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Electronic structure and thermoelectric properties of n- and p-type SnSe
from first-principles calculations
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We present results of the electronic band structure, Fermi surface, and electron transport property calculations
in the orthorhombic n- and p-type SnSe, applying the Korringa-Kohn-Rostoker method and the Boltzmann
transport approach. The analysis accounted for the temperature effect on crystallographic parameters in Pnma

structure as well as the phase transition to CmCm structure at Tc ∼ 807 K. Remarkable modifications of the
conduction and valence bands were noticed upon varying crystallographic parameters within the structure before
Tc, while the phase transition mostly leads to the jump in the band-gap value. The diagonal components of the
kinetic parameter tensors (velocity, effective mass) and resulting transport quantity tensors [electrical conductivity
σ , thermopower S, and power factor (PF)] were computed for a wide range of temperature (15–900 K) and hole
(p-type) and electron (n-type) concentrations (1017–1021 cm−3). SnSe is shown to have a strong anisotropy of
the electron transport properties for both types of charge conductivity, as expected for the layered structure, with
the generally heavier p-type effective masses compared to n-type ones. Interestingly, p-type SnSe has strongly
nonparabolic dispersion relations, with the “pudding-mold-like” shape of the highest valence band. The analysis
of σ , S, and PF tensors indicates that the interlayer electron transport is beneficial for thermoelectric performance
in n-type SnSe, while this direction is blocked in p-type SnSe, where in-plane transport is preferred. Our results
predict that n-type SnSe is potentially even better thermoelectric material than p-type SnSe. Theoretical results
are compared with the single-crystal p-SnSe measurements, and good agreement is found below 600 K. The
discrepancy between the computational and experimental data, appearing at higher temperatures, can be explained
assuming an increase of the hole concentration versus T , which is correlated with the experimental Hall data.
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I. INTRODUCTION

Thermoelectric (TE) conversion in crystalline solids con-
stantly attracts the interest of scientists, not only due to
the increasing performance of energy-harvesting systems but
also due to the fact that the conventional and “well-known”
thermoelectric materials, such as PbX (X = S, Se, Te) [1–3]
and Bi2Te3 (e.g., [4]), still surprise scientists with their novel
and remarkable physical behaviors. It is commonly accepted
that TE figure of merit zT = σS2/κT captures well the basic
transport properties of the material at a given temperature
T , i.e., electrical conductivity σ , Seebeck coefficient S, and
thermal conductivity κ , and is conveniently expressed in di-
mensionless units. As all these transport quantities apparently
depend on temperature and carrier concentration (n or p), the
maximum of zT is expected when properly correlating both
intrinsic electron transport properties of the system (e.g., the
band-gap magnitude) with temperature range and doping level
with the hole or electron concentration to achieve p- and n-type
materials, respectively. However, getting better insight into
atomic-level connections among crystal stability, electronic,
and lattice properties of TE systems generally allows for a more
convincing interpretation of the complex transport phenomena.

Recent experimental work [5] reported zT ∼ 2.6 at T ∼
920 K along one of the axes in single-crystal p-type SnSe,
which classified this well-known semiconductor as a very
promising TE material. However, further results [6,7] revealed
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much lower zT for polycrystalline samples, showing that SnSe
is a rather complex system.

SnSe is a layered material, with an orthorhombic symmetry
of the unit cell, and its crystal structure strongly depends
on temperature. First of all, SnSe exhibits a crystallographic
phase transition at Tc = 807 K [8]. Below Tc, its unit cell can
be described in Pnma simple orthorhombic space group 62,
with four chemical formulas (eight atoms) in the unit cell (see
Fig. 1). Crystal structure parameters of this “low-temperature”
(i.e., below Tc) phase depend on temperature as well [8].
Since the temperature dependence of the transport properties
(e.g., thermopower) is discussed in our work, those changes in
crystal structure were also taken into account. Accordingly,
three cases are considered: a low-temperature (LT) phase,
described by the experimental crystallographic data taken at
Texpt = 295 K and used in our calculations to represent SnSe in
the temperature range Tcalc = 10–550 K; a middle-temperature
(MT) phase (Texpt = 790 K and Tcalc = 550–807 K); and high-
temperature (HT) phase (Texpt = 829 K and Tcalc > 807 K), as
displayed in the Table I. Above Tc, the high-temperature phase
has an orthorhombic c-base-centered CmCm space group (No.
63). The transition from the simple to the centered unit cell
reduces the number of atoms in the primitive cell from eight
to four, changing the shape and size of the Brillouin zone
(BZ). Thus, it becomes impossible to directly compare the
electronic dispersion relations between the LT/MT and HT
phases when using the HT centered unit cell. Therefore, to
allow for a better understanding and easier analysis of the
role of the phase transition in the evolution of the electronic
structure and transport properties of SnSe, we transformed
the HT SnSe centered unit cell into the equivalent Pbmm
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FIG. 1. (Color online) Crystal structure of SnSe (Se, large green
balls; Sn, small magenta balls). (left) LT phase (Pnma at 295 K),
(middle) MT phase (Pnma at 790 K), and (right) HT phase (Pbmm
above 807 K).

