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Spin-dependent recombination and hyperfine interaction at deep defects
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We present a theoretical study of optical electron-spin orientation and spin-dependent Shockley-Read-Hall
recombination in the longitudinal magnetic field, taking into account the hyperfine coupling between the bound-
electron spin and the nuclear spin of a deep paramagnetic center. The master rate equations for the coupled
system are extended to describe the nuclear spin relaxation by using two distinct relaxation times, τn1 and τn2,
respectively, for defect states with one and two (singlet) bound electrons. The general theory is developed for
an arbitrary value of the nuclear spin I . The magnetic-field and excitation-power dependencies of the electron
and nuclear spin polarizations are calculated for the value of I = 1/2. In this particular case the nuclear effects
can be taken into account by a simple replacement of the bound-electron spin relaxation time by an effective
time dependent on free-electron and hole densities and free-electron spin polarization. The role of nuclear spin
relaxation is visualized by isolines of the electron spin polarization on a two-dimensional graph with the axes
log2(τn1) and log2(τn2).
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I. INTRODUCTION

Spin-dependent recombination (SDR) via deep paramag-
netic centers has recently attracted great interest and been
proven to be an effective tool for obtaining an abnormally high
spin polarization of free and bound electrons in nonmagnetic
semiconductor alloys GaAs1−xNx and Ga1−yInyAs1−xNx and
quantum wells Ga(In)AsN/GaAs at room temperature [1–6]
(see also Ref. [7] and references therein). The centers occupied
by single spin-polarized electrons act as a spin filter [7–9] and
block the free electrons of the same spin polarization escaping
from the conduction band. As a result, the spin polarization of
free photoelectrons generated by circularly polarized optical
excitation (as well as that of bound electrons) can be enhanced
up to ∼ 100%. The amplification of spin polarization is accom-
panied by an increase in the concentration of photoelectrons,
the intensity of band-to-band photoluminescence (PL), and
the photoconductivity, as compared to the linearly polarized
photoexcitation [1,3,4,10].

The hyperfine interaction between the localized electron
and the nucleus of the deep center mixes their spin states re-
sulting in (i) a reduction of the initial electron spin polarization
and (ii) dynamic nuclear polarization of the defect atoms [11].
In the absence of an external magnetic field, the localized-
electron spin polarization can be reduced down to 1/2 and
3/8 for the nuclear spins I = 1/2 and 3/2, respectively. The
longitudinal magnetic field suppresses the hyperfine coupling
and restores the electronic polarization as soon as the electron
Zeeman energy exceeds the hyperfine interaction: the expected
increase in the intensity and the circular polarization of the
edge PL in the longitudinal magnetic field has been confirmed
experimentally. In addition, strong nuclear polarization effects,
due to a combination of the spin-dependent recombination
and hyperfine coupling, have been reported and discussed in
Refs. [12–19]. Particularly, the dynamically polarized nuclei
create an effective magnetic field (the Overhauser field) acting
on the spins of localized electrons; this field is added to the
external magnetic field and shifts the “electron polarization vs
field” curve, with the shift changing the sign under reversal of
the circular polarization of the exciting light [13,14,17].

The theory of spin-dependent Shockley-Read-Hall recom-
bination derived in Ref. [2] (for more details, see Ref. [7])
ignores the nuclear effects. It has been successfully applied
to describe the main features of optical spin orientation of
conduction-band and deep-level electrons in GaAsN at zero
and transverse magnetic field B ⊥ z, where the axis z is
parallel to the exciting light beam and coincides with the
normal to the sample surface. The model of Ref. [2] is unable
to interpret the experimental data obtained in the longitudinal
magnetic field B ‖ z. The initial way out [13] was to assume
the spin-relaxation time τsc of bound electrons to depend
on the magnetic field Bz. This assumption could explain the
polarization recovery with increasing the field. However, the
modified model was not supported by a clear interpretation
of the field dependence of τsc. Moreover, the modified model
could not provide a reasonable interpretation of the observed
shift of the polarization-field curve changing the sign under
the reversal of circular polarization of the incident light.

The first attempt to give a theoretical description of
the studied nuclear polarization processes was performed
by Puttisong et al. [17] (see Supplementary Methods for
Ref. [17]). In that work, the hyperfine interaction is taken
into account approximately by introducing magnetic-field-
independent flip-flop processes in the electron-nuclear system
and including an additional phenomenological parameter, the
flip-flop spin relaxation time. This approximation obviously
provides physical insight into the role of the nuclei but its
validity for a quantitative description is not obvious. A kinetic
theory of the spin-dependent recombination incorporating the
hyperfine interaction of electronic and nuclear spins has been
proposed recently by Sandoval-Santana et al. [19]. The master
equation approach for the spin-density matrix of the electron-
nuclear system includes 144 equations which are solved
numerically. The numerical calculation reproduces the main
experimental findings of Ref. [14]. Nevertheless, the role of
spin relaxation of nuclei in the system under consideration
still remains open. In Ref. [19] the nuclear spins are polarized
only in the deep-center states with single bound electrons. The
defects with two bound electrons are characterized just by their
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steady-state average concentration N2. This means nothing
more than that the formulation of Ref. [19] is based on the
assumption of very fast nuclear spin relaxation in the defect
state with a pair of electrons. As far as we know, at present
there are no grounds to take this assumption for granted. In
general the nuclear spin relaxation times τn1 and τn2 for defect
states with one and two bound electrons can be of the same
order and even longer than the lifetimes of these states.

