 0.464

obey the octet rule are negligibly different in their energies
of formation while the structure with only octet-rule-violating
tetrahedra has signficantly larger total energy. For ZnGeN2,
although the Pmc21 and Pna21 structures differ in total energy
by about an order of magnitude more than for ZnSnN2 (about
0.12 eV/formula unit), the introduction of octet-rule-violating
tetrahedra costs substantially more energy (over 2 eV).

Before leaving the topic of the differences in energies of
formation, we note that our calculated energy of formation for
ZnSnN2 in the Pna21 structure, with respect to the elements,
is −0.734 eV/formula unit. This value differs from the value
quoted in Ref. [11] and is now in better agreement with, but
still more negative than, that of Chen et al. [20]. The change
is mainly due to the more accurate structural relaxation in the
present work.

Turning now to the band gaps, we see from the last column
in Table II that the band gaps in the Pna21 and Pmc21

structures are close to each other, and those of the Pm31
structures are much smaller than these. In fact, for ZnSnN2

we find a metallic band structure. The full band structures
of ZnSnN2 and ZnGeN2 in the three structures are shown
in Figs. 5 and 6. The symmetry points used in these plots
correspond to � = (0,0,0), X = (π/a,0,0), Y = (0,π/b,0),
Z = (0,0,π/c), U = (π/a,0,π/c), R = (π/a,π/b,π/c), and
S = (π/a,π/,0) for the orthorhombic cell and the standard
ones for the trigonal structure, similar to those in wurtzite. We
can see that ZnSnN2 in the Pm31 structure has an inverted
band structure. Because of the twofold degenerate valence
band maximum the inversion will open a small gap of order
meV when spin-orbit coupling is included. In that sense we
reported the gap as zero in Table II. For ZnGeN2 the difference
in the band gaps of the Pmc21 and Pna21 structures is
−0.65 eV, while for ZnSnN2 it is only −0.12 eV. The reason
for the larger difference in band gaps for ZnGeN2 probably
lies in the larger difference in the bond lengths of the Zn-N
and Ge-N bonds, which are affected by the slightly different
structural relaxations in both crystal structures. We did not
include here the zero-point motion corrections, which are
of order 0.1 eV, or the exciton binding energy corrections,
which are of order 20 meV, as was done in Punya et al. [26].
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FIG. 5. Band structures of ZnSnN2 in, from top to bottom, the
Pna21, Pmc21, and Pm31 structures.

These corrections were calculated using the LMTO QSGW
approach but using the LDA structure obtained in ABINIT

and should be roughly the same for the Pmc21 and Pna21

structures so should not affect the differences in those gaps. For
semiconductors, the pure QSGW calculation underestimates
the screening of the electron-electron interaction by about
20%, so we used 0.8�� to compensate for this underestimate,
where �� is the difference between the GW self-energy and
the LDA exchange correlation potential. We estimate the total
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FIG. 6. Band structures of ZnGeN2 in, from top to bottom, the
Pna21, Pmc21, and Pm31 structures.

uncertainty in the calculations of the band gaps to be of order
0.1 eV, including the uncertainty due to the underestimate of
the lattice constants.

We now interpret the reduction in the band gap of
Pm31 in terms of the presence of octet-rule-violating local
environments. This reduction in band gap is even greater than
the approximately 1-eV difference reported by Feldberg et al.
[15]. Similar trends were reported in the comparison of the
calculated band gaps and total energies of the ordered and
disordered ternary zinc-blende-based ZnSnP2 system, with

larger band gaps and smaller energies of formation for the two
ordered, octet-rule-preserving CuAu and chalcopyrite struc-
tures, compared to an ordered octet-rule-violating structure
and to a structure with Sn and Zn atoms placed randomly on
the cation sublattice [44]. For the ZnSnN2 system, the defect
calculations by Chen et al. [20] also provide some insight,
although less directly, into the reductions in band gaps that can
be expected from violations of the octet rule. They report SnZn

antisite defects to have a +2/0 transition level at about 0.2 eV
below the gap, while ZnSn antisites show a 0/2− transition
level at about 0.6 eV above the valence band maximum. The
defects violate the octet rule in the sense that they lead locally
to tetrahedra with one Zn and three Sn or vice versa. Although
we cannot directly identify Kohn-Sham levels of defects with
transition levels, the two should be rather closely related.
At a sufficiently large concentration the antisite defect levels
would broaden into bands and may thus be expected to reduce
the band gap. Thus, Chen et al.’s results [20] suggest that
octet-rule-violating antisite defects could reduce the gap by
about 0.8 eV.