simple orthorhombic one (No. 51). The Pbmm unit cell has
the same number of atoms as and an alignment of the unit
cell axes similar to the structure before the transition (i.e., a

axis is the longest, b is the shortest, and c is in between; see
Fig. 1). With this transformation, the Brillouin zone and the
location of the high-symmetry points remain similar in both
phases (small changes are only in BZ dimensions due to lattice
parameters’ variation). In our computations, the actual values
of the lattice parameters for the HT phase were taken from
the high-temperature (T = 829 K) neutron measurements [8]
and are shown in Table I. It is worth noting that the crystal
structure of SnSe evolves smoothly with temperature (even
while crossing Tc) and the unit cell dimensions, as well
as interatomic distances, change rather continuously with
temperature (see Table I and Ref. [8]). The crystal structure
parameter, which exhibits the most rapid change at Tc, is the z

parameter positioning Sn and Se atoms.
Recently, first-principles calculations of transport proper-

ties of p-type SnSe were reported in Ref. [9]. In our work
we give a more extended analysis of the electronic structure,
effective masses, and transport properties of both n- and p-type
SnSe. The constant relaxation time approximation is used, and
phonon drag effects are not discussed.

This paper is organized as follows. In Sec. II theoretical and
computational details are presented. Section III A describes in
detail the electronic band structure and the Fermi surface of the
valence and conduction states, together with the effective mass

TABLE I. Crystallographic data [8] for the SnSe compound,
measured at different temperatures Texpt, used in our calculations
for selected temperature ranges Tcalc.

Space Lattice Atomic positions

Phase T range group constant (Å) Sn Se

LT Texpt = 295 K Pnma a = 11.501 x: 0.6186 0.3551
Tcalc < 550 K No. 62 b = 4.153 y: 0.25 0.25

c = 4.445 z: 0.1032 0.4818

MT Texpt = 790 K Pnma a = 11.620 x: 0.6230 0.3553
Tcalc = 550–807 K No. 62 b = 4.282 y: 0.25 0.25

c = 4.334 z: 0.0584 0.4878

HT Texpt = 829 K Pbmma a = 11.62 x: 0.6248 0.3558
Tcalc > 807 K No. 51a b = 4.282 y: 0.25 0.25

c = 4.293 z: 0.00 0.50

aTransformed from CmCm (No. 61)

and the transport function analysis. Section III B discusses
anisotropic (single-crystal) and isotropic (polycrystalline-like)
transport properties as a function of temperature and carrier
concentration, and a comparison with experimental data is
carried out. Section IV contains a summary and the conclusions
of the work. In Appendix A, formulas for averaging the
anisotropic transport coefficients are derived in order to
compute their isotropic (polycrystalline) analogs. Appendix B
contains complementary data.

II. THEORETICAL DETAILS

A. Thermopower

The Boltzmann transport theory [10–12], which has suc-
cessfully been applied to study transport properties of various
crystalline materials [13–15], is used to calculate the energy-
dependent electrical conductivity σ (E ) (so-called transport
function, TF):

σ (E ) = e2
∑

n

∫
dk
4π3

τn(k)vn(k) ⊗ vn(k)δ[E − En(k)]. (1)

The symbol ⊗ represents the outer product (Kronecker
product) of two vectors, vn(k) = ∇kEn(k), and τn(k) is the
velocity and lifetime of electrons on band En(k). The transport
function tensor has to be reformulated into a form that is more
convenient for the numerical computation. With the use of
the constant relaxation time approximation [τn(k) = τ0] and
after changing the three-dimensional k-space integration to the
two-dimensional surface integration [En(k) → Sn(E )], it takes
the form

σ τ (E ) = τ0
e2

�

∑
n

∫
Sn(E )

dS

4π3

v(Sn(E )) ⊗ v(Sn(E ))
|v(Sn(E ))| . (2)

TF is directly related to the macroscopic transport coefficients,
such as thermopower, the electronic part of thermal conduc-
tivity, and electrical conductivity. Within this approach [10]
the two basic transport tensors (electrical conductivity σ e and
thermopower S) can be expressed as

σ e = L (0), S = − 1

eT

L (1)

L (0)
, (3)

where

L (α) =
∫

dE

(
− ∂f

∂E

)
(E − μc)ασ (E ). (4)

The value of the chemical potential μc = μc(T ,nd ) depends
on the temperature T , the carrier concentration, and the type
of conductivity (n, p; see Sec. II C).

In the case of an anisotropic structure, such as orthorhombic
SnSe, the transport function tensor (and thermopower as
well) has three linearly independent elements, and in this
work, diagonal elements (i.e., Sxx , Syy , Szz) are calculated.
For the polycrystalline sample without texture, those three
elements have to be averaged in the proper way to obtain
the macroscopically isotropic thermopower and power factor
(PF). The relevant formulas are given here and are derived in
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Appendix A:

Savg = Sxxσxx + Syyσyy + Szzσzz

σxx + σyy + σzz

, (5)

PFavg = 1

3

(
S2

xxσxx + S2
yyσyy + S2

zzσzz

)
. (6)

Since the power factor, in the constant-relaxation-time
approximation, depends linearly on the relaxation time τ (not
calculated here), PF divided by τ is presented.

B. Density of states and effective mass

In a way similar to that for the transport function, the density
of states (DOS) is calculated:

g(E ) =
∑

n

∫
Sn(E )

dS

4π3

1

|∇kEn(k)| . (7)

With this definition g(E ) has units of eV−1 m−3; that is, it
includes the volume of the unit cell.