In this work we develop a theory of the spin-dependent
recombination and hyperfine coupling for the arbitrary values
of τn1 and τn2 and analyze the role of each of them. The
paper is organized as follows. In Sec. II we introduce the
electron-nuclear spin-density matrix of the defect state with
a single bound electron and the spin-density matrix of the
defect with two bound electrons (in the singlet state) and
discuss the restrictions imposed on the nonzero components
of these matrices by the axial symmetry of the system in the
longitudinal magnetic field. In Sec. III, we derive the rate
equations for the spin density matrices taking into account
both the hyperfine coupling for a nucleus with the angular
momentum I and the electron and nuclear spin relaxation. The
particular limiting cases are analyzed in Secs. III A and III B.
The simplifications in the case of a nucleus with I = 1/2
are considered in Sec. IV. The results and discussion of the
numerical calculations are presented in Sec. V. Section VI
contains the concluding remarks.

II. ELECTRON-NUCLEAR SPIN-DENSITY MATRIX

We use the basic states |s,m〉 of the electron-nuclear system,
where s = ±1/2 and m (−I � m � I ) are the bound-electron
and nuclear spin projections upon the fixed axis z, hereafter the
normal to the sample surface, and I is the angular momentum
of a nucleus. In the first, general part of the paper we take
I to be arbitrary and then shift to the particular case of
I = 1/2, which allows simplification of the kinetic equations
for the densities and spin polarizations of the free and bound
electrons. For the deep Ga2+

i -interstitial defect responsible for
the spin-dependent recombination in GaAs1−xNx [12], the
momentum I is 3/2. A detailed analysis for this value of I

will be performed elsewhere.
In addition to |s,m〉, we also use the notation |s,M − s〉 for

the state with the electron spin s and the total component of the
angular momentum M = s + m. In the following we take into
account the hyperfine interaction of the electron and nuclear
spins given by the Fermi contact Hamiltonian

Hhf = As · I,

where sα and Iα (α = x,y,z) are the electron and nuclear spin
operators. Moreover, we consider the normal incidence of the
polarized exciting light in the external magnetic field B ‖ z

(Faraday geometry), take into account the Zeeman Hamil-
tonian HB = gμBBzsz for the bound electrons, and neglect
the interaction between the magnetic field and the magnetic
moments of the nuclei and conduction-band electrons. Here
the bound-electron Landé factor g ≈ 2 and μB is the Bohr
magneton.

The occupation of the defect with one bound electron
is described by a 2(2I + 1) × 2(2I + 1) spin-density matrix
ρsm,s ′m′ . In the Faraday geometry, the components with

unequal total angular-momentum components M = s + m

and M ′ = s ′ + m′ vanish. Therefore, it is enough to consider
the components

ρs,M−s;s ′,M−s ′ ≡ ρ
(M)
ss ′ , (1)

which are normalized on the density of single-electron defects∑
s,m

ρsm,sm =
∑
sM

ρ(M)
ss = N1 .

The matrix ρ
(M)
ss ′ with M = I + 1/2 or M = −(I + 1/2)

contains only one nonzero component and can be presented as

ρ
(I+ 1

2 )
ss ′ = δss ′δs, 1

2
ρ 1

2 ,I ; 1
2 ,I and

ρ
(−I− 1

2 )
ss ′ = δss ′δs,− 1

2
ρ− 1

2 ,−I ;− 1
2 ,−I .

It is worth noting that the electron spin-density matrix (2 × 2
matrix)

ρe
ss ′ =

∑
M

ρ
(M)
ss ′ (2)

is diagonal, whereas the matrices ρ
(M)
ss ′ with |M| < I + 1/2

contain off-diagonal components. In the geometry under
consideration, the spin-density matrix of the defect singlet
with two bound electrons is diagonal; its 2I + 1 diagonal
components N2,m are normalized on the density of double-
electron defects, N2. The sum of N1 and N2 gives the density
of deep defects, Nc.

Thus, for a nucleus with I = 3/2, instead of the 144
equations declared in Ref. [19], there are only 21 nonzero
quantities to be found: 2 components ρ

(2)
1/2,1/2 and ρ

(−2)
−1/2,−1/2,

12 components ρ
(M)
ss ′ with M = 0, ± 1 and s,s ′ = ±1/2, four

components N2,m with m = ±3/2, ± 1/2, the densities of
electrons n±1/2 ≡ n± in the conduction band with the spin
±1/2, and the unpolarized free-hole density p.