The Boltzmann factors for Pmc21- and Pna21-type stack-
ings are e−�Ef /kT /(1 + e−�Ef /kT ) and 1/(1 + e−�Ef /kT ),
respectively. These factors do not take properly into account
the statistics of the one-dimensional stacking, the energy costs,
and entropy of the octet-rule-violating defects accompanying
disruptions in the ordering within a layer, the thermodynamics
at the growth interface, which can be quite different from
in the bulk, and, perhaps most importantly, the kinetics of
the growth and ordering processes. However, they may give
a very rough indication of how likely the two phases are to
mix. For a growth temperature of about 750 K for ZnSnN2,
the Boltzmann factors give proportions of the Pmc21- to
Pna21-type orderings of 55% and 45%. The closeness of
the lattice constants indicates that strain effects on the gap
will be negligible. The band offsets between the two phases
are also expected to be quite small because the valence band
maxima in both structures consist of N-2p-like states. Thus, for
ZnSnN2 we should expect random stackings of close to equal
proportions of the two phases and a band gap approximately
independent of the ordering as long as octet-rule-violating
defects are avoided. The 0.12-eV difference in the two band
gaps, plus any small effects of strain and band offsets, will
result in the generation of a random short-period superlattice
that may be responsible for the roughly 120-meV linewidth of
the near-band-edge luminescence peak observed in Fig. 3.

For ZnGeN2, the difference in the energies of formation
for the Pna21 and Pmc21 structures (∼0.12 eV) is more than
an order of magnitude larger than for ZnSnN2 but the growth
temperature (∼1000 K) is also larger. The Boltzmann factors
give about 80% Pna21 and 20% Pmc21. Thus, for ZnGeN2

there should be a significantly lower tendency for mixing of
the two phases to occur. However, it should be emphasized
that these Boltzmann factors should not be used to predict the
proportions of the two phases, for the reasons noted above.

C. Calculated x-ray-diffraction spectra

With values for the energies of formation obtained by cal-
culation, we can now calculate the layer interaction parameter
J1 defined in Eq. (1); we have Ef (Pna21) − Ef (Pmc21) =
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FIG. 7. X-ray-diffraction spectra for ZnSnN2. From top to bot-
tom, the calculated powder x-ray-diffraction spectra of ZnSnN2

for the Pna21, Pmc21, and wurtzite crystal structures, a crystal
composed of 240 pseudospin layers with a 50:50 mixture of the
Pna21 and Pmc21 structures, and the measured spectrum, from
Ref. [19]. The starred peaks in the measured spectrum are associated
with the Zn-Sn melt upon which the ZnSnN2 was grown.

−2J1. For ZnSnN2 we obtain J1 = 6.5 ± 1.5 meV, and for
ZnGeN2, J1 = 60 ± 5 meV. As mentioned previously, we can
neglect longer-range interactions in the absence of evidence
of polytypes of these materials. For ZnSnN2, the small value
of J1, compared to kT at the growth temperature, is consistent
with roughly equal probabilities for the two types of stacking.

We now show that for ZnSnN2 the measured, wurtzite-like
x-ray-diffraction spectra are consistent with our ordering
model. Figure 7 shows the calculated x-ray-diffraction spectra
for ZnSnN2 for four cases: for the perfectly ordered Pna21 and
Pmc21 phases, for a disordered wurtzite phase for which the
atomic form factor for the cations is the average of those of Zn
and Sn, and for a crystal composed of 240 pseudospin layers
made up of equal proportions, but random distributions, of +1
and −1 pseudospins. For ease of comparison we use the ideal
wurtzite atomic positions, the lattice parameter a = 0.671 nm,
and the ideal wurtzite ratios b/a = √

3 and c/a = √
8/3. The

strongest superstructure peaks unique to the pure crystals,
which are the (111) peak for the Pmc21 structure and the
(101) peak for the Pna21 structure, are labeled. Note that
these are reduced in intensity by two orders of magnitude for
the 240-layer disordered crystal, compared to the perfectly
ordered structures. Superstructure peaks are absent in the
measured spectrum, from Ref. [19], and in the other reports of
x-ray-diffraction measurements of ZnSnN2 [15,17].

