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Theory of exciton-polaron complexes in pulsed electrically detected magnetic resonance
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Several microscopic pathways have been proposed to explain the large magnetic effects observed in
organic semiconductors; however, it is difficult to identify and characterize the microscopic process which
actually influences the overall magnetic field response in a particular instance. Pulsed electrically detected
magnetic resonance provides an ideal platform for this task as it intrinsically monitors the charge carriers of
interest and provides dynamical information which is inaccessible through conventional magnetoconductance
measurements. Here we develop a general time-domain theory to describe the spin-dependent recombination
of exciton-polaron complexes following the coherent manipulation of paramagnetic centers through electron
paramagnetic resonance. A general Hamiltonian is treated, and it is shown that the transition frequencies and
resonance positions of the exciton-polaron complex can be used to estimate interspecies coupling. This work
also provides a general formalism for analyzing multipulse experiments which can be used to extract relaxation
and transport rates.
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I. INTRODUCTION

Organic devices with nonmagnetic electrodes can display
large magnetoresistances at room temperature [1]: Magnetic
fields of 10 mT or less are sufficient to induce large changes in
sample conductivity [2], with reports of changes exceeding
2000% in one-dimensional wires [3]. There is interest in
harnessing these field-induced effects to enhance technologies
including solar cells [4], organic light-emitting diodes [5],
and cheap magnetic sensors [6]. This requires sophisticated
methods for characterizing and engineering the underlying
spin processes.

Several detailed models [7–9] have been developed to
explain the ubiquitous magnetoconductance effects observed
in organic devices. In recent years there has been significant
progress in distinguishing potential spin processes through line
shape and voltage fingerprints [10]; these types of quasistatic
measurements and models are fundamentally limited: dynami-
cal rates and energetic couplings are obscured by the effects of
spin ensemble averaging and the intrinsically incoherent nature
of the measurement. Coherent spectroscopic techniques, such
as pulsed electron paramagnetic resonance (pEPR), provide
a way to independently identify and quantify the underlying
physical processes because they allow subensemble of spins
to be selectively addressed and manipulated within the spin
coherence time [11].

Pulsed electrically detected magnetic resonance [12]
(pEDMR) provides a strong spectroscopic probe with which
to investigate these processes, as different spin processes can
readily be disentangled [11,13] and their impact on device op-
eration directly observed from the transient dynamics. Pulsed
methods are able to access coherent time-domain information
and by adjusting the applied pulse sequence different aspects
of the spin ensemble can be probed, allowing a holistic
picture of the spin physics to be developed and rigorously
tested [14]. Past studies have primarily focused on pristine
poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene]
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(MEH-PPV) devices in which polaron pairs are the dominant
spin-reaction pathway, and a detailed picture of the relevant
energy and time scales in these devices has been developed
[15,16]. Dissociation, recombination, and intersystem
crossing rates have been characterized [17,18], as well as the
strength of the electron-nuclear coupling [19] and spin-spin
interactions within the pair [18]. Recent improvements in
pEDMR measurement methods have substantially improved
signal to noise [20], and a variety of standard one and
two-dimensional experiments with pEPR [14] are now
technically feasible. In contrast, energy and time scales cannot
be effectively separated in quasistatic magnetoconductance
measurements; Ultrasmall field effects are consistent with
either a weak exchange interaction [21] or slow carrier
hopping [22]. Differentiation between these two scenarios
is possible with pulsed measurements [15,16]; however, no
comparable fingerprint is known for the static case.

An extensive body of literature has been developed for
describing the time-domain response of polaron pairs in mag-
netic resonance [23–25], while comparatively little is known
in relation to three-particle processes. These are expected to
include triplet-exciton polaron quenching or the dynamics of
a bipolaron stabilized by a counterion in organic systems [26].
Other three-particle processes also include spin-dependent
Auger recombination in nanocrystals [27], trion states in
silicon [28], and electrons interacting with a common nuclear
bath [29].

In this work we develop a general formalism for describing
the spin-dependent response of three-particle complexes in
pEDMR, thus providing the theoretical foundations for the
quantitative characterization of the time and energy scales
present in these systems.

There are a number of different mechanisms invoked in the
literature to describe triplet-exciton polaron quenching (TEP).
For instance, Desai et al. [8] described a mechanism in which
free polarons scatter from trapped triplet excitons, causing the
excitons to cross from the triplet to singlet manifold,

T1,0,−1 + D±1/2 ↔ (T1,0,−1 . . . D±1/2) → D±1/2 + S∗, (1)
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where Ti is an excited triplet exciton with a spin projection
of −1, 0, or + 1, Di is a free charge carrier with a spin
projection ms = i, S is a singlet exciton, and ∗ denotes
an excited state. The reaction rate was assumed to be spin
dependent, although no microscopic mechanism was provided.
In contrast, Koopmans and co-workers describe a quenching
process which depends on the overall quartet or doublet
content of the pair and may increase or decrease the polaron’s
mobility [22]. Other implementations include a site-blocking
mechanism [30] and an exciton-polaron exchange process
[30].

Similarly, there is substantial variation in the types of
interactions assumed within the three-spin complex and the
conditions under which they will be observed. TEP has been
discussed in terms of weakly-interacting precursor pairs [22],
strongly bound trion states [31], and even bipolaron-counterion
complexes [26]. Each of these scenarios will produce a
unique magnetic field dependence and differentiation is an
important step towards purposeful tuning of spintronic de-
vices. The conditions under which the TEP mechanism will
appear are also debated: high magnetic-field features from
magnetoconductance measurements indicate that the triplet
process is important at room temperature [10], in contradiction
with the sharp decrease in triplet lifetimes observed at high
temperatures [32] and in earlier pEDMR experiments [33].