The DOS function is closely connected to the DOS effective
mass m∗. Here, energy-dependent m∗ is calculated using the
formula [15]

mDOS(E ) = mem
∗
DOS(E ) = �

2 3
√

π4g(E )g′(E ). (8)

Alternatively, effective mass can be computed by integrat-
ing the effective mass tensor over the isoenergetic surfaces:

mij (E ) = mem
∗
ij (E ) =

∫
Sn(E )

[M ij ]dS

/ ∫
Sn(E )

dS, (9)

where the effective mass tensor is defined as [10]

[M ij ]−1 = 1

�2

∂2E

∂ki∂kj

. (10)

Using Eqs. (9) and (10), one may discuss the direction de-
pendence of the effective mass. In the case of an orthorhombic
structure with orthogonal axes, the [M ij ] tensor is diagonal,
and components m∗

xx , m∗
yy , and m∗

zz are computed.
The isotropic band effective mass is determined by the

geometrical mean

m∗
iso = 3

√
m∗

xxm
∗
yym

∗
zz. (11)

Both ways of calculating effective mass [DOS effective mass
from Eq. (8) and band effective mass from Eq. (11)] give the
same results for only parabolic bands. The difference between
those two results gives us an opportunity to estimate the
importance of nonparabolicity of the electronic band structure.

The aforementioned effective masses correspond to the T =
0 K temperature. The temperature effects can be taken into
account via the Fermi-Dirac distribution function in a similar
way, as in the thermopower calculation in Eq. (3). The actual
number of “active” (conducting) electrons, at temperature
T , can be represented as nactive = ∫

dE g(E )(− ∂f

∂E ), and the
effective mass of active electrons as a function of temperature
can be determined from

m∗(T ,nd ) =
∫

dE m∗(E )g(E )
( − ∂f

∂E

)
∫

dE g(E )
( − ∂f

∂E

) , (12)

where nd is the carrier concentration at which m∗ is calculated
(see Sec. II C). Note that this analysis requires an assump-
tion that effective mass is well defined, which for strongly
nonparabolic bands may not be valid.

C. Doping and chemical potential

SnSe is an intrinsic semiconductor, where the Fermi energy
lies inside the gap. As already mentioned, the transport prop-
erties of the intrinsically (defect-doped) p-type single-crystal
[5], polycrystal [6], and p-type Ag-doped polycrystal [7]
samples have already been reported. To simulate the behavior
of the system after doping, we use the rigid-band model [16].
In this approach, an additional number nd of electrons or holes
is the control parameter, added to mimic n-type (positive nd )
or p-type (negative nd ) behavior, and the chemical potential
μc = μc(T ,nd ) needed in Eq. (4) is calculated using the
formula

n + nd =
∫

dE g(E )
1

1 + exp
(E −μc(T ,nd )

kBT

) . (13)

Here n is the total number of valence electrons in the system
(which is 10/f.u. in the case of SnSe), and the integral is taken
from the bottom of the valence bands.

D. Band structure computational details

Electronic band structure calculations were performed
using the full-potential Korringa-Kohn-Rostoker [17–22]
(KKR) method, within the scalar relativistic approach [23,24].
The local-density-approximation (LDA) parametrization of
Perdew and Wang [25] was employed. The self-consistent
cycle was repeated until the difference between the input and
output potentials was less than 1 mRy at any point inside the
unit cell. Isoenergetic surfaces Sn(E ) were obtained with the
use of the marching cube algorithm [26] on a mesh consisting
of 80 × 80 × 80 voxels. To improve visualization, vertex
normal [27] and vertex color techniques were also used. All
energy-dependent functions were calculated with a resolution
of 2.5 meV. The transport function was additionally inter-
polated between energy mesh points, using spline functions,
which allows us to obtain converged results for temperatures
above 10 K in the concentration range of 1017–1021 cm−3.

III. RESULTS

A. Electronic structure

Electronic dispersion relations are shown in Fig. 2 for
the LT [Fig. 2(a)], MT [Fig. 2(b)], and HT [Fig. 2(c)]
phases [28] of SnSe. As expected, the LDA, used in this
work, underestimated the band gaps. Since the gap value is
the important parameter in transport property calculations,
especially at elevated temperatures, the computed band gaps
were expanded to mimic the experimental ones (see Table II).
For the LT phase, the band-gap value was set to E

exp
g = 0.86 eV

[5]. In the MT and HT phases, for which experimental data
are not available, the calculated gap values were extrapolated
proportionally to those in the LT phase; that is, we assume that
the LDA underestimation is proportional to the real gap value.
It is worth noting that the calculated values of the energy gaps
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FIG. 2. (Color online) Electronic band structure of the (a) LT, (b) MT, and (c) HT phases of SnSe, computed along the high-symmetry
directions, as shown in the orthorhombic Brillouin zone. Horizontal lines mark the Fermi energy positions (μc at T = 0 K) for electron/hole
concentrations (in cm−3) of n = 1018 (red), n = 1019 (blue), n = 1020 (green), and n = 1021 (orange).

for the LT and MT phases are almost the same, whereas the
HT phase has a much smaller gap (see Table II). To verify
whether the reduction of the band gap is related to the change
in atomic positions or the unit-cell parameters, additional
calculations were performed for the MT phase, using (i) the
MT atomic parameters and HT lattice constants and (ii) MT
lattice constants and HT atomic parameters. The resulting LDA
band gaps were 0.465 and 0.355 eV, respectively; thus, we
found that the gap value is controlled mainly by the Sn and
Se atomic positions. Recent calculations [9], using the GW

method, reported Eg = 0.829 eV for the LT phase and 0.46 eV
for HT; thus, a reduction of Eg after the phase transition was
also found.