Figure 8(a) shows the dependence of the intensities of the
superstructure peaks on the number of layers, relative to the

FIG. 8. Normalized x-ray-diffraction peak intensities for
ZnSnN2. (a) The ratio of the Pmc21 (111) peak to the (221) peak
for a 50:50 mixture of the Pna21 and Pmc21 phases as a function of
the number of layers. The intensity of the (221) peak is independent
of the ratio of the two phases. The two vertical dashed lines mark the
number of layers that correspond to the average grain size reported
in Ref. [19] and the typical coherence length of a standard Cu Kα

x-ray source. The two horizontal dashed lines at 0.02 and 0.011 mark
the signal-to-noise ratios for the ZnSnN2 x-ray-diffraction spectra
reported in Refs. [17] and [19], respectively. (b) The ratios of the
Pna21 (111) and Pmc21 (101) x-ray-diffraction peaks to the (221)
peak versus the fractional mixtures of the two phases, calculated for
sampling depths of 24 and 240 pseudospin layers.

Pna21 (221) peak, which is the strongest peak common to
the Pna21, Pmc21, and wurtzite crystal structures. This result
illustrates that the measurement of the diffraction spectrum as
a function of the number of layers should be a powerful method
to probe the disorder. The calculations also show that the x-ray-
diffraction spectra in Refs. [17] and [19] have signal-to-noise
ratios far too low to detect the superstructure peak intensities
predicted for this model. In the first case, the depth probed

205207-9



PAUL C. QUAYLE et al. PHYSICAL REVIEW B 91, 205207 (2015)

FIG. 9. Calculated and measured powder x-ray-diffraction spec-
tra of ZnGeN2. Portions of these spectra were published in Ref. [29].
The insets at the left of the experimental spectra are the data for
diffraction angles of 2θ between 20◦ and 24◦, reproduced with an
expanded linear vertical scale to show better the superstructure peaks
that appear for the sample grown at 840 ◦C. These superstructure
peaks are absent for the sample grown at 750 ◦C. The peaks in the
experimental spectra at the diffraction angle of approximately 27◦ are
from the Ge substrate.

is the typical Cu Kα coherence length. In the second case,
the coherence length is limited by the 70-nm grain size of the
polycrystalline material.

Figure 8(b) shows the result of a calculation of the highest-
intensity superstructure peaks, for both a 240-layer crystal
and for a 24-layer crystal, as the proportions of the two pure
phases are varied. It is clear from this figure that a study of the
diffraction peak intensities as a function of growth conditions
could provide important information on growth kinetics and
thermodynamics. The figure also illustrates that the relative
intensity of the superlattice-diffraction peak to the Pna21

(221) peak drops very quickly below the signal-to-noise ratio
unless the stacking is nearly perfect Pna21 or Pmc21 or unless
only a few layers in the crystal are sampled.

Unlike in the case of ZnSnN2, for which all measurements
to date show a fully disordered lattice, it has been shown
that for ZnGeN2 the extent of the lattice disorder may be
tuned by growth conditions. Figure 9 shows two measured
powder-diffraction spectra for polycrystalline ZnGeN2 grown
at different temperatures but under otherwise identical con-
ditions [29]. The spectrum for the material grown at 840 ◦C
is well represented by the calculated spectrum for the Pna21

phase, while the spectrum for the material grown at 750 ◦C
is consistent with the calculation for the fully disordered
material. The effect of the distortion of the Pna21 lattice from
the ideal wurtzite is evident in the comparison of the simulated
ZnGeN2 Pna21 and wurtzite spectra; the distortion results in
the breaking of degeneracies for many of the diffraction peaks.
That the x-ray-diffraction spectra show disordered ZnGeN2 at
the lower temperature and ordering in the Pna21 phase at the

higher temperature indicates that at 750 ◦C the cations, more
strongly bound than in ZnSnN2, do not have sufficient mobility
to rearrange themselves on the cation sublattice. This result is
not a signature of an order-disorder transition, for which the
disordered phase appears at the higher, not lower, temperature,
but is most likely a result of the limiting kinetics.

Finally, a very rough measure of the expected temperature
for the transition from the lowest-energy ordered structure
to a random stacking of the two structures can be given by
the difference in the energies of formation of the Pna21

and Pmc21 structures, divided by Boltzmann’s constant. For
ZnGeN2 this estimate is of order 1400 K, and for ZnSnN2

it is 156 K. Thus, for ZnGeN2 the growth temperature is
well below this transition temperature, while for ZnSnN2 the
growth temperature is well above the transition temperature,
consistent with the qualitative differences in the amount of
stacking disorder expected for the two cases.

V. SUMMARY AND OUTLOOK

We have shown that all octet-rule-preserving arrangements
of the atoms in heterovalent ternary materials related to the
binary wurtzite structure are described by the one-dimensional
stacking of two pseudospin layers, with the exception of a
unique, highly symmetric, multiply twinned structure.

