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Dynamical phase transitions can occur in isolated quantum systems that are brought out of equilibrium by
sudden parameter changes. We discuss the characterization of such dynamical phase transitions based on the
statistics of produced excitations. We consider both the O(N ) model in the large-N limit and a spin model with
long-range interactions and show that the dynamical criticality of their prethermal steady states manifests most
dramatically not in the average number of excitations but in their higher moments. We argue that the growth of
defect fluctuations carries unique signatures of the dynamical criticality, irrespective of the precise details of the
model. Our theoretical results should be relevant to quantum quench experiments with ultracold bosonic atoms
in optical lattices.
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I. INTRODUCTION

The dynamics of isolated quantum many-body systems is
a subject of interest in many areas of physics involving cold-
atomic gases [1], solid-state pump and probe experiments [2],
quantum optics [3], heavy-ion collisions, and cosmology. A
particularly intriguing question in this context is the possible
emergence and detection of new dynamical critical phenom-
ena appearing in the steady or quasisteady states of these
systems. In this work, we will discuss possible experimental
consequences of dynamical phase transitions occurring after
an abrupt change of one of the parameters of an isolated
quantum system (a quantum quench). At long times after the
quantum quench a many-body system is expected either to
thermalize [4,5] or, in the presence of integrability, to relax
to the generalized Gibbs ensemble (GGE) [6,7]. However,
even when thermalization occurs, its dynamics can be highly
nontrivial requiring a two-step process through a prethermal
state [8,9], a phenomenon expected both in low-dimensional
systems close to integrability [10–13] and in high-dimensional
systems close to the mean-field limit. These intermediate states
as well as the GGE have the intriguing feature of supporting
nonthermal behavior [14,15] and in certain instances genuine
dynamical critical effects, i.e., critical phenomena in the
steady state attained after the quench [16–21]. Examples of
prethermalization and dynamical critical behavior were first
observed in the dynamics of the Hubbard model [16,17],
in a variety of mean-field models [18,19], and in field
theories [20] such as the three-dimensional quantum O(N )
model in the infinite-N limit [21,22]. However, the nature of
these transitions and how to distinguish them from thermal
critical phenomena both theoretically and, most importantly,
experimentally is elusive thus far.

In this work, we address these issues and discuss a
characterization of dynamical critical phenomena in bosonic
systems based on the full statistics of excitations generated
in a double quantum quench (see Fig. 1). In particular, we
will argue that dynamical phase transitions can be detected by
studying qualitatively how the fluctuations in the number of

excitations grow in time. Alternatively, they can be charac-
terized by studying quantitatively the nonanalytic behavior of
the stationary number of excitations (or higher moments) as a
function of the quench parameter (see Fig. 2). Experiments
of this type are feasible with cold-atomic gases, where
high-resolution optical imaging techniques give a unique
opportunity to study the dynamics of cold atoms in optical
lattices with single-site resolution [23–25], as demonstrated
by recent measurements of the defects produced by ramping
a system across a quantum critical point [24], the first direct
measure of a string order parameter [26], the detection of
light-cone spreading of correlations [27], and the study of the
dynamics of a mobile spin impurity [28].

In order to corroborate our claims we will work out in detail
the example of the quantum O(N ) model in the large-N limit,
which in equilibrium and for N = 2 is in the same universality
class as the Bose-Hubbard model. The quantum O(N ) model
is known to display a genuine dynamical phase transition for

FIG. 1. (Color online) Schematic of the double quantum quench
protocol. The system is prepared in the disordered (Mott) phase in a
deep optical lattice (a). By reducing the lattice depth, the system is
quenched to the ordered (superfluid) phase and evolves in time (b).
Finally, by rapidly ramping up the optical lattice, the dynamics is
frozen and the defect density is measured (c). In (d) the lattice depth
over time is shown.
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FIG. 2. (Color online) (a) The quantum noise, i.e., fluctuations,
in the number of defects, shows qualitatively different behavior
for quantum quenches above, to, and below the dynamical phase
transition (DPT). While it saturates for quenches to the dynamically
disordered phase (above the transition), blue dashed line, it grows
logarithmically for quenches to transition, red solid line, and as a
power law for quenches to the dynamically ordered phase (below the
transition), black dotted line. In contrast, the number of excitations
in the steady state shows a nonanalytic behavior as a function of the
quench parameter at the dynamical critical point (b).

large N and dimensions d > 2. Furthermore, we discuss the
infinite-range Ising model to demonstrate that our claims are
insensitive to the precise choice of the model.