III. KINETIC EQUATIONS FOR THE
SPIN-DENSITY MATRIX

The following two kinetic equations,

2cnN−n+ + n+ − n−
2τs

= G+, (3)

2cnN+n− + n− − n+
2τs

= G−, (4)

have the same form as those in the model of Ref. [7] where
the hyperfine coupling was ignored. Here N+ = ρe

1/2,1/2 and
N− = ρe

−1/2,−1/2 are the densities of single-electron defects
with the electron spin ±1/2, their sum N+ + N− being N1; G+
and G− are the generation rates of the spin-up and spin-down
photoelectrons; and cn is the proportionality constant in the
electron trapping rate by deep centers. We remind the reader
that, due to the relations

N+ + N− + N2 ≡ N1 + N2 = Nc , (5)

p = n + N2, n = n+ + n− , (6)
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among the four densities n, N1, N2, and p, only two are linearly
independent.

The steady-state kinetics of defects with two paired elec-
trons is described by the 2I + 1 equations

(Ṅ2,m)cb + (Ṅ2,m)vb + (Ṅ2,m)sr = 0 . (7)

The first term

(Ṅ2,m)cb = 2cn

(
n−ρ

(m+ 1
2 )

1
2 , 1

2
+ n+ρ

(m− 1
2 )

− 1
2 ,− 1

2

)

describes the generation of the defect states with two electrons
due to the capture of a conduction-band electron on a single-
electron defect. The second term

(Ṅ2,m)vb = −cppN2,m

describes the recombination of a free unpolarized photohole
with one of the singlet-state electrons; cp is the proportionality
constant. The final term describes the nuclear spin relaxation.
For the nuclei with I = 1/2 it has a simple unambiguous form:

(Ṅ2,m)sr =−N2,m − N2,−m

2τn2
=− 1

τn2

(
N2,m − N2

2

)
. (8)

In the case of I = 3/2, the spin-relaxation term is ambiguous.
However, if the perturbation leading to the inter-sublevel
mixing is nonselective then, similarly to Eq. (8), the relaxation
for I = 3/2 is characterized by one time parameter as
follows [11]:

(Ṅ2,m)sr =− 1

τn2

(
N2,m − 1

2I + 1

∑
m′

N2,m′

)

=− 1

τn2

(
N2,m − N2

2I + 1

)
. (9)

The kinetic equations for the spin-density matrices ρ
(M)
ss ′ =

ρsm,s ′m′ (s + m = s ′ + m′ = M) can be written in a compact
form as

˙̂ρ(M)
cb + ˙̂ρ(M)

vb + ˙̂ρ(M)
esr + ˙̂ρ(M)

nsr = i

�
[H(M)ρ̂(M)]. (10)

In Eq. (10) the first and second terms(
ρ̇

(M)
ss ′

)
cb =−cn(n−s + n−s ′ )ρ(M)

ss ′ and(
ρ̇

(M)
ss ′

)
vb = cp

2
N2,M−spδss ′ (11)

describe the capture and loss of the second electron by a
defect. The term on the right-hand side represents the hyperfine
and Zeeman interactions with a 2 × 2 M-dependent spin
Hamiltonian:

H(M) = �(uMsz + vMsx) , uM = β + M� ,

vM = �

√(
I + 1

2

)2

− M2 , (12)

where � = A/�, β = gμBBz/�, sα = σα/2, and σα are the
spin Pauli matrices. The bound-electron spin relaxation is
phenomenologically described by the standard term

(ρ̇sm,s ′m′)esr = − 1

τsc

(
ρsm,s ′m′ − δss ′

2

∑
s ′′

ρs ′′m,s ′′m

)
,

which is equivalent to

(
ρ̇

(M)
ss ′

)
esr =− 1

τsc

[
ρ

(M)
ss ′ − δss ′

2

(
ρ(M)

ss + ρ
(M−2s)
−s,−s

)]
. (13)

Similarly to Eqs. (8) and (9), the nuclear spin relaxation can
simply be described by

(ρ̇sm,s ′m′ )nsr = − 1

τn1

(
ρsm,s ′m′ − δmm′

2I + 1

∑
m′′

ρsm′′,sm′′

)
, (14)

or [see Eq. (2)]

(
ρ̇

(M)
ss ′

)
nsr = − 1

τn1

(
ρ

(M)
ss ′ − δss ′

ρe
ss

2I + 1

)
. (15)

We remind the reader that, for nonzero density-matrix compo-
nents, the sum s + m coincides with s ′ + m′, which means that
s = s ′ if m = m′. The set of matrix equations (10) represents
8I + 2 scalar equations, particularly, 6 equations for I = 1/2
and 14 equations for I = 3/2.