In this paper we develop a time-domain theory of an
interacting spin-1 + spin-1/2 pair which can react in pro-
portion to its overall doublet (S = 1/2) or quartet (S = 3/2)
content, analogous to the theory of Ern and Merrifield [34].
The transition frequencies and resonance positions of an
exciton-polaron complex are extracted from the canonical
Hamiltonian, providing an analytic description of the transition
between a weakly spin-interacting exciton-polaron complex
and a strongly bound trion state. This result can be used to
analyze pEDMR experiments on organic devices, allowing the
intrapair spin-spin coupling to be extracted, as demonstrated in
related work [35]. In this paper we concentrate on transitions
following a single pulse; however, the formalism can be
applied more generally to multipulse sequences, such as the
Hahn echo [16,36]

π/2 − t − π − t − π/2 − echo, (2)

where t is a variable free evolution period and π/2 and
π represent the nominal spin nutation angles. This scheme
measures the spin-spin relaxation time T2 of a spin ensemble
and can be simulated by applying a corresponding sequence
of superoperators [14]. As such, this work provides a general
foundation for the quantitative investigation of the triplet-
exciton polaron quenching process with pEDMR.

II. GENERAL FEATURES

Long-lived triplet excitons can interact with trapped po-
larons to form complexes, which can recombine to release
the trapped polaron and alter the free charge carrier density.
Although a similar process is possible with singlet excitons,
their density will be much lower [26] and we therefore ignore
their contribution in this work. The spin-independent forma-
tion of exciton-polaron complexes is likely to be dominated
by the reorganization energy associated with the shared lattice

distortion [37] due to the weak spin interaction between the
exciton and polaron.

Following its formation, an exciton-polaron complex may
(i) dissociate back into its constituents or (ii) recombine if
it is in the doublet (spin-1/2) manifold, which will release
the trapped polaron into the valence or conduction band,
increasing the charge carrier mobility [see Fig. 1(a)]. The
exact states involved in the reaction are unclear. Weak spin
coupling is observed experimentally [33], although strongly
bound trion states could also form prior to recombination.

[exciton + polaron] → exciton + polaron, (3)

[exciton + polaron] → [trion] → S0 + polaron∗, (4)

where [· · · ] represents a spatial correlation between the exciton
and polaron which may sometimes by accompanied by spin-
spin coupling and ∗ represents an excited state. Spin resonance
causes a mixing of the doublet and quartet manifolds, causing
a net change in the recombination rate and average charge
carrier mobility (conductivity). As in the two spin polaron-pair
case [12] the second order contributions due to the change in
the electron and hole bath concentrations and mobilities are
negligible; thus the expected changes in mobility are given by

�μe(t) = τL(re(t) − re,eq), (5)

�μh(t) = τL(rh(t) − rh,eq), (6)

where τL is the charge carrier lifetime and represents the
characteristic time between exciton-polaron complex forma-
tion and either recombination or dissociation occurring (these
lifetimes can be different for the electron and hole ensembles),
μ are the electron and hole mobilities, and R(t) and req are the
time-dependent and equilibrium recombination rates.

The increase in charge carrier mobility from recombination
can yield either a current enhancement or quenching, depend-
ing on whether the majority or minority carriers are released.
This counterintuitive behavior arises due to the interplay
between Coulombic attraction and carrier transport [38]. In
general, we expect the charge reaction to release the majority
carrier and provide a current enhancement. In the unipolar
regime, which we treat as electron rich, the change in current
will be proportional to the number of released carriers, ne,

�I (t) = e�μ̄e(t)ne, (7)

where �I is the change in current, �μ̄ is the time-dependent
change in the average charge carrier mobility, and ne is the
free (electron) polaron density. For a general description of the
spin dynamics, we need to include the interaction of the spin
ensemble with the environment. This includes charge carrier
generation, dissociation, recombination, and relaxation. These
influences may be included through the stochastic Liouville
equation [22]

∂ρ

∂t
= i

�
[ρ,H ] + S [ρ] + R{ρ − ρ0}, (8)

where ρ is the density matrix and represents the occupation
probability of each state, ρ0 is the steady state density
matrix, H is the coherent spin Hamiltonian and describes
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FIG. 1. (Color online) (a) General picture of the triplet exciton-polaron quenching mechanism. Exciton-polaron complexes are formed spin
independently due to the reorganization energy associated with a shared nuclear distortion. A complex may spin independently dissociate back
in a separate exciton and polaron or recombine, possibly due to weak exciton-polaron exchange. Intersystem crossing will mix the doublet
and quartet states prior to recombination or dissociation. (b) A diagramatic representation of the Hamiltonian for an exciton-polaron complex
with arbitrary coupling. The exciton will have internal exchange (Jex) and dipolar (Dex) coupling, and there may also be exchange (Jex,p) and
dipolar (Dex,p) coupling between the exciton and the polaron.

the exciton-polaron spin complex, S is a stochastic operator
and represents the generation and loss of charge carriers,
and R is the Redfield relaxation matrix describing stochastic
fluctuations between the spin ensemble and thermal bath, and
which drives the density matrix into a diagonal thermal state
[39,40].

A. Hamiltonian

The spin Hamiltonian describes the coupling within the
exciton-polaron complex and its interactions with the sur-
rounding nuclear environment. As it completely encapsulates
the coherent spin dynamics it can be used to derive the
resonance positions and transition frequencies which allow the
mechanism and coupling strengths to be identified. Both the
exciton and polaron couple to the nearby nuclei through
the hyperfine interaction (A) and to the external magnetic field
through Zeeman splitting. There is also dipolar coupling within
the exciton (Dex), and dipolar (Dex,p) and exchange coupling
(Jex,p) between the exciton and polaron [see Fig. 1(b)]. The
exciton has a large internal exchange (Jex ≈ 0.7 eV [41])
which separates the singlet and triplet levels. This is larger
than all of the other energy scales in a typical experiment.
This decouples the singlet levels and allows the exchange
interaction to be excluded from the effective Hamiltonian,

H = μBB · gex · Sex︸ ︷︷ ︸
exciton Zeeman

+μBB · gp · Sp︸ ︷︷ ︸
polaron Zeeman

+
∑

i

Iex,i · Aex,i · Iex,i︸ ︷︷ ︸
exciton hyperfine

+
∑

i

Ip,i · Ap,i · Ip,i︸ ︷︷ ︸
polaron hyperfine

+ Sex · Dex · Sex︸ ︷︷ ︸
exciton dipolar

+ Jex,pSex · Sp︸ ︷︷ ︸
exciton-polaron exchange

+ Sex · Dex,p · Sp︸ ︷︷ ︸
exciton-polaron dipolar

, (9)

where B is the external magnetic field, μB is the Bohr
magneton, A is the hyperfine coupling tensor, g is the Landé g

factor, I are the interacting nuclear spins, and S are the [exciton
(ex) and polaron (p)] spin operators. An expanded version of
this matrix is given in Appendix A. The commonly used high

field approximations are made, which include an isotropic
g factor, isotropic hyperfine interaction, and only retaining the
secular terms of the dipolar coupling [40].