As we explained in the Introduction, due to the transforma-
tion of the HT crystal structure to the simple orthorhombic
Pbmm space group, Brillouin zones in all (LT, MT, and
HT) phases in our calculations have the same shape and
high-symmetry points (BZ is shown schematically in Fig. 2).
The reciprocal-space x,y,z axes are parallel to the a,b,c

real-space directions. Let us start with some general comments
about the band structure before going into a detailed analysis
of the effective masses and the transport properties. In the
LT phase, the highest valence band (VB) appears in the 	-Z
direction, parallel to the z axis. It is worth noting that in the LT
phase, this highest VB has a “pudding-mold-like” shape, which
is reported to be beneficial for thermoelectric performance in
other systems [29]. For the higher-temperature structures (MT
and HT), valence bands are much different, which points out
that electronic band structure is sensitive to temperature, as
simulated by the unit-cell changes. The pudding mold-like VB
changes shape to become more parabolic, and the second VB
in the 	-Y direction aligns with the band in the 	-Z direction.
The lowest conduction band (CB), seen in the 	-Y direction
in all phases, is parabolic-like. Above the band gap we see that
the whole band structure in the 	-Z direction moves down

TABLE II. Calculated (LDA) and experimental [5] values of the
energy band gap (in eV) in SnSe for the three structures, LT, MT, and
HT. The last column shows the extrapolated values, used in transport
calculations (see, text).

Structure LDA Experiment Used in calculations

LT 0.474 0.86 0.86
MT 0.487 no data 0.87
HT 0.350 no data 0.64

considerably when going from LT to HT, which is correlated
with the shortening of the corresponding unit-cell c axis. In the
LT structure, the in-plane unit-cell parameters, b = 4.153 Å
and c = 4.445 Å, are significantly different, which in the
reciprocal space is reflected by the different alignments of
the 	-Y and 	-Z bands. After the phase transition, like in the
MT case, b � c, and the energy locations of CB minima and
VB maxima become similar between those two directions.
What seems quite surprising is that the differences in the
band structures between the LT and MT structures (before
the phase transition) are much larger than those between the
MT and HT structures (i.e., induced by the phase transition).
This shows that the electronic structure evolves continuously
with temperature; however, the band gap changes abruptly at
the phase transition (see Table II), which can result in rapid
changes in the transport properties.

It is also interesting to analyze the bands in the Z-U and
	-X directions, which represent the real-space a direction, i.e.,
contribute the charge transport between the SnSe layers. In all
cases, for the VB part, the resulting bands are very flat, which
is quite intuitive since we expect hampered charge propagation
in this direction. On the other hand, the conduction band in the
	-X direction is very steep and almost linear. All these band
structure features are reflected in the transport properties of
SnSe, as discussed below.

1. n-Type doping

For n-type doping (whatever the LT, MT, and HT structures)
at electron concentrations <1019 cm−3, the Fermi level reaches
one ellipsoidal electron pocket (with twofold degeneracy)
in the 	-Y direction [see Figs. 2 and 3(a)–3(c)]. The band
forming this pocket has a regular, parabolic-like shape, and
isotropic effective mass is m∗

iso � 0.3–0.4 in the LT case and
m∗

iso � 0.2–0.3 in the MT and HT cases. The highest values
of m∗ are found along the x direction [see Figs. 4(b), 4(d),
and 4(f)], where they quickly exceed m∗

xx � 0.5. Therefore,
velocity integrated over the Fermi surface (i.e., transport
function) is 3 times lower in the x direction than in the y and z

directions [see Figs. 5(b), 5(d), and 5(f)], and low x-direction
electrical conductivity is expected [since σe ∼ σ (EF )]. This
behavior corresponds to our expectations of the lower electrical
conductivity perpendicular to SnSe layers (the x direction
is along the a axis). Electron transport properties change
dramatically when the Fermi level reaches further electron
pockets, one in the HT and MT structures at the 	 point at
∼1019 cm−3 and five in the LT structure (one centered at
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FIG. 3. (Color online) Fermi surfaces of the (left) LT, (middle) MT and (right) HT phases of SnSe for the (a)–(c) n-type and (d)–(f) p-type
doping for carrier concentrations (in cm−3) of 1019 (left subpanel) and 1020 (right subpanel). Electron velocities (in m/s) are represented by a
color scale.

the 	 point and four in the 	-T direction) at ∼1020 cm−3.
At these concentrations, the aforementioned steep linear band
in the 	-X direction is activated. In contrast to the previous
case, these new pockets have the smallest mxx (see Fig. 4),
while the largest mass tensor component is now mzz. As a
consequence, the average effective mass, represented by m∗

iso

or m∗
DOS, increases rapidly to 1.0–1.5 (for n ∼ 1020 cm−3 in

LT) and 0.6–0.9 (for n ∼ 1019 cm−3 in HT and MT). Thus, the
transport function tensor component σxx [Figs. 5(b) and 5(d)]
changes from the smallest in the energy range corresponding
to the electron concentration below 1019 cm−3 to the largest
at energies corresponding to 1020 cm−3. The rapid increase
of σxx (connected to the alignment of the five pockets at
the same energy) should favor high thermopower Sxx since
S ∼ d(ln σ )/dE . In the case of n-type doping, in the LT, MT,
and HT phases, after a certain concentration is reached between
1019 cm−3 (HT) and 1020 cm−3 (LT; see Fig. 5), two types of
electrons are involved in the electrical transport along the x

direction: first, those with low mass and high velocity, which
provide high conductivity, and, second, heavy electrons that
are needed to achieve high thermopower. In such a case, a large
power factor can be expected.