The summation of the terms in Eq. (10) over M yields the
equations for the densities N± of single-electron defects [see
Eqs. (3) and (4)]:

2cnN+n− + N+ − N−
2τsc

+ i

�

∑
M

[H(M)ρ̂(M)] 1
2 , 1

2
= cp

2
N2p,

2cnN−n+ + N− − N+
2τsc

+ i

�

∑
M

[H(M)ρ̂(M)]− 1
2 ,− 1

2
= cp

2
N2p.

(16)

The off-diagonal components of the spin-density matrix
ρ̂(M) can be expressed via the diagonal components:

ρ
(M)
1
2 ,− 1

2
= i

�

H(M)
1
2 ,− 1

2

(
ρ

(M)
1
2 , 1

2
− ρ

(M)
− 1

2 ,− 1
2

)
cnn + 1

τsc
+ 1

τn1
+ i

�

(
H(M)

1
2 , 1

2
− H(M)

− 1
2 ,− 1

2

) . (17)

Excluding the off-diagonal components we obtain for the
diagonal components of the commutator in Eq. (10)

i

�
[H(M)ρ̂(M)] 1

2 , 1
2

= i

�

(
H(M)

1
2 ,− 1

2
ρ

(M)
− 1

2 , 1
2
− ρ

(M)
1
2 ,− 1

2
H(M)

− 1
2 , 1

2

)
= UM

(
ρ

(M)
1
2 , 1

2
− ρ

(M)
− 1

2 ,− 1
2

)
, (18)

where

UM = 1

2

v2
MTcn

1 + u2
MT 2

cn

(19)

and
1

Tcn

= cnn + 1

τsc

+ 1

τn1
. (20)

The factor U0 is an even function of the longitudinal magnetic
field, whereas the factors UM with M 	= 0 are asymmetric
functions of Bz because

u2
M = (β + M�)2 = (gμBBz + MA)2/�

2. (21)

Under circularly polarized photoexcitation, the electron-
nuclear states with M and −M (M 	= 0) can be differently
involved in the kinetics, which is the main reason for the
asymmetry of dependence Pe(Bz) observed experimentally for
I = 3/2 [13,17]. The particular case I = 1/2 is exceptional.
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Indeed, in this case v±1 = 0 and U±1 = 0 [see Eqs. (12)
and (19)], while v0 and U0 are nonvanishing. However, since
u2

0 ∝ B2
z the factor U0 is a symmetric function of Bz and the

same is valid for the electron and nuclear spin polarizations as
functions of Bz.

Expression (18) describing the effect of hyperfine interac-
tion can be rewritten in the form

2π

�

(vM

2

)2 (
ρ

(M)
1
2 , 1

2
− ρ

(M)
− 1

2 ,− 1
2

) 1

π

�/Tcn

(�uM )2 + (�/Tcn)2
, (22)

allowing the interpretation in the spirit of Fermi’s golden rule
for the probability rate

W21 = 2π

�
|V21|2(f1 − f2)δ(E2 − E1)

of the transition from the quantum state |1〉 to the state |2〉,
where E2 and E1 are the energies of these states, f2 and f1

are their average occupations, and V21 is the matrix element of
the perturbation operator. In Eq. (22), the role of the ideal
δ-function is played by the smoothed δ-function with the
damping T −1

cn .

A. The model neglecting nuclear spin relaxation

If the nuclear spin relaxation is neglected then the set of
kinetic equations reads as follows:

cpN2,mp = 2cn

(
n−ρ

(m+ 1
2 )

1
2 , 1

2
+ n+ρ

(m− 1
2 )

− 1
2 ,− 1

2

)
,

2cnn−sρ
(M)
ss + U ′

M

(
ρ(M)

ss − ρ
(M)
−s,−s

)
+ 1

2τsc

(
ρ(M)

ss − ρ
(M−2s)
−s,−s

) = cp

2
N2,M−sp, (23)

where

U ′
M = 1

2

v2
MTc

1 + (
u2

MTc

)2 and
1

Tc

= cnn + 1

τsc

.

We remind the reader that, for M = ±(I + 1/2), the value of
uM vanishes and, thus, U ′

M is nonzero only for |M| < I + 1/2.
Surprisingly, the Eqs. (23) have a simple magnetic-field-

independent solution:

Pe = n+ − n−
n+ + n−

= PiGT

(1 − η)n
, Pc = N+ − N−

N+ + N−
= Tc

τc

Pe,

ρ(M)
ss = CIN1(1 + Pc)J+M (1 − Pc)J−M,

N2,m = 2CIN2(1 + Pc)I+m(1 − Pc)I−m, (24)

where G = G+ + G− is the total optical generation rate of
photoelectrons into the conduction band (or, equivalently,
photoholes into the valence band), Pi = (G+ − G−)/(G+ +
G−) is the initial degree of photoelectron spin polarization,

η = T Tc

ττc

, τc = 1

cnn
, τ = 1

cnN1
, and

1

T
= 1

τ
+ 1

τs

.

The factor CI is given by

CI = Pc

(1 + Pc)2I+1 − (1 − Pc)2I+1

and equals 1/4 for I = 1/2 and [8(1 + P 2
c )]−1 for I = 3/2.