Starting from the triplet-doublet (product) basis we can
rotate the Hamiltonian to the energy eigenbasis using the
unitary transform [42]

Henergy = U †H U, (10)

where

U =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 cos θ 0 −sinθ 0 0
0 0 cos φ 0 sin φ 0
0 sin θ 0 cos θ 0 0
0 0 −sinφ 0 cos φ 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦, (11)

with

cot 2θ = Dex − Dex,p

3 + Jex,p

2 − ωp + ωex√
2Dex,p

3 + √
2Jex,p

(12)

and

cot 2φ = Dex − Dex,p

3 + Jex,p

2 + ωp − ωex√
2Dex,p

3 + √
2Jex,p

. (13)

These mixing angles can be easily computed by noting
that the 6 × 6 Hamiltonian can be two decomposed into
two 1 × 1 subspaces, which are already diagonal, and two
2 × 2 sub-spaces which can be diagonalized by applying
the standard rotation matrices [43]. This unitary transform
preserves the physics of the Hamiltonian, while simplifying
analytic and numerical calculations. For instance, the transition
frequencies simply correspond to the off-diagonal matrix
elements. Importantly, the angles θ and φ represent the degree
of coupling between the exciton and polaron. Setting θ,φ = 0

corresponds to two independent particles and θ,φ = cos−1
√

2
3

(the maximum rotation angle possible) corresponds to the
formation of a spin- 3

2 trion. Due to the convenient measure
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of spin-spin coupling that θ and φ provide we will refer to
them throughout the text as the spin mixing angles.

The three natural basis sets for describing an exciton-
polaron complex are the triplet-doublet (product) basis, the
quartet-doublet basis, and the energy eigenbasis. The transfor-
mation between the triplet-doublet and quartet-doublet bases
is given by the Clebsch-Gordan coefficients:

|T+↑〉 = |Q3/2〉, (14)

|T+↓〉 =
√

1

3
|Q1/2〉 +

√
2

3
|D1/2〉, (15)

|T0↑〉 =
√

2

3
|Q1/2〉 −

√
1

3
|D1/2〉, (16)

|T0↓〉 =
√

1

3
|Q−1/2〉 +

√
2

3
|D−1/2〉, (17)

|T−↑〉 = −
√

2

3
|Q−1/2〉 +

√
1

3
|D−1/2〉, (18)

|T−↓〉 = |Q−3/2〉, (19)

where D and Q represent the doublet and quartet states with
their spin projection given by the subscripts. It is important
to note that the term “doublet” refers to a state with S = 1/2,
which may either be a single spin-1/2 particle or the |S,ms〉 =
| 1

2 ,± 1
2 〉 trion states. The density matrix

ρ =
∑

i

wi |ρi〉 〈ρi | (20)

(where wi is the spin level occupation) can likewise be trans-
formed from the triplet doublet to the energy eigenbasis by

ρenergy = U †ρU. (21)

In the triplet-doublet basis the kets are given by

|ρ〉 =

⎡
⎢⎢⎢⎢⎢⎢⎣

|T+↑〉
cos θ |T0↑〉 + sin θ |T+↓〉
cos φ |T−↑〉 − cos φ |T0↓〉
cos θ |T+↓〉 − sin θ |T0↑〉
cos φ |T0↓〉 + sin φ |T−↑〉

|T−↓〉

⎤
⎥⎥⎥⎥⎥⎥⎦

. (22)

It is conceptually and computationally expedient to split
the Hamiltonian into a large static component (H0) com-
prising spin-spin coupling terms and the static Zee-
man splitting, and a small, time-dependent driving term
(H1) which corresponds to the time-dependent Zeeman

splitting:

H = H0 + H1, (23)

H1 = 2B1(e−iωt + eiωt )
(
Sx

ex + Sx
p

)
, (24)

where S is the spin operator for the exciton and polaron and
ω is the frequency of the applied radiation. At high field
the counterpropagating component will produce no first-order
effects, so we move to the rotating frame and perform the
rotating wave approximation. This is done for all the following
calculations and we denote the new Hamiltonian by H ∗ to
indicate that we are treating dressed states:

Hrot = U
†
rotH Urot − U

†
rot

∂H

∂t
Urot, (25)

Urot(t) = e−iB0(Sz
ex+Sz

p)t . (26)

The rotating frame will shift the energy of the static Hamilto-
nian H0, so the new static rotating component H ∗

0 is

H ∗
0 = H0 − B0

(
Sz

ex + Sz
p

)
(27)

and the resonant driving will become time independent, so the
new Hamiltonian is

H ∗ =

⎡
⎢⎢⎢⎢⎢⎣

E∗
1 B12 0 B14 0 0

B21 E∗
2 B23 0 B25 0

0 B32 E∗
3 B34 0 B36

B41 0 B43 E∗
4 B45 0

0 B52 0 B54 E∗
5 B56

0 0 B63 0 B65 E∗
6

⎤
⎥⎥⎥⎥⎥⎦, (28)

where the energies of H0 are given by coefficients Ei and
coherent mixing terms due to H1 are given by the coefficients
Bij . These can be found in Appendix A. The dressed rotating
basis states will have the same form as the bare energy
eigenbasis states, and for most situations they may be treated
equivalently [14].

B. Limiting behavior of the Hamiltonian

While numerical calculations provide a general method
for calculating the exciton-polaron dynamics from the spin
Hamiltonian, this approach limits the physical insight which
we can obtain. To understand the general properties of the
system we now look at a number of limiting cases.