DOS effective mass, plotted as a function of the carrier
concentration and temperature [temperature effects according
to Eq. (12)], is shown in Fig. 6. For the sake of completeness,
we present results for all the phases (LT, MT, and HT)
in the wide 15–900 K temperature range. The appearance
of additional electron pockets, which are manifested in the
rapid rise of the effective mass, has sharply determined
concentrations only at very low temperatures. For T = 300 K,
due to temperature blurring of the Fermi-Dirac statistics, m∗
changes gradually with a pronounced bump above 1020 cm−3

in the LT structure. At temperatures around T = 800 K or

higher, electrons, which actively conduct, presumably come
from the deeper-lying bands that have strongly nonparabolic
dispersion relations. Thus, effective mass is not well defined,
and the results must be treated with caution. Generally, in all
the phases, DOS effective masses rise with the concentration
from approximately 0.3me at n = 1018 cm−3 to 2me to 3me at
n = 1021 cm−3.

2. p-Type doping

In the p-type LT structure, up to 1020 cm−3, the Fermi
level penetrates hole pockets located in the 	-Z direction
[Fig. 3(d)]. These pockets have a nonellipsoidal shape, which
is caused by the pudding-mold-like band, because they have
two maxima [see Fig. 2(a)]. In this case, effective mass cannot
be well defined [see Fig. 4(a)] since such a band exhibits
both electronlike and holelike properties due to the convex
and concave curvatures. However, the Fermi surface shape
indicates that the x-direction effective mass possesses the
highest value (elongated shape in the x direction), which, in
real space, corresponds to the a-axis direction (perpendicular
to the SnSe layers). This behavior obviously affects the carrier
velocity, integrated over the Fermi surface [see Fig. 5(a)].
The component σxx , similar to that in the n-type case, is
again the lowest and the highest values of TF detected in
the z (close to the VB edge) and y directions (well below
the VB edge), with both directions being parallel to the SnSe
atomic layers. Interestingly, at higher temperatures (MT and
HT phases) the bands in the 	-Z direction do not have
inflection, and the effective mass is therefore well defined.
At higher concentrations (1020–1021 cm−3) in LT, the Fermi
level also reaches holes from the 	-Y direction [see Figs. 2(a)
and 3(a)]. In HT (and also MT), the axial anisotropy of the
transport properties of SnSe (m∗ and TF) is nicely visible: a
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FIG. 4. (Color online) Effective mass of the (a) and (b) LT, (c)
and (d) MT, and (e) and (f) HT phases of SnSe, calculated using
Eq. (8) (mDOS), Eq. (9) (mxx , myy , and mzz), and Eq. (11) (miso). In
each case, zero energy is fixed in the middle of the energy gap. Black
vertical lines show the Fermi level for various carrier concentrations
(in cm−3): 1 × 1018, 1 × 1019, and 1 × 1020. Left and right columns
present results for the p-type and n-type doping, respectively.

very large effective mass and the smallest transport function
are seen in the x direction, compared with those in the much
more “conducting” y and z directions (in-plane transport). The
electrical conductivity σe,xx is expected to be about 3 times
lower [see Fig. 5(c)] than in the other directions.

Figure 6 (left column) shows p-type DOS effective mass as
a function of the carrier concentration and temperature. The LT
structure, already at n = 1018 cm−3, has a very large value of
the “bare” mass (i.e., not affected by temperature blurring,
T = 15 K curve), m∗ � 1.0, which increases significantly
above n = 2 × 1019 cm−3. At T = 300 K, like for the n-type
doping, the critical concentration, where additional bands
start to influence m∗, is blurred, and m∗ is almost constant
(m∗ � 1.5) up to 1020 cm−3, then increases to 3me at n =
1021 cm−3. At higher temperatures, the deep and heavy valence
bands contribute to the effective mass even at the lowest
concentrations; however, we have to keep in mind that the
integral in Eq. (12) covers carriers far from the gap, where
bands are generally not parabolic; thus, the characterization of
bands in terms of the effective mass may become inaccurate.

Closing the effective mass discussion, for all the LT, MT,
and HT cases, n-type effective masses are smaller than p-type
effective masses.

FIG. 5. (Color online) Transport function (TF) of valence and
conduction bands in LT, MT, and HT phases of SnSe. Zero energy is
fixed in the middle of energy gap, as in Fig. 2. Black vertical lines
show the Fermi level for various carrier concentrations (in cm−3):
1 × 1018, 1 × 1019, and 1 × 1020. Left and right columns present
results for p-type and n-type doping, respectively.

B. Transport properties

1. Thermopower

Thermopower as a function of electron/hole concentration
for the three different temperatures is presented in Fig. 7,
where data for the different temperatures were obtained for
the corresponding crystal structures. The complete results for
all the phases at all temperatures are shown in Appendix B.
The most interesting features are seen for the n-type LT case,
which exhibits strong anisotropy of the Seebeck coefficient,
visible at T = 70 and 300 K around n ∼ 1020 cm−3. The n-
type Sxx tensor element has the largest absolute value; at low
temperatures Sxx starts to dominate at 1 × 1020 cm−3, where
the Fermi energy reaches five electron pockets with high vx

[see red line in Fig. 5(b)]. At higher temperatures (i.e., for MT
and HT), around n ∼ 2 × 1019 cm−3, EF reaches only one
additional electron pocket [see Figs. 5(d) and 5(f), red line],
and the advantage of reaching this pocket spreads over a wider
concentration range (see n-type Sxx at 807 K in Fig. 7). This is
reflected as an ∼20% rise in the Sxx thermopower in the whole
concentrations range.