One can see that, for the steady-state solution (24), the
values ρ(M)

ss and ρ
(M)
−s,−s coincide. This means that, on the

one hand, the diagonal components of the commutator in
Eqs. (16), (17), and (18) are switched off as if the hyperfine
interaction were absent and, on the other hand, the nuclei are
spin polarized and their spin polarizations in the single- and
double-electron defect states coincide:∑

s ρsm,sm

N1
= N2,m

N2
.

Since in the steady state the term U ′
M (ρ(M)

ss − ρ
(M)
−s,−s) in

Eq. (23) vanishes, the densities of conduction-band electrons,
n, and double-electron defects, N2, satisfy equations indepen-
dent of the hyperfine constant A and the magnetic field:

Y (Y + Z) = X, (25)

1 − Y

a

{
Z − P 2

i

(
τs

τ ∗
h

)2
X2(Z + τ ∗/τsc)

[Z + τ ∗/τsc + (1 − Y )τs/τsc]2

}
= X,

(26)

where τ ∗ = (cnNc)−1, τ ∗
h = (cpNc)−1, a = cp/cn, and we use

the dimensionless variables

X = G

cpN2
c

, Y = N2

Nc

= Nc − N1

Nc

, and Z = n

Nc

. (27)

In these notations the hole density p is given by (Y + Z)Nc.
Equations (25) and (26) are identical to Eqs. (20) in Ref. [7]
derived by neglecting electron-nuclear hyperfine interaction.

B. Approximation of unpolarized nuclei

In the limit of very short relaxation time τn1 the hyperfine
coupling described by Eq. (19) is broken and the nuclear effects
are negligible.

At low excitation powers when the lifetime of the single-
electron defect state τc = (cnn)−1 is long compared with τn1

and that of two-electron states τc2 = (cpp)−1 is longer than
τn2, one can take the nuclei to be unpolarized and set

ρ
(M)
± 1

2 ,± 1
2

= N±
2I + 1

.

It follows then that the third terms describing in Eqs. (16) the
hyperfine interaction can be replaced by

i

�

∑
M

[H(M)ρ̂(M)] 1
2 , 1

2
=− i

�

∑
M

[H(M)ρ̂(M)]− 1
2 ,− 1

2

= N+ − N−
2τscn

,

where τ−1
scn is the bound-electron spin relaxation rate induced

by the nucleus and defined by

1

τscn

= 2

2I + 1

∑
M

UM. (28)

Therefore, in this approximation the influence of nuclei is
accounted for by replacing τ−1

sc by the sum τ−1
sc + τ−1

scn.
It follows from the analysis of the above limiting cases that,

in the experiment [13], the studied electron-nuclear system
does not fall under these limiting conditions: both times τn1 and
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τn2 are not extremely long and τn1 is not extremely short. In the
numerical treatment [19] time τn2 was taken to be very short but
time τn1 was finite, in which case the theory allows for I > 1/2,
an asymmetrical dependence of the electron polarization on the
longitudinal magnetic field.

IV. HYPERFINE INTERACTION FOR A NUCLEUS
WITH I = 1/2

In this case it is suitable to introduce the nuclear spin
polarizations,

Sn1 = 1

2

∑
s

(
ρs, 1

2 ;s, 1
2
− ρs,− 1

2 ;s,− 1
2

)
and

Sn2 = 1

2

(
N2, 1

2
− N2,− 1

2

)
,

and the electron-nuclear spin correlator,

�zz = 1
4

(
ρ 1

2 , 1
2 ; 1

2 , 1
2
− ρ− 1

2 , 1
2 ;− 1

2 , 1
2

− ρ 1
2 ,− 1

2 ; 1
2 ,− 1

2
+ ρ− 1

2 ,− 1
2 ;− 1

2 ,− 1
2

)
.

In addition, hereafter we use the notations

S = 1
2 (n+ − n−) and Sc = 1

2 (N+ − N−)

for the spin polarizations of free and bound electrons.
Then the set of equations for n, N1, N2, p, S, Sc, Sn1, Sn2,

and �zz reduces to

N1 + N2 = Nc, (29a)

p = n + N2, (29b)

cn(nN1 − 4SSc) = G, (29c)

cppN2 = G, (29d)

cn(N1S − nSc) + S

τs

= Pi

2
G, (29e)

cn(nSc − N1S) + Sc

τsc

+ U0(Sc − Sn1) = 0, (29f)

(
cnn + 1

τsc

+ 1

τn1

)
�zz − cnSSn1 = 0, (29g)

cn(nSn1 − 4S�zz) + Sn1

τn1
− U0(Sc − Sn1) = cppSn2, (29h)

cppSn2 + Sn2

τn2
= cn(nSn1 − 4S�zz), (29i)

where U0 is given by Eq. (19) for M = 0.
By using Eqs. (29g) and (29i) we can first express �zz and

Sn2 via Sn1 as follows:

�zz = cnTcnSSn1 and Sn2 = cnn − 4c2
nTcnS

2

cpp + 1
τn2

Sn1,

and then, by using Eq. (29h), we present the term U0(Sc − Sn1)
in Eq. (29f) in the form U0Sc/(1 + U0TN ), where