1. Weak coupling: θ,φ → 0

When the exciton-polaron coupling is extremely weak
(θ,φ → 0) the spins will be driven independently, and the
eigenbasis is trivially given by the product states. The
Hamiltonian for this scenario is

H ∗ = �

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

E∗
T+↑

√
2B1 0 B1 0 0√

2B1 E∗
T0↑

√
2B1 0 B1 0

0
√

2B1 E∗
T−↑ 0 0 B1

B1 0 0 E∗
T+↓

√
2B1 0

0 B1 0
√

2B1 E∗
T0↓

√
2B1

0 0 B1 0
√

2B1 E∗
T−↓

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(29)
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FIG. 2. Behavior of an exciton-polaron complex depends strongly on the strength of the exciton-polaron coupling. Solid lines represent
strongly driven transitions and dashed lines represent transitions which become forbidden in the weak or strong coupling limits. (a) In the weak
coupling regime the basis states are close to the product states and the transitions are the |↑〉 ↔ |↓〉 polaron transition, with a Rabi frequency
of γB1, and the |T+〉 ↔ |T0〉, |T0〉 ↔ |T−〉 exciton transitions with a Rabi frequency of

√
2γB1. The |↓T+〉 ↔ |↑T−〉 transition becomes weakly

allowed in the presence of nonzero coupling. (b) In the intermediate coupling regime the basis states are neither the product nor quartet-doublet
states and there are up to eight visible transitions with Rabi frequencies between zero and

√
3γB1. (c) In the strongly coupled regime quartets

and doublets are formed. Strong driving occurs within the doublet and quartet manifolds and driving between the manifolds becomes arbitrarily
slow, leading to a vanishing signal. The Rabi frequencies of these transitions are

√
3γB1 and 2γB1.

and the basis kets are

|ρ〉 =

⎡
⎢⎢⎢⎢⎢⎣

T+↑
T0↑
T−↑
T+↓
T0↓
T−↓

⎤
⎥⎥⎥⎥⎥⎦. (30)

The polaron resonances occur at a frequency of ω + ωp

with a Rabi (nutation) frequency of γB1 and the exciton
will resonate at frequencies of ω + ωex ± Dex with a nutation
frequency of

√
2γB1, where ωp and ωex are the Zeeman com-

ponents of the polaron and exciton energies. This is shown
graphically in Fig. 2(a). There are three degenerate polaron
transitions and a pair of two degenerate exciton transitions
(with |↑T+〉 ↔ |↑T0〉 and |↓T+〉 ↔ |↓T0〉 forming one pair
and |↑T0〉 ↔ |↑T−〉 and |↓T0〉 ↔ |↓T−〉 forming the other).

These are shown by the solid lines. The single dashed line
represents a �ms = 1 transition between the |↑T−〉 and |↓T+〉
states which becomes weakly allowed in the presence of
nonzero exciton-polaron coupling. Eventually the spin-spin
coupling becomes large compared to the hyperfine interaction
and the transitions can no longer be described as excitonic or
polaronic transitions, as depicted in Fig. 2(b).

2. Strong coupling: θ,φ → cos−1(
√

2
3 )

When the exciton-polaron coupling is extremely strong

[θ,φ → cos−1 (
√

2
3 )] a trion state will be formed in the

quartet-doublet basis. The exciton and polaron can no longer
be considered separate entities and they will always nutate
together. The Hamiltonian is given by

H ∗ = �

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E∗
Q= 3

2

√
3B1 0 0 0 0√

3B1 E∗
Q= 1

2
0 0 2γB1 0

0 0 E∗
D= 1

2
γB1 0 0

0 0 γB1 E∗
D=− 1

2
0 0

0 2γB1 0 0 E∗
Q=− 1

2

√
3B1

0 0 0 0
√

3B1 E∗
Q=− 3

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (31)

with the corresponding eigenstates

|ρ〉 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Q 3
2

Q 1
2

D 1
2

D− 1
2

Q− 1
2

Q− 3
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (32)

The mixing will be between the ms = ±3/2 and ms = ±1/2
quartet manifolds with nutation frequency of

√
3γB1, and

mixing within the ms = ±1/2 doublet and quartet manifolds
with Rabi frequencies of γB1 and 2γB1, as shown in Fig. 2(c).
The four solid lines represent the strongly allowed transitions
of the trion state and the dashed lines represent quartet-doublet
transitions which vanish in the strong coupling regime. Coun-
terintuitively the ms = ±3/2 quartet states actually couple to
the ms = ∓1/2 doublet states, which is nominally a �ms = 2
transition. Analogous to the exciton half-field transition, it
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becomes weakly allowed due to off-diagonal mixing in the
quartet-doublet basis. Because the strongly allowed transitions
induce no overall change in the doublet or quartet content of
the complex, the trion states will be electrically undetectable.

In this paper we analyze the transition between the
uncoupled and trionic regimes.

C. Complex relaxation and recombination

The recombination and dissociation rates of each eigenstate
will be the weighted average of its quartet and doublet content.
In analogy with the polaron pair [12] case we can form new
rates for the admixture states,

ri = rD| 〈i|D〉 |2 + rQ| 〈i|Q〉 |2, (33)

di = dD| 〈i|D〉 |2 + dQ| 〈i|Q〉 |2, (34)

where |i〉 represent the general eigenkets, D and Q represent
the doublet and quartet manifolds, and r and d are the
recombination and dissociation rates for the doublet and
quartet states. The spin loss rate (γ ) is the sum of the
dissociation and recombination rates:

γi = ri + di. (35)

A spin-dependent depopulation of the doublet state has
been observed in other systems and is consistent with simple
energetic arguments and spin-selection rules [44]. In the weak
coupling limit (θ,φ → 0) the T−↑,T+↓ states have 2

3 doublet
content, and the T0 states each have 1

3 doublet content. The
recombination rates ri from Eq. (33) are then

r = 1

3

⎡
⎢⎢⎢⎢⎢⎣

3rQ

rD + 2rQ

2rD + rQ

2rD + rQ

rD + 2rQ

3rQ

⎤
⎥⎥⎥⎥⎥⎦. (36)

In the opposite, strong coupling limit (θ,φ → cos−1
√

2
3 )

the states become pure quartet and doublet states, with the
corresponding recombination rates

r =

⎡
⎢⎢⎢⎢⎢⎣

rQ

rQ

rD

rD

rQ

rQ

⎤
⎥⎥⎥⎥⎥⎦. (37)

Between these two limits there will be a monotonic change in
the recombination rates as the product basis morphs into the
quartet-doublet basis.