The anisotropy of p-type thermopower is less significant.
An enhancement of the thermopower similar to that observed
for the n-type thermopower, caused by the appearance of
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FIG. 6. (Color online) DOS effective mass as a function of the
carrier concentration and temperature for the LT, MT, and HT phases
of SnSe. Left and right columns correspond to the p-type and n-type
doping, respectively.

additional bands near the Fermi level, is seen in the p-type Syy

component at p ≈ 3 × 1019 cm−3. Two nonparabolic pockets
have a high velocity of electrons in the y direction, increasing
rapidly at p ≈ 3 × 1019 cm−3, which provides the increase in
the σyy derivative [see green line in Fig. 5(a)]. The significance
of this effect is smaller than for the n-type doping and is seen
only in the LT phase, but it is sufficient to provide an increase
in Syy over Sxx and Szz (best seen at 300 K).

As far as the bipolar effects are concerned, we can observe
that the p-type Sxx element shows the strongest reduction at

FIG. 7. (Color online) Thermopower as a function of the carrier
concentration for the (top) p-type and (bototm) n-type SnSe for T =
70, 300, and 807 K. The electronic band structures of different phases
were used to calculate thermopower: LT at 70 and 300 K and MT and
HT at 807 K.

FIG. 8. (Color online) Isotropic thermopower for LT, MT, and
HT phases of SnSe (see Table I) for n- and p-type doping.

the high temperature, which is caused by the large n-type Sxx

and σxx . The major detrimental effect at high temperatures
is related to the reduction of the band gap during the phase
transition (LT and MT vs HT; see Table II). To visualize the
influence of the gap reduction on the bipolar effect, we have
plotted S at the same temperature of 807 K (phase-transition
temperature) computed for the MT and HT cases. The much
smaller band gap in the HT phase leads to the much stronger
bipolar effect, and the thermopower starts to decrease already
for p < 1019 cm−3 and n < 2 × 1018 cm−3. Note also that the
bipolar effect critically depends on the value of the band gap,
which here for the HT phase was adjusted in an approximate
way since we are not aware of the experimental value.

Isotropic thermopower, calculated using Eq. (5), is shown
as a color map in Fig. 8, and S(T ) curves for selected carrier
concentrations are collected in Appendix B (see Fig. 16). To
allow for a comparison between the different phases, all three
cases for complete temperature ranges are displayed. After
averaging over three directions, in all three phases, p-type
thermopower is generally larger than n-type thermopower. For
the n-type LT map, around n ∼ 1020 cm−3 and below 400 K,
we observe the abnormal bending of S, which increases with
the carrier concentration. This is due to the rise in the Sxx

element, as discussed before. For the MT and HT phases, such
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FIG. 9. (Color online) Power factor of the LT, MT, and HT
phases for (left) p-type and (right) n-type SnSe as a function of
concentration for two temperatures (450 and 807 K), calculated along
three directions.

an effect is not observed, and the variation of S with the carrier
concentration is monotonic (S decreases with n or p). At the
highest temperatures and the lowest carrier concentrations, we
again observe a drop in S due to the bipolar effects, which is
strongest for the p-type HT phase.

2. Power factor

The power factor (PF = S2/σ ), similar to the electrical
conductivity, cannot be directly calculated if the electronic
relaxation time τ is not known; however, the discussion
of PF/τ can still be very useful in optimizing the carrier
concentration in the SnSe system. For completeness of the
analysis, we show results for all the phases (LT, MT, and HT)
at T = 450 and 807 K, although one has to bear in mind that
these phases describe SnSe in limited temperature ranges.

Results of the calculations are shown in Fig. 9. The most
striking observation is that for p-type SnSe, the xx tensor
element of the power factor PFxx is the smallest one, in contrast
to n-type SnSe, where PFxx is the largest. The reason is that in
p-type SnSe, the x-direction interlayer conducting channel is
blocked due to the smallest TF (see Fig. 5, red line), whereas
in n-type SnSe, it is activated by the electron pockets with high
vx . The smallest p-type PFxx , compared with those in the y

and z directions, remains in agreement with the experimental
findings [5].

In the p-type LT phase, the value of the thermopower is
approximately isotropic (except for Sxx at low concentrations);
thus, overall anisotropy in the PF is due to the electrical
conductivity: the transport function element σyy/τ has the
biggest value (in p > 5 × 1019 cm−3), which makes PF largest
in the y direction. For the high-temperature structures, namely,

FIG. 10. (Color online) Isotropic power factor for n- and p-
type SnSe (LT, MT, and HT phases) as a function of the carrier
concentration and temperature. All values are in 1012 W K−2 m−1 s−1.

MT and HT, the power factors for the y and z directions
become similar, and PF is largest for the HT phase. In n-type
SnSe, PF/τ curves look quite similar when comparing the LT,
MT, and HT cases, with decreasing anisotropy (measured as
PFxx /PFyy and PFxx /PFzz) upon going from LT to HT.