1

TN

= 1

τn1
+ 1

τn2

cnn − 4c2
nS

2Tcn

cpp + 1
τn2

. (30)

Thus, the complete set (29) has been reduced to the set of five
equations, Eqs. (29a)–(29e), together with the equation

cn(nSc − N1S) + Sc

τ eff
sc

= 0, (31)

where

1

τ
(eff)
sc

= 1

τsc

+ U0

1 + U0TN

. (32)

We see that the influence of the hyperfine coupling can be
described by the model derived by neglecting the nuclear
effects but using the effective spin relaxation time (32), instead
of the time τsc. It is worth noting that the effective time can be
rewritten in the form postulated in Ref. [13]:

1

τ
(eff)
sc

= 1

τsc

+ U0

1 + U0TN

= 1

τsc

+ 1

τ
(1)
sc

1

1 + (β/β1/2)2
, (33)

where

1

τ
(1)
sc

= 1

TN

�2

�2 + 2
TNTcn

and β1/2 =
√

TN

2Tcn

(
�2 + 2

TNTcn

)
.

(34)
It should be stressed, however, that in Eq. (34) the parameters
τ (1)
sc and β1/2 are not constants but dependent on n, p, and S;

they are found self-consistently during the solution procedure.
In the model under study, the magnetic field affects the

electron polarization only via the time τ (eff)
sc through the field

dependence of u2
0 = (gμBBz/�)2. This clearly demonstrates

that, for I = 1/2, the degree of electron spin polarization Pe =
(n+ − n−)/(n+ + n−) is a symmetric function of Bz, as has
been stated before.

The following procedure is used to solve the set of
equations (29a)–(29e) and (31) for n, p, N1, N2, S, and Sc.
First of all we consider Eqs. (29c) and (29f) as a system of two
linear equations for N1 and Sc. The solution is represented as

N1 = G

2cnn
RN1 and Sc = G

2cnn
Rc, (35)

where the dimensionless coefficients RN1 and Rc are functions
of n, p, and S. The unknown values of n, p, S, and N2 can
readily be expressed via Y and Z [see Eq. (27)] and the electron
polarization degree Pe = 2S/n. Equation (29d) rewritten for
the dimensionless variables Y and Z is given by Eq. (25).
Using Eq. (35) we reduce Eq. (29e) to

X

(
1

2
RN1Pe − Rc

)
+ τ ∗

h

τs

PeZ = PiX. (36)

To obtain the third equation we use Eqs. (29c) and (29e),
express N1 via n,Pe,G, and substitute the expression into
Eq. (29a). This leads to

Y = 1 − a
X(1 − PiPe) + (τ ∗

h /τs)ZP 2
e

Z
(
1 − P 2

e

) = L + MZ

Z
, (37)
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where L and M are independent of Z. Therefore, the
substitution of Eq. (37) into Eq. (25) gives a third-order
equation for Z. Two of the three solutions of this equation are
positive and define the dependencies of electron concentration
on Pe and X. These dependencies together with Eq. (36) allow
us to find two values of Pe at a fixed photogeneration rate X.
One of the solutions gives a negative value of the density of
the double-electron defects Y , and hence the other is a unique
solution of Eqs. (25)–(37).

V. RESULTS OF COMPUTER CALCULATION
AND DISCUSSION

The signature of the electron-nuclear hyperfine coupling
in single-electron defect states is a growth of the spin
polarization Pe of conduction-band electrons and the interband
PL intensity J with increasing the longitudinal magnetic field
as shown in Figs. 1(a)–1(c). In experiment this is observed,
under circularly polarized interband optical excitation, via the
magnetic-field-induced increase in the PL circular polarization
and intensity [13,14,16,17,19]. The set of parameters unrelated
to the nuclei and hyperfine coupling is the same as that used
in the previous analysis [13]: τ ∗= 2 ps, τ ∗

h = 30 ps, τs =
140 ps, τsc = 700 ps, Pi = 0.13, and Nc = 3 × 1015 cm−3.
For deep centers in GaAsN the average hyperfine constant
A was estimated as 6.9 × 10−2 cm−1 = 8.5 μeV [12,18]. For
the nucleus with I = 3/2, the hyperfine splitting of the states
with the total angular momenta 2 and 1 equals 2A. To have

FIG. 1. Spin polarization degree of the conduction-band electrons
(a,b), the intensity of interband PL (c), and nuclear spin polarization
PN1 (d) as a function of the longitudinal magnetic field calculated for
different excitation powers W of the circularly polarized light. The
curves 1–5 correspond, respectively, to the following values of W :
10, 25, 75, 150, and 200 mW. The following set of model parameters
is used in the calculations: τ ∗ = 2 ps, τ ∗

h = 30 ps, τs = 140 ps,
τsc = 700 ps, Pi = 0.13, Nc = 3 × 1015 cm−3, and A = 17 μeV. The
relation G = 2 × 1023W between the generation rate and excitation
power is derived from the experiment, the units for G and W are
cm−3s−1 and mW, respectively. In panel (a), both the nuclear spin
relaxation time of the one-electron defect state (τn1) and that of the
two-electron state (τn2) are taken to equal 150 ps. In panels (b), (c),
and (d), τn1 = 1000 ps and τn2 = 1 ps. Note that the sets of calculated
curves in panels (a) and (b) s are qualitatively similar.