D. Complex formation and polarization

We cannot discuss the transitions of an exciton-polaron
complex without discussing their formation and steady state
polarization: the presence of an electrically detectable signal
intrinsically requires a net transfer of the spin population.

Exciton-polaron complexes are believed to form spin
independently. A spin-dependent formation has been proposed

in the context of polaron pairs, and a similar effect for
exciton polarons will change the intensity of the transitions,
but leave the qualitative conclusions of this study unaffected.
Regardless, the generation rate of each state needs to be
weighted by a Boltzmann factor to account for the thermal
distribution:

Gi = G
exp

(− Ei

kT

)
∑

i exp
(− Ei

kT

) , (38)

where G is the total generation rate, Gi is the generation rate
for each eigenstate, k is the Boltzmann constant, and T is
the sample temperature. These generation rates provide the
diagonal entries for the creation component of the stochastic
operator S . At high temperatures polarization effects can be
ignored and a uniform generation rate can be used. The steady
state occupation of each state corresponds to when the pair
generation and loss rates are equal:

ρii = Gi

ri + di

. (39)

When doublet states are lost much faster than quartet states
there will be a strong polarization of pure quartet states:

ρ0 = 1
2 (|T+↑〉 〈T+↑| + |T−↓〉 〈T−↓|). (40)

In organic devices the polarization effects arise primarily
from the different rates of charge carrier loss [12]. In contrast,
porphyrin systems may generate a polarization within the
triplet-doublet pairs from the intersystem crossing of light-
induced singlet-doublet states [45–47].

E. Transient readout

The real-time detection of sample conductivity changes
during resonant excitation is technologically challenging [48].
Consequently, experiments are usually performed using a
pump-probe approach, which involves monitoring the (slow)
response of the system following (rapid) magnetic resonant
excitation [12].

In the triplet-exciton polaron quenching mechanism recom-
bination will trap or detrap the polaron and change the average
charge carrier mobility. This manifests macroscopically as a
change in the sample conductivity. We can therefore relate the
recombination rate (proportional to the overall doublet content
of the spin ensemble in our model) to an experimental change
in conductivity. Larmor beating will dephase the exciton and
polaron on a time scale much faster than the transient readout,
and we can therefore treat the spin ensemble incoherently using
rate equations [24]

R(τ ) =
∑

i

δρii(τ )ri, (41)

where δρii is the change in occupation probability and ri the
recombination rate of each state. The overall change in current
induced by each transition will depend on the precise choice
of integration window and dissociation, recombination, and
intersystem crossing rates. In this work, we are concerned with
the resonance positions and transition frequencies, which are
unaffected by these incoherent rates. Nonetheless, we sketch
how quantitative predictions may be made by discussing the
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minimalist scenario in which intersystem crossing and recom-
bination are slow compared to dissociation. This produces an
observable which is proportional to the doublet content of the
occupied states. We also assume that all recombination events
are recorded,

O =
∑

i

∫ T

0
ri exp (−(ri + di)t)dt ≈

∑
i

ri

di

≈
∑

i

|〈D|φi〉|2, (42)

where φi is the ith eigenvector, D is the doublet manifold, and
O is the observed change in sample conductivity. A scaling
factor is required to relate the microscopic change in charge
carrier mobility to the real change in sample conductivity.

III. TRANSITION ANALYSIS

In the standard implementation of a pEDMR experiment
the transition frequencies are mapped as a function of energy
by sweeping the magnetic field with a constant excitation
frequency and measuring the change in conduction as a
function of the microwave pulse length. This may result in a
number of different resonances each with a particular transition
frequency. These serve as a “Rabi fingerprint,” which can be
used to identify and quantify the types of coupling present.
We now calculate these “fingerprints” directly from the spin
Hamiltonian.

A. Resonance position

The photon energy required to resonantly drive a transition
is equal to the energy difference between the two eigenstates
of interest. The energies of the Hamiltonian described by
Eqs. (A2)–(A7) are used to calculate the resonance positions
given in Table III.

In the weak coupling limit there are three polaron transi-
tions, which occur at the Larmor precession frequency, and
four exciton transitions, which are split by the intraexciton
dipolar coupling Dex . The multiplicity of each transition is
due to possible states of its partner, so the exciton has identical
transitions whether the polaron is in the |↑〉 or |↓〉 state. In the
strong-coupling limit the ms = 1/2 transitions (Q 1

2
↔ Q− 1

2
,

D 1
2

↔ D− 1
2
) will occur at the Larmor precession frequency

and the other quartet resonances (Q± 3
2

↔ Q± 1
2
) will have

significantly higher or lower Larmor frequencies due to the
substantial zero-field splitting.

B. Transition frequencies

The frequency of the Rabi oscillations are indicative of
the types of states and coupling that are present, and are
calculated by solving the 2 × 2 eigenvalue problem of the
relevant subspace [25]

H2×2 =
(

Ei Bij

Bji Ej

)
. (43)

The frequencies of the Rabi oscillations have the form

�ij =
√

α2
ij (γB1)2 + (ω − ωij )2, (44)

TABLE I. Transition frequencies of an exciton-polaron complex
as a function of the spin mixing angles.

Transition Frequency (γB1)

(1)-(2)
√

2 cos θ + sin θ

(1)-(4) cos θ − √
2 sin θ

(2)-(3)
√

2 cos θ cos φ − sin φ(cos θ + √
2 sin θ )

(2)-(5) cos φ(cos θ + √
2 sin θ ) + √

2 cos θ sin φ

(3)-(4) sin θ (sin φ − √
2 cos φ) − √

2 cos θ sin φ

(3)-(6) cos φ − √
2 sin φ

(4)-(5) −cosφ(sin θ − √
2 cos θ ) − √

2 sin θ sin φ

(5)-(6) sin φ + √
2 cos φ

where αij is the frequency coefficient which may be read from
the off-diagonal matrix entries which are given by H ∗ in
Eq. (31), ω is the applied photon frequency, and ωij is the
resonant (i,j ) transition frequency. When a resonant excitation
(ω = ωij ) is applied the nutation frequency reduces to

�ij = αijγB1. (45)

The values for all nonzero αij coefficients are given in
Table I and are shown graphically in Fig. 3 as a function of the
mixing angle θ (with θ = φ). It can be seen that the nutation
frequencies change distinctively as a function of mixing angle,
and this can be used to differentiate triplet-exciton polaron
quenching from other mechanisms such as the triplet-triplet
annihilation, as well as identifying the relevant coupling
regime.