For isotropic (polycrystalline) material, the power factor,
calculated using Eq. (6), is mapped in Fig. 10. The first
observation is that, generally, n-type SnSe has larger values
of PFs than p-type SnSe; thus, heavily doped n-type SnSe
can exhibit even better thermoelectric performance and better
polycrystalline zT over the broad temperature range. It seems
that the existence of the structural phase transition is beneficial
for the power factor value only for p-type SnSe, where
the HT phase exhibits the largest values, but only for large
carrier concentrations, for which the bipolar effects are not so
important. However, at higher concentrations, the zT value
may not benefit from the phase transition because of the
increasing contribution of the electronic part of the thermal
conductivity.

The maps of PFs also reveal that SnSe is best suited for TE
application at temperatures T > 600 K and should be rather
heavily doped for both n- and p-type SnSe above 1020 cm−3.

205201-8



ELECTRONIC STRUCTURE AND THERMOELECTRIC . . . PHYSICAL REVIEW B 91, 205201 (2015)

FIG. 11. (Color online) Comparison of the calculated and exper-
imental values [5] of the thermopower vs temperature. Nominal hole
concentrations for the theoretical curves are 3 × 1017 (orange) and
7 × 1017 cm−3 (green).

Note that all the presented transport calculation results
and predictions are based on the constant-relaxation-time
approximation, and, in principle, electron-phonon or electron-
impurity scattering may markedly affect them. Especially for
the case in which both heavy and light electrons are involved
in electrical transport, scattering effects may be of increased
importance due to the different scattering rates for these two
electronic bands.

C. Comparison with experiment

Experimental data were taken from Ref. [5], where the
transport properties of the single-crystal p-type SnSe were
reported. Since our calculations were performed within the
constant-relaxation-time approximation, only thermopower
can be directly compared. Figure 11 shows the measured
Seebeck coefficient along the a, b, and c crystallographic
directions [30] compared with two sets of corresponding
theoretical values for hole concentrations p = 3 × 1017 and
7 × 1017 cm−3. These carrier concentrations were selected
for comparison based on the measured Hall coefficient of
SnSe at T = 300 K, which is also depicted in Fig. 12(a).
Nevertheless, one has to bear in mind that due to the

FIG. 12. (Color online) (a) Concentration derived from the mea-
sured Hall coefficient, according to nH = 1/eRH . (b) Nominal
carrier concentration at which the calculated thermopower equals
the experimental value. All concentrations are given in cm−3, and
experimental data are taken from Ref. [5]. Vertical lines separate the
temperature ranges, where theoretical thermopower of the LT (below
550 K) and MT (above 550 K) phases was used.

anisotropic crystal structure and Fermi surface, as well as
the strongly nonparabolic band structure, Hall coefficient data
do not directly reflect the carrier concentration. In Fig. 11
we see that the experimental Seebeck coefficient matches
the theoretical values below 600 K well for p = 7 × 1017

cm−3 and then is underestimated in the middle-temperature
range (∼700 K). The most intriguing experimental behavior
is noticed for the thermopower, which remains constant with
temperature above Tc. For such high temperatures and a carrier
concentration around p ∼ 1017 cm−3, the bipolar effect should
strongly decrease S, even making S negative, as seen from our
computations shown in Figs. 7 and 16. Similar observations
with even more quickly decreasing S due to the smaller band
gap were reported from calculations in Ref. [9].

One can attempt to explain such an uncommon situation
assuming the gradual increase of the carrier concentration with
temperature since it could explain both the decrease in S above
600 K and the saturation of S above 800 K with an almost
invisible bipolar effect. Experimental Hall measurements also
show that 1/RH increases almost two orders of magnitude
[see Fig. 12(a)] between 600 and 800 K, which supports the
above-mentioned hypothesis. Moreover, for the high carrier
concentration, the thermopower changes smoothly while
crossing the phase-transition temperature. Figure 7 shows
that only concentrations larger than 1 × 1019 cm−3 provide a
similar Seebeck coefficient at T = 807 K for the MT and HT
phases. Finally, measured electrical conductivity (see Ref. [5])
shows nonmonotonic behavior with increasing temperature;
that is, it decreases from 300 to 550 K, increases above 550 K,
and becomes constant above Tc. Such a trend remains in line
with the expectation of increasing carrier concentration above
550 K, where the experimental and theoretical thermopowers
start to deviate.

To partly verify this hypothesis, we have plotted how
carrier concentration should change with temperature to
reach the agreement between the experimental and calculated
thermopowers [31]. Carrier concentration p is extracted by
applying the condition that Sexpt.(T ) = Stheor.(p,T ) at every
T . As we can see in Fig. 12(b), the unusual experimental
behavior of thermopower directly results in the increasing
carrier concentration in SnSe, to more than 1 × 1019 cm−3

around 800 K, and the measured inverse Hall resistivity
[Fig. 12(a)] exhibits a temperature dependence similar to that
of our extracted p(T ) function.

IV. SUMMARY

The electronic structure and thermoelectric properties of n-
and p-type SnSe were studied using the KKR method and the
Boltzmann transport approach within the constant-relaxation-
time approximation. We have shown that the temperature
evolution of the crystal structure within the Pnma phase (i.e.,
before reaching the structural phase transition at 807 K) leads
to significant changes in the electronic band structure. On the
other hand, the phase transition, occurring at 807 K, leads
mainly to the abrupt change in the energy band-gap value,
whereas modifications of E (k) curves are minor. The effective
masses, analyzed as a function of the carrier concentration
and temperature, indicate that, overall, p-type masses are
larger than n-type ones, and SnSe exhibits strong anisotropy
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of the electron transport properties for both types of charge
conductivity.