a comparable strength of the hyperfine interaction for the
nucleus with I = 1/2 we take A = 17 μeV. The choice
of the nuclear spin relaxation time in the single-electron
defect state, τn1, causes the greatest difficulties. Apparently,
this phenomenological time parameter cannot be shorter than
the time τn2 describing spin relaxation of the nuclei in the
two-electron defect states. The growth of the polarization Pe

illustrated in Fig. 1 is calculated for (a) the coinciding times
τn1 and τn2 and for (b) the short time τn2 and the long time τn1.

The nuclear spin polarization is characterized by the two
polarization degrees

PN1 = 1

N1

∑
s

(
ρs, 1

2 ;s, 1
2
− ρs,− 1

2 ;s,− 1
2

)
and

PN2 =
N2, 1

2
− N2,− 1

2

N2
.

The variation of the nuclear polarization PN1 with the
longitudinal magnetic field is illustrated in Fig. 1(d).

The dependence of nuclear polarizations PN1 and PN2 on
the excitation power W calculated in the absence of magnetic
field is depicted in Fig. 2. In Fig. 2(a) the values PN1 and
PN2 are different but comparable in magnitude, whereas in
Fig. 2(b), as expected, the polarization PN2 is small and the
polarization PN1 is of the same order as the polarizations
in Fig. 2(a). As seen in Fig. 1(d), the average nuclear spin
is the highest at B = 0 and exhibits depolarization with the
increasing magnetic field since the field decouples the electron
and nuclear spins. It is also worth noting that the zero-field
nuclear spin polarization is a nonmonotonic function of the
excitation power and reaches a maximum for the intermediate
power. This can be understood as follows: in the low-power

FIG. 2. Nuclear spin polarization degrees PN1 (solid curves) and
PN2 (dashed) as functions of the excitation power calculated at zero
magnetic field for (a) τn1 = τn2 = 150 ps and (b) τn1 = 1000 ps and
τn2 = 1 ps. In panel (b) the values of PN2 are multiplied by a factor
of 25.
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FIG. 3. Dependence of the spin polarization of the conduction-
band electrons on the magnetic field calculated for the excitation
power 75 mW and different values of the nuclear spin relaxation time
τn1 (a) assuming τn1 and τn2 coincide and being equal to 0.15 ps
(curve 1), 50 ps (2), 150 ps (3), 450 ps (4), and 150 000 ps (5); (b)
keeping τn2 = 150 ps fixed and taking τn1 to equal 150 ps (curve 1),
300 ps (2), 750 ps (3), 1500 ps (4), and 150 000 ps (5); and (c) τn2 =
1 ps and τn1 = 1 ps (curve 1), 2 ps (2), 5 ps (3), 10 ps (4), and 1000 ps
(5). Other parameters are the same as those in Fig. 1.

limit, the system is slightly driven out of the equilibrium
and the nuclear polarization is still weak; in the high-power
limit, the lifetime of bound electrons τc is very short, the
hyperfine-coupling factor UM in Eqs. (18) and (19) decreases,
and the dynamic nuclear polarization by the polarized electrons
is strongly weakened.

Figure 3 illustrates the sensitivity of the polarization Pe

to variation of the nuclear spin relaxation time in the models
with τn1 = τn2 and τn1 	= τn2. It is clear from the figure that
there exists a critical interval of the time values above which
the electron polarization ceases to depend on the magnetic
field, confirming the conclusion of Sec. III A. The detailed
calculation shows that this interval lies around 1000 ps. On the
other hand, at extremely short nuclear spin relaxation times
τn1 the magnetic field dependence of Pe disappears as well,
due to the increasing uncertainty of Tcn in Eqs. (19) and (20).

The spin-filtering effect is demonstrated in Fig. 4(a). At
very low excitation intensity this effect is not switched on, the

FIG. 4. (Color online) (a) Spin polarization of the conduction-
band electrons as a function of the excitation power calculated at
zero magnetic field (solid curve) and infinitely high magnetic field
(dashed curve). The parameters are the same as those in Fig. 1(a).
Solid and open circles represent the values measured in the absence
of the magnetic field and at B = 6.5 kG [13]. (b) Isolines of the
constant ratio Pe(B → ∞)/Pe(0) considered as a function of two
variables, log2(τn1) and log2(τn2), and calculated at the excitation
power W = 75 mW. The times τn1 and τn2 are in picoseconds.

degree Pe is independent of the magnetic field, and the two
curves in the figure calculated at zero (solid) and the infinitely
high (dashed) magnetic field merge as W → 0. At very high
pumping the curves again merge since the lifetime Tcn [see
Eq. (20)] becomes very short and the uncertainty caused
by this reduction suppresses the hyperfine interaction. The
curves in Fig. 4(a) satisfactorily reproduce the experiment data
represented by circles and taken from Fig. 4(a) in Ref. [13].
An efficient characteristic of the nuclear effect is the difference
from unity of the ratio