C. Regimes

We are able to identify several driving regimes depending
on the relative energy scales present. Figure 3 shows the

FIG. 3. (Color online) Transition frequencies of an exciton-
polaron complex as a function of the mixing angle. In the uncoupled
regime (θ = 0) the polaron will nutate at a frequency of γB1 and the
exciton will nutate at a frequency of

√
2γB1. Weak coupling splits

the exciton and polaron resonances and permits the ↓T+ ↔ ↑T−
transition to be weakly driven. In the strong coupling limit pure
quartet and doublet states are formed. Quartet mixing will occur at
frequencies of 2γB1 (Q1/2 ↔ Q−1/2) and

√
3γB1 (Q±3/2 ↔ Q±1/2).

Driving can also occur within the doublet manifold at a frequency
of γB1. Driving between the doublet and quartet states becomes
arbitrarily slow in the strong coupling limit. Transition frequencies
are calculated by using Eq. (45).

205206-7



T. L. KEEVERS, W. J. BAKER, AND D. R. MCCAMEY PHYSICAL REVIEW B 91, 205206 (2015)

transition frequencies as a function of mixing angle. Additional
regimes are possible when the exchange and dipolar coupling
are able to cancel out on either the diagonal or off-diagonal
elements of the Hamiltonian.

Uncoupled regime. This is the simplest case, in which
there is no interaction between the exciton and polaron
(Jex,p,Dex,p = 0). The polaron will nutate at γB1 and the
exciton will be split into two lines, each with a transition
frequency of

√
2γB1. When there is no intraexciton dipolar

coupling (Dex = 0), the exciton levels become harmonically
spaced and a multitransition analysis is required, which we do
not treat in this paper.

Effectively uncoupled regime. Similar behavior occurs in
the effectively uncoupled regime, which occurs when |Dex,p +
3Jex,p| << Dex . The off-diagonal mixing vanishes and the
physics will be identical to the weakly coupled regime except
that the transitions have a greater splitting.

Weakly coupled regime. The generic weakly coupled regime
corresponds to when there is a small exciton-polaron coupling
(|Dex,p|,|Jex,p| << Dex) as compared with the hyperfine and
intraexciton dipolar (Dex) coupling. The exciton and polaron
resonances become weakly correlated—the |T+↑〉 ↔ |T+↓〉
and |T0↑〉 ↔ |T0↓〉 transitions will have slightly different
transition frequencies, for instance, and the |T+↓〉 ↔ |T−↑〉
transition becomes weakly allowed and will provide a low
frequency background.

Isoenergetic regime. An interesting case occurs when
Dex,p = 3

2Jex,p and Jex,p << Dex . The energy levels will be
unshifted to first order, but there will be a small shift in the
transition frequencies and the effective recombination rates.

Trionic regime. The trionic regime will occur when there is
strong exchange or dipolar coupling between the exciton and
polaron states. In either case, the exciton and polaron become
strongly entangled and form either quartet or doublet states.
Driving between the quartet and doublet states (|Q± 3

2
〉 ↔

|D∓ 1
2
〉, |Q± 1

2
〉 ↔ |D± 1

2
〉) will have a vanishingly small prob-

ability. Driving will also occur between the doublet states
(|D 1

2
〉 ↔ |D− 1

2
〉) at a frequency of γB1 and between the quartet

states (|Q± 3
2
〉 ↔ |Q± 1

2
〉, |Q 1

2
〉 ↔ |Q− 1

2
〉) at frequencies of√

3γB1 and 2γB1, respectively. As these transitions leave
the overall quartet-doublet content unchanged, they will not
produce an observable signal in the absence of spin-orbit
coupling or some other additional spin-reaction pathway.

Intermediate coupling regime. Between these two extremes
lies the intermediate coupling regime which involves neither
pure triplet-doublet, nor quartet-doublet basis states. There
will be eight possible transitions with frequencies between zero
and three γB1. Due to the large parameter space this regime
encompasses, a numerical approach is usually required.

We have so far dealt with an exciton interacting with a
polaron, which corresponds to positive exchange and dipolar
coupling using our definition. A bipolaron interacting with a
counterion can be treated by including negative exchange and
dipolar coupling, a scenario advocated by Shinar [26].

Once again we can precisely extract the spin-spin cou-
pling from the Rabi fingerprint. Weak coupling produces
individually excitable bipolaron and counterion states with
characteristic Rabi frequencies of γB1 and

√
2γB1. As the

coupling strength is increased the bipolaron will be torn apart,

FIG. 4. (Color online) Transition frequencies of a bipolaron
counterion complex, which is treated by introducing a negative

mixing angle. At an angle of θ1 = cos−1
√

2
3 − cos−1

√
1
3

2 the bipolaron is
broken apart by the strong Coulombic attraction from the counterion.
If the coupling is increased further an exciton-polaron complex is

formed for a mixing angle of θ2 = cos−1
√

2
3 − cos−1

√
1
3 . From

mixing angles of θ2 to θ3 = cos−1
√

1
3 the transition frequencies of

the exciton-polaron complex evolve in an identical manner to the
positive mixing angle regime. Transition frequencies are calculated
from Eq. (45).

which occurs at a mixing angle of

θ1 =
cos−1

√
2
3 − cos−1

√
1
3

2
(46)

and can be seen as a frequency degeneracy in Fig. 4. If the spin-
spin coupling is increased, then an exciton-polaron complex
will be formed at a spin mixing angle of

θ2 = cos−1

√
2

3
− cos−1

√
1

3
. (47)

This produces Rabi frequencies of γB1 and
√

2γB1, as
expected. After this point the states may form a trion,
proceeding in a similar manner to above with a maximum
mixing angle of

θ3 = cos−1

√
1

3
(48)

indicating the complete formation of a spin-3/2 particle. The
transition between each of these regimes is shown in Fig. 4.