For ZnSnN2, we have calculated the x-ray-diffraction
spectra of random stackings of the pseudospin layers as
functions of the numbers of layers and the proportions of
the pure materials. The results illustrate that x-ray-diffraction
methods can be powerful tools for probing this type of one-
dimensional stacking disorder. First-principles calculations of
the energies of formation and band gaps of the constituent pure
crystal structures for ZnSnN2 show that the charge-neutral
Pna21 and Pmc21 phases have very similar band gaps, lattice
parameters, and energies of formation, while structures that
violate charge neutrality do not. These results justify modeling
the ZnSnN2 x-ray-diffraction spectrum with approximately
equal proportions, and random stacking, of the two phases.
This model of the lattice disorder resolves the issue between
the apparent lattice disorder inferred from x-ray diffraction
and inelastic light scattering measurements, and the apparent
insensitivity of the band gap to the disorder. In ZnGeN2,
calculations reveal larger differences between the band gaps
and energies of formation of the Pna21 and Pmc21 phases.
Pna21 ordering results at higher growth temperatures. That
disordered material was obtained at lower growth temperatures
is interpreted to be a result of insufficient cation mobility
during the growth process rather than a thermodynamically
driven order-disorder transition.

We note, parenthetically, that the octet-rule-preserving
twinned structure discovered here and shown in Fig. 2(c) is
highly unusual because at the twin boundaries there are no
unsatisfied bonds and the bond angles are distorted only to the
extent that the atomic positions deviate from the ideal wurtzite
positions. The geometry suggests a nanowire structure; the
central core of 3 A (B) cations in the α (β) plane is surrounded
by the ring of 9 B (A) cations, then 15 A (B) cations in the third
ring, and so on. To date, there are no reports of the synthesis
of ternary nitride nanowires, but it is possible, although highly
speculative, that this unique twinned configuration might be
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observed not only in some of the ternary nitride systems,
but also in ternary systems that have chalcopyrite crystal
structures in the bulk but that might have wurtzite-based
configurations as nanowires. Nanowires of some III-V zinc-
blende semiconductors can be produced in either the wurtzite
or the zinc-blende structure, or a combination of the two, by
controlling growth parameters [45–47].

Finally, we emphasize the point that, although specific
results here pertain only to ZnSnN2 and ZnGeN2, we expect the
general concept of layered disorder in heterovalent ternaries
to hold a far wider range of validity. In the nitrides, the octet-
rule-violating structures are so energetically costly mainly
because of the higher ionicity of the nitrides. Thus, breaking
charge neutrality locally costs significantly more energy than
in the less ionic III-V compounds. We expect, therefore, that
restricting the disorder to octet-rule-observing configurations
will be most important for other II-IV-N2 nitrides and for
other ionic heterovalent alloys such as LiGaO2. The main
result of our study is that in order to explain a wurtzite-like
diffraction spectrum, it is not necessary to assume fully random
distribution of cations on the cation sublattice. Random
stacking of the two octet-rule-preserving structures is sufficient
to explain fully random-looking diffraction spectra. From that
point of view, it appears desirable to also reconsider this
concept in the zinc-blende-based heterovalent ternaries. In
that case also, there are exactly two ordered structures that
preserve the octet rule, and a similar layered pseudospin
model can be constructed [10]. Thus, it seems worthwhile
revisiting the question of ordering in those materials. Most
of the evidence in the older literature on the subject is based
on the absence of superlattice peaks in x-ray diffraction just
as for the wurtzite case studied here. However, we have
here shown that these superlattice peaks can very easily be
destroyed even within our strongly restricted layer disorder
model. On the other hand, we should be clear that our
model does not preclude that octet-rule-violating defects will
be present in small concentrations, depending on growth
conditions, even in the more ionic compounds.
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APPENDIX

We show here that the only octet-rule-preserving ternary
structures ABC2 derived from the wurtzite lattice are either
sequences of the pseudospin ±1 layers stacked along the
orthorhombic b axis or the twinned structure depicted in
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FIG. 10. (Color) Atomic arrangements associated with the rules
governing the placement of A and B cations so as to preserve the
octet rule. Application of the octet rule is labeled OR, application of
rule 1 is labeled R1, etc. Illustrations of: (a) the octet rule, (b) rule
1, (c)-(f) the steps leading to an octet rule violation if rule 2 is not
obeyed, and the steps leading to octet rule violations if (g) rule 3, (h)
rule 4, or (i) rule 5 is not obeyed.

Fig. 2(e). We arrive at this conclusion with the help of five
rules that follow directly from the octet rule. The underlying
wurtzite lattice is shown in Fig. 10, with the basal planes
containing the cations labeled α, β, γ , and δ.