ζ = Pe(∞)

Pe(0)
(38)

between the degrees of free electron polarization at infinitely
high and zero magnetic fields. Clearly, the values of ζ lie
between 1 and P −1

e (0).
The ratio (38) is an intricate function of the nuclear relax-

ation times τn1 and τn2. Figure 4(b) summarizes the calculation
of this ratio and presents its isolines on the two-dimensional
graph. The values 2.35 and 2.70 of ζ for the parameters used in
the calculation of curve 3 in Figs. 1(a) and 1(b) are indicated by
triangles in Fig. 4(b). This two-dimensional graph agrees with
expectations following from the analysis of limiting cases.
According to Eqs. (30) and (32), with increasing the times τn1
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FIG. 5. Effect of the hyperfine interaction on the dependence of
the spin polarization of the conduction-band electrons on the magnetic
field. Curves 1–6 are calculated for the excitation power 75 mW and
the following values of the hyperfine constant: A = 0 (horizontal
line 1), A0/4 (curve 2), A0/2 (3), A0 (4), 2A0 (5), and 4A0 (6),
where A0 = 17 μeV. In panel (a), τn1 = τn2 = 150 ps. In panel (b),
τn1 = 1000 ps and τn2 = 1 ps. The values of the other parameters are
the same as those in Fig. 1.

and τn2, the time TN tends to infinity; the effective time τ (eff)
sc

tends to τsc; the dynamic nuclear polarization has no effect on
the steady-state values of n, N1, S, Sc, and Pe; and the ratio
ζ approaches unity [see the upper-right corner of the graph
in Fig. 4(b)]. This also agrees with the general conclusion of
Sec. III A. In the limit of short times τn1 the coupling strength
U0 vanishes, which explains the near-unity values of ζ in the
bottom area of the graph. In the limit of short times τn2, the
dependence of TN on τn2 saturates and Eq. (30) reduces to

1

TN

= 1

τn1
+ cnn − 4c2

nS
2Tcn. (39)

Figure 4(b) shows that, except for the upper-right and
bottom areas, the magnetic field strongly affects the electron
polarization and causes an increase of the latter by a factor of 2
or more. Another point to be mentioned is a weak dependence
of ζ on τn1 and τn2 outside the above two areas. Clearly, the
hyperfine interaction manifests itself via the time TN , which
is a combination of times τn1 and τn2, rather than via each of
them separately.

Finally, Fig. 5 depicts the magnetic field dependence of
Pe for different values of the hyperfine constant A. At zero

A the. electron polarization is insensitive to the longitudinal
magnetic field. With A increasing up to 68 μeV, the zero-field
value of Pe decreases by a factor of ∼3. The half width B1/2

of the recovery curve

Pe(B) − Pe(0)

Pe(∞) − Pe(0)

increases sublinearly and is more sensitive to the variation of
A as compared to Pe(0).

VI. CONCLUSION

Thus, due to the axial symmetry of the system in the
external longitudinal magnetic field, the components ρsm,s ′m′

of the spin-density matrix of the defect state with a single
electron are nonzero only for the equal total angular mo-
mentum projections M = s + m and M ′ = s ′ + m′, and the
spin-density matrix of the defect in the two-electron singlet
state is diagonal and described by the densities N2,m of the
centers with the nuclear spin projection m. The off-diagonal
components ρs,M−s;s ′,M−s ′ with s 	= s ′ can be readily expressed
via the diagonal components, which has allowed us to derive
the quantum master equations containing only the diagonal
components ρsm,sm and N2,m. The equations take into account
the Zeeman splitting of the electron states in the longitudinal
magnetic field, the electron-nuclear spin coupling described
by the hyperfine constant A, the spin relaxation of free and
bound electrons described, respectively, by the times τs and
τsc, and the nuclear spin relaxation times τn1 and τn2 in the
defect states with one and two electrons, respectively. The
model reproduces the magnetic-field-induced suppression of
the hyperfine interaction, the recovery of the electron spin
polarization, and the increase in the edge PL intensity under the
circularly polarized optical excitation. The dynamic nuclear
spin polarization appears to be a nonmonotonic function of the
excitation power. It has been shown that for the nuclear spin
I = 1/2 both the PL intensity and the circular polarization are
even functions of the longitudinal magnetic field Bz. Moreover,
even for I > 1/2, there is no shift of the polarization-field
curve or the intensity-field curve if the nuclear spin relaxation
is negligible or too fast.

For I = 1/2 we have calculated the magnetic-field and
excitation-power dependencies of the electron and nuclear
spin polarizations and analyzed the role of the nuclear spin
relaxation in each of the two defect states. For this purpose we
have plotted contour lines of the ratio Pe(B → ∞)/Pe(0) in
the two-dimensional plane [log2(τn1),log2(τn2)].
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