IV. HALF-FIELD

It is possible to directly excite a “�ms = 2” spin-flip
transition between the T− and T+ states of an exciton at the
half-field resonance:

H1

�
= 2γB1

[
Sx

ex + Sx
p

]
(e2iωt + e−2iωt ). (49)

This transition is nominally forbidden, but becomes weakly al-
lowed due to off-diagonal zero-field splitting which suppresses
spin as a good quantum number and creates admixtures of the
T+ and T− states.

To perform quantitative analysis of the half-field transitions
it is necessary to move to the doubly rotating frame and expand
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the time-averaged Hamiltonian to second order [14]

H̄ = 1

τc

∫ τc

0
H (t)dt − i

2τc

∫ τc

0

∫ t2

0
[H (t2),H (t1)]dt1dt2,

(50)
where H̄ is the average Hamiltonian, τc is the period of
the perturbation, and H is the original Hamiltonian. This
produces a term proportional to

B1D sin 2θ

B0
(S+S+ + S−S−), (51)

which is responsible for the �ms = 2 transition. To obtain the
correct transition probability, it is necessary to integrate over
all the possible orientations with the appropriate weighting.
The ensemble half-field Rabi frequency will scale with the
driving field and dipolar strength in the perturbative regime.

V. MICROSCOPIC BASIS FOR RECOMBINATION

So far we have discussed the spin-dependent recombina-
tion of exciton-polaron complexes. An obvious argument to
account for the different rates is spin conservation: the ground
state is S = 1/2, so we should expect the doublet states to
decay faster than the quartet states; however, this ignores the
fact that both are orthogonal to the ground state:〈

Q|0, 1
2

〉 = 0, (52)

〈
D|0, 1

2

〉 = 0. (53)

We propose a possible mechanism in which spin conservation
holds, yet allows spin angular momentum to be transferred
between the exciton and polaron: a Dexter exchange-based
pathway [49] reliant on a small asymmetry in the exciton-
polaron exchange. In the canonical Hamiltonian it is tacitly
assumed that the exchange between the lone polaron and each
of the constituent polarons are equal. Due to the opposite
polarity of the exciton polarons, one would expect there to be
a small asymmetry in the two coupling strengths [25]:

Jex,p,tot = Jex,p + �Jex,p, (54)

where Jex,p,tot is the total exchange coupling between the
exciton and polaron, Jex,p is the sum of the two microscopic
exchange interactions, and �Jex,p is a small asymmetry
between the electron-polaron and hole-polaron exchange
couplings (see Table II):

�Jex,p = Se,ex · Se,p − Sh,ex · Se,p. (55)

The asymmetric exciton-polaron exchange interaction
(�Jex,p) is isotropic and will be small in comparison with
the exciton exchange (Jex). The new eigenstates may be
efficiently calculated analytically or numerically, but are
generally cumbersome to deal with. A fruitful path is to
examine the role of exciton-polaron exchange through first
order perturbation theory [43]:

�n = 〈n0|�Jex,p|n0〉 , (56)

|n〉 = |n(0)〉 + �k �=n |k(0)〉 Vkn

E
(0)
n − E

(0)
k

, (57)

TABLE II. Unnormalized eigenkets of a weakly coupled exciton-
polaron complex when there is a small difference in the exchange
coupling. The resultant mixing between singlet and triplet manifolds
allows recombination of the doublet states to the singlet ground state.

No exchange Exchange

↑T+ ↑T+
↑S ↑S + �Jex,p

Jex+ Dex
6

T0 -
√

2�Jex,p

Jex− Dex
6

↓T+

↑T0 ↑T0 - �Jex,p

Jex+ Dex
6

S

↑T− ↑T− -
√

2�Jex,p

Jex− Dex
6

↓S

↓T+ ↓T+ +
√

2�Jex,p

Jex− Dex
6

↑T−

↓S ↑S + �Jex,p

2(Jex− Dex
3 )

↑T0 + �Jex,p

2(Jex− Dex
6 )

↓T+

↓T0 ↓T0 + �Jex,p

Jex+ Dex
3

↓S

↓T− ↓T−

where �n is the energy shift, |n〉 are the new eigenstates
in terms of the uncoupled states, |n(0)〉 and |k0〉 are the
unperturbed eigenstates, E(0) are the unperturbed energies of
the eigenstates, and Vkn are the off-diagonal matrix elements of
the perturbation. The resulting eigenkets are given in Eq. (C1).

In this mechanism the exciton-polaron recombination oc-
curs due to the doublet states becoming mixed with the singlet
exciton. This in turn depends on the relative exchange strengths

〈S|D〉 ≈ �Jex,p

Jex

, (58)

where S is the singlet manifold and D is the doublet content of
the unperturbed states. The rate of the reaction will depend
on the recombination rate of the singlet exciton and the
intraexciton and exciton-polaron exchange strengths,

rexciton-polaron = rsinglet
�Jex,p

Jex

, (59)

where rexciton-polaron is the recombination rate of an exciton-
polaron complex and rsinglet is the recombination rate of a sin-
glet exciton. Since the singlet admixture will be proportional to
the doublet content it provides the same dynamics as a process
mediated directly via doublet content. A similar argument can
be made involving recombination due to a slightly asymmetric
dipolar coupling between the exciton and polaron.

VI. CONCLUSION

Triplet-exciton polaron quenching plays an important role
in the large magnetic field effects observed in organic
semiconductors. We have developed a general time-domain
theory which quantitatively describes the changes in samples
conductivity due to this mechanism in pulsed electrically de-
tected magnetic resonance. Population mixing due to resonant
excitation causes a net change in the exciton-polaron reaction
rate, and hence the free polaron density.