The octet rule requires that each anion be bonded to two A

cations and two B cations. Thus, only two of the three cations
lying in the α plane that are bonded to the same anion can be
of type A, and the fourth cation, which lies in the β plane,
must be of type B, as illustrated in Fig. 10(a).

Rule 1, illustrated in Fig. 10(b), states that the cation in
the α plane above the common nitrogen atom shared by three
cations in the β plane must be of type A if two of the cations
in the β plane are of type B. The proof of this rule is shown
in Figs. 10(c)–10(f). The only alternative to the arrangement
of Fig. 10(b) is shown in Fig. 10(c). Figure 10(d) follows by
application of the octet rule. Notice the symmetry of Fig. 10(d)
about the dashed line; the cation positions m and m′ are
equivalent. The octet rule requires that one of these be a
B cation, as shown in Fig. 10(e). We tilt the perspective in
Fig. 10(f) to show that this arrangement in the β plane results
in a violation of the octet rule in the γ plane; the green cation
is required to be both an A atom and a B atom.

Rule 2, not illustrated, states that all structures that fulfill
the octet rule have translational symmetry, with periodicity c,
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along the c axis. This rule follows directly from rule 1 in the
following way. Figure 10(b) illustrates that each A cation in
the α plane must share a nitrogen atom with two B cations in
the β plane. Therefore, the octet rule requires that the cation
in the γ plane beneath the A cation in the α plane must also
be an A cation. Since the bonding is equivalent for all cations,
the cation in the γ plane directly below any B cation in the α

plane must also be a B atom.
Rule 3 states that the triplet arrangement of Fig. 10(g) must

result in the structure shown in Fig. 2(e). Each layer added
to the core triplet arrangement follows uniquely by sequential
applications of the octet rule and rule 1. Rule 4 states that the
arrangement of Fig. 10(h) is not allowed. Application of the
octet rule and rules 1 and 3 lead to the illustrated contradiction.
Rule 5 states that a type ABAB row, illustrated as BAB in
Fig. 10(i), fixes all rows parallel to this one as type ABAB.
There are two possible alternatives to rule 5, as shown. Both
lead to a violation of rule 3.

We now show that the only octet-rule-preserving structures,
with the exception of the sixfold twinned structure, are
sequences of ±1 pseudospin layers. This conclusion will
follow from the conclusion that all allowed configurations
have alternating ABAB cations along one direction in
the basal plane. We start by noting that in the Pna21

phase the rows of nearest-neighbor cations in a basal plane
have either AABB or ABAB ordering. For the Pmc21

phase, the ordering of nearest-neighbor cations is AAAA,
BBBB, or ABAB. We now consider the sequence BAA

in a basal plane. There are two possible orientations, as
shown in Figs. 11(a) and 11(b). These are equivalent by
mirror symmetry. Application of rule 4 requires one or
the other of the two structures shown in Figs. 11(c) and
11(d). Application of rule 3 to these configurations leads
to the arrangements of Figs. 11(e) and 11(f). These are
equivalent by rotational symmetry, so we need only consider
the consequences of the arrangement of Fig. 11(d) to cover all
possibilities.

OR, R1, R3
(g)

(h)

R5

Mirror

R4 R4

R3 R3

Rotation

(a)                        (b)

(c)                        (d)

(e)                         (f)                      (i)       

A cation
B cation
anion (yellow)
 
 

FIG. 11. (Color) Atomic arrangements associated with the proof
of all possible cation placements obeying the octet rule. Application
of the octet rule is labeled OR, application of rule 1 is labeled R1,
etc. Starting from the sequence BAA in the basal plane (a), (b)–(f)
illustrate the steps leading to (g). A random sequence of atoms A,B
in the basal plane results in random stacking of pseudospin rows as
illustrated in (h), (i).

It is straightforward to generate Fig. 11(g) from Fig. 11(d)
by application of the octet rule and rules 1 and 3. The result is
the horizontal parallel ABAB rows in both the α- and β-plane
that extend infinitely, as illustrated in Fig. 11(g). By rule 5,
any additional parallel rows must be ABAB. Extension of the
initial row BAA, for example to ABBBA, as shown by the
dashed line in Fig. 11(h), fixes the atomic arrangements of
all additional parallel rows [Fig. 2(i)]. The sequence AAAA

results in the Pmc21 structure, and the sequence AABB results
in the Pna21 structure. Sequences with larger periods generate
polytypes, and random sequences generate disorder along one
dimension.
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