Computed for room-temperature crystal structure param-
eters, p-type SnSe has strongly nonparabolic dispersion
relations with a pudding-mold-like shape of the highest
valence band. Due to the flat bands yielding large effective
masses, the interlayer electron transport seems to be blocked,
resulting in small power-factor and Seebeck coefficients when
compared with the corresponding values computed for the
other directions (i.e., in-plane electron transport).

The opposite situation was found in n-type SnSe, where
the interlayer direction exhibits band structure features that are
highly beneficial for thermoelectric performance. In this case,
when a critical concentration between 1019 cm−3 (HT) and
1020 cm−3 (LT; see Fig. 5) is reached or when a high-velocity
electron band is thermally activated at high temperatures, two
types of carriers are present simultaneously in the system,
i.e., more localized electrons, with large effective masses,
and highly mobile electrons, which possess low effective
masses and high velocity. This particular combination results
in high thermopower and a large power factor in the interlayer
direction. In view of our results, n-type SnSe may be a better
thermoelectric material than p-type SnSe.

Our theoretical study confirmed the strong anisotropy of
the electron transport in SnSe. This results in a much worse
thermoelectric performance in the polycrystalline material, in
agreement with the experimental reports [6,7].

On the whole, the computational results, derived from the
KKR method and Boltzmann equations, show quite good
agreement with the measured data [5] below T ∼ 600 K. The
experimentally observed changes in S, σ , and RH for T > 600
K suggest that in the measured SnSe samples, the carrier
concentration was gradually increasing, and the discrepancy
between the theoretical and measured Seebeck coefficients
appearing at high temperatures (T > 600 K) can be corrected
when the actual Hall concentration is taken into account
in calculations. Nevertheless, the mechanism responsible for
such a generation of additional carriers, suggested in our
discussion, remains unknown.
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APPENDIX A: POLYCRYSTALLINE RANDOM-GRAIN
MODEL

In a polycrystalline material, where grains have different
crystalline orientation and are randomly distributed, the
effective Seebeck coefficient and the power factor are not
simple averages of the single-grain properties. To obtain
the correct isotropic values, an appropriate circuit model for
thermoelectric generator is built (see Fig. 13).

In the polycrystalline sample it is assumed that the material
consists of three types of small grains, each with thermopower
Sk (k = 1,2,3) and electrical conductivities σk (see Fig. 14)

FIG. 13. Circuit model of lumped (with RL) thermoelectric
material.

distributed on a regular grid. This model can be simplified
to the thermoelectric module made from three solid materials
connected in parallel. On this basis, an equivalent circuit model
was made.

The thermoelectric module with one type of material with
thermopower S and electrical conductivity σ can be replaced
with the electromotive force (emf) E = S
T and r = σ l/A,
where l and A are the length and cross section of the module,
respectively (see Fig. 13). Effective thermopower can be
defined as voltage on the module divided by the temperature
difference 
T when RL goes to infinity.

Seff = U


T
= iRL


T
= E

r + RL

RL


T

RL→∞−−−−→ E

T

= S, (A1)

where i is the current in the circuit.
The power factor can be defined as the capability of energy

production of a material with the cross section A and length l

at the given temperature difference 
T ,

PFeff = P l

A
T 2
, (A2)

where P is the power output of the source when RL goes to
zero (short-circuit power).

P = Ei = E2

r + RL

RL→0−−−→ E2

r
, (A3)

and therefore,

PFeff = P l

A
T 2
=

( E

T

)2
l

Ar
= S2σ. (A4)

FIG. 14. Model of the thermoelectric material, which is built up
from three types of small, randomly distributed grains, with different
transport properties.
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In the case of the equivalent polycrystalline circuit model,
the effective thermopower is

Seff = U


T
= iRL


T
. (A5)

From circuit theory

ik = Ek − iRL

rk

, i =
∑

k

ik, (A6)

FIG. 15. (Color online) Thermopower (a) LT, (b) MT, and (c) HT
phases at three different temperatures and crystallographic directions.

where k is 1,2,3. Now i can be found:

i =
∑

k Ek/rk

RL

∑
k 1/rk + 1

. (A7)

FIG. 16. (Color online) Isotropic thermopower as a function of
temperature for (a) LT, (b) MT, and (c) HT for n- and p-type
doping. Different colored lines correspond to the different carrier
concentrations. Thick lines mark concentrations (in cm−3).
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Seff = iRL


T
=

∑
k Ek/rk

RL

∑
k 1/rk + 1/RL

1


T
(A8)

RL→∞−−−−→
∑

k Ek/rk∑
k 1/rk

1


T
=

∑
k Skσk∑

k σk

.

The power of the source is now a sum of powers of all the
sources,

P =
∑

k

Eki = E2
k − iEkRL

rk

RL→0−−−→
∑

k

E2
k

rk

,

(A9)

and therefore,

PFeff = P l

A
T 2
=

∑
k

( Ek


T

)2
l

Akrk

= 1

3

∑
k

S2
k σk,

(A10)

where Ak = 1/3A (grains are randomly distributed).

APPENDIX B: EXTENDED DATA

This appendix includes additional figures to show the com-
plete data for the anisotropic (Fig. 15) and isotropic (Fig. 16)
thermopowers of the three considered SnSe structures.
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