In particular, we have derived transition frequencies
and resonance positions for an exciton-polaron complex
with arbitrary coupling. Our modeling indicates that there
is a clearly discernible transition between an uncoupled
exciton-polaron state and a strongly bound trion. These
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states may be differentiated through their transition
frequencies and resonance positions. Our formalism
provides a general basis for quantitative analysis of the
triplet-exciton polaron process through pEDMR. In the future
multipulse schemes, such as the Hahn echo (T2) or inversion
recovery (T1), could be used to investigate relaxation processes
directly.
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APPENDIX A: HAMILTONIAN

The exciton-polaron Hamiltonian from Eq. (9) can be expanded in the product basis, producing the matrix
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

H11 0 0 0 0 0

0 ω

2 + ωp

2 − 2Dex

3 0 −
√

2Dex,p

6 − Jex,p√
2

0 0

0 0 ω

2 + Dex

3 − Dex,p

3 + Jex,p

2 + ωp

2 − ωex 0 −
√

2Dex,p

6 − Jex,p√
2

0

0 −
√

2Dex,p

6 − Jex,p√
2

0 − ω

2 + Dex

3 − Dex,p

3 + Jex,p

2 − ωp

2 + ωex 0 0

0 0 −
√

2Dex,p

6 − Jex,p√
2

0 − ω

2 − 2Dex

3 − ωp

2 0
0 0 0 0 0 H66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(A1)

where H11 = 3ω
2 + Dex

3 + Dex,p

3 − Jex

2 + ωo

2 + ωex and H66 = − 3ω
2 + Dex

3 + Dex,p

3 − Jex

2 − ωp

2 − ωex .
The static Hamiltonian (H0) may be transformed to the energy eigenbasis using the unitary matrix from Eq. (11),

E1 = 3ω

2
+ Dex

3
+ Dex,p

3
− Jex

2
+ ωp

2
+ ωex, (A2)

E2 = ω

2
+ Jex

4
− Dex,p

6
− Dex

6
− ωex

2
−

(
1

3
(6Dex − 2Dex,p + 3Jex)2 + 8

3
(Dex,p + 3Jex)2

)
, (A3)

E3 = ω

2
+ Jex

4
− Dex,p

6
− Dex

6
− ωex

2
+

(
1

3
(6Dex − 2Dex,p + 3Jex)2 + 8

3
(Dex,p + 3Jex)2

)
, (A4)

E4 = −ω

2
+ Jex

4
− Dex,p

6
− Dex

6
+ ωex

2
+

(
1

3
(6Dex − 2Dex,p + 3Jex)2 + 8

3
(Dex,p + 3Jex)2

)
, (A5)

E5 = −ω

2
+ Jex

4
− Dex,p

6
− Dex

6
+ ωex

2
−

(
1

3
(6Dex − 2Dex,p + 3Jex,p)2 + 8

3
(Dex,p + 3Jex)2

)
, (A6)

E6 = −3ω

2
+ Dex

3
+ Dex,p

3
− Jex

2
− ωp

2
− ωex. (A7)

The first and last matrix elements form 1 × 1 subspaces in the product basis and are left unaffected by diagonalization. The per-
turbative H1 driving terms are strictly off-diagonal elements, which mix the eigenstates, and determine the transition frequencies:

B12 = B21 = B1

2
(sin θ +

√
2 cos θ ), (A8)

B14 = B41 = B1

2
(cos θ −

√
2 sin θ ), (A9)

B23 = B32 = −B1

2
(cos θ sin φ −

√
2 cos θ cos φ +

√
2 sin θ sin φ), (A10)

B25 = B52 = B1

2
(cos θ cos φ +

√
2 cos θ sin φ +

√
2 sin θ cos φ), (A11)

B34 = B43 = −B1

2
(
√

2 cos θ sin φ − sin θ sin φ +
√

2 cos φ sin θ ), (A12)

B36 = B63 = B1

2
(cos φ −

√
2 sin φ), (A13)

B45 = B54 = −B1

2
(cos θ cos φ −

√
2 cos θ sin φ +

√
2 sin θ sin φ), (A14)

B56 = B65 = B1

2
(sin φ +

√
2 cos φ). (A15)
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Substitution of these expressions into Eq. (28) provides a
general description of the coherent dynamics of an exciton-
polaron complex.

APPENDIX B: RESONANCE POSITION

The resonance positions are given by the energy differences
of the eigenstates,

ωij = Ei − Ej . (B1)

These are calculated explicitly from Eqs. (A2)–(A7) and given
in Table III. All of the transitions have a resonance position
which depends on the spin coupling term X, which indicates
that all of the transitions will become very broad as the exciton-
polaron coupling becomes large.

TABLE III. Resonance positions for an exciton polaron with arbi-
trary spin-spin coupling, calculated from Eqs. (A2)–(A7). In the table
below X = [ 1

3 (6Dex − 2Dex,p + 3Jex,p)2 + 8
3 (Dex,p + 3Jex,p)2].

Transition �E

(1)-(2) Dex

2 + Dex,p

2 − 3Jex,p

4 + ωp

2 + ωex

2 + X

(1)-(4) Dex

2 + Dex,p

2 − 3Jex,p

4 + ωp

2 + ωex

2 − X

(2)-(3) ωex − 2X

(2)-(5) ωex

(3)-(4) ωex

(3)-(6) 3Jex,p

4 − Dex,p

2 − Dex

2 + ωp

2 + ωex

2 + X

(4)-(5) ωex + 2X

(5)-(6) 3Jex,p

4 − Dex,p

2 − Dex

2 + ωex

2 − X

APPENDIX C: MICROSCOPIC BASIS FOR RECOMBINATION

The expanded (antisymmetric) exchange matrix can be expanded using the standard tensor product [43] and is⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 0 �Jex,p

2 0 −�Jex,p√
2

0 0 0

0 �Jex,p

2 0 0 0 0 0 0
0 0 0 0 0 �Jex,p√

2
0 0

0 −�Jex,p√
2

0 0 0 0 0 0

0 0 0 �Jex,p√
2

0 0 −�Jex,p

2 0

0 0 0 0 0 −�Jex,p

2 0 0
0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (C1)

where the coupling term is written in the expanded singlet/triplet-doublet basis. All of the matrix elements lie on off-diagonal
elements, which means the first order effect will be to slightly admix the eigenstates, but not change the energies. This term
therefore allows the canonical triplet-doublet states to project onto the singlet-doublet states. A similar argument can be made
for the exciton-polaron dipolar coupling term.
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