A characterization in terms of traditional critical exponents
would suggest that the dynamical transition of the O(N ) model
is of the same universality as the corresponding thermal phase
transition [22]. In contrast, the full statistics of defects clearly
differs from the thermal case and characterizes the dynamical
criticality: while the number fluctuations of defects saturate
in time for quenches above the dynamical critical point (i.e.,
quenches to the dynamically disordered phase), they grow
indefinitely for quenches to or below the dynamical critical
point (i.e., to the dynamically ordered phase); see Fig. 2(a).
Furthermore, observables that saturate as a function of time
display singularities at the dynamical transition, as shown in
Fig. 2(b). Finite-N corrections are expected to eventually lead
to a saturation of this indefinite growth and to a smearing of
the kinks at times ∝N . The fate of the dynamical transition
when relaxing the large-N constraint is beyond the scope of
this work. However, our results could help to experimentally
identify dynamical criticality in systems for which theoretical
results are currently not available.

The rest of the paper is organized as follows. In Sec. II A
we discuss the appearance of a dynamical phase transition in
the quantum O(N ) model and its characterization in terms
of traditional critical exponents. In Sec. II B we compute
the statistics of excitations generated in such a model by a
double-quench protocol as represented in Fig. 1 and show the

emergence of the different qualitatively behaviors described
above. In Sec. III we discuss the case of the infinite-range
Ising model, showing that critical signatures in the statics of
the excitations are not a unique feature of the O(N ) model. In
Sec. IV we discuss the one dimensional Bose-Hubbard model,
where no prethermal behavior is expected, showing that in
this case the statistics of excitations unveil the corresponding
dynamical crossover diagram. Section V summarizes and
discusses the results.

II. THE O(N) MODEL

A. Dynamical phase transition

The quantum O(N ) model consists of an N -component real
scalar field in d spatial dimensions with quartic interaction,
whose Hamiltonian reads

H =
∫

ddx

2

[
( ��)2 + ( �∇ �φ)2 + r0( �φ)2 + λ

12N
( �φ)4

]
, (1)

where [φi(�x),�j (�x ′)] = iδd (�x − �x ′)δij , with i and j denoting
different components. Below we will consider the N → ∞
limit (see Ref. [29] for an introduction) where the model
is soluble. In the disordered phase, where 〈φ〉 = 0, it can
be described by a quadratic theory with an effective mass
parameter

r = r0 + λ

12

∫
k

1√
|�k|2 + r

, (2)

where from now on
∫
k

= ∫ � ddk
(2π)d , and � is the ultraviolet

cutoff. The equilibrium critical point is identified by the
condition r = 0, giving r0,c = − λ

12

∫
k

1
|�k| , which is finite for

d > 1. From Eq. (2) it is also possible to compute the critical
exponent ν, since ξ−1 ∼ √

r , obtaining ν = 1/2 (mean field)
for d � 3, and ν = 1

d−1 for 1 < d < 3.
Let us now imagine preparing the system in the ground

state for r0 = r0,i , corresponding to an effective mass ri , and
perform a quench to r0,f . Numerical evidence for a dynamical
transition following a quench of r0 starting within the ordered
phase has been found in this model in d = 3 [21]. Below
we will instead consider quenches starting in the disordered
phase [22], look for the dynamical critical point, i.e., the point
at which the asymptotic effective mass vanishes, and calculate
how the full statistics of excitations evolves in time.

The dynamics of the system can also be described by an
effective quadratic model, but the self-consistently determined
effective mass becomes time-dependent and is given by

r(t) = r0,f + λ

6

∫
k

〈φ�k(t)φ−�k(t)〉, (3)

where φ represents one of the components of the field.
From now on we will focus on a single component due to
their inherent symmetry. Expanding the field in terms of the
operators a�k and a

†
�k

φ�k(t) = f�k(t)a�k + f 

�k (t)a†

−�k, (4)

which diagonalize the initial Hamiltonian, i.e., H0 = ∫
k
(|�k|2 +

r)1/2(a†
�ka�k + 1/2), and imposing the Heisenberg equation of
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motions, we find that the functions f�k(t) have to satisfy the
equation

d2f�k(t)

dt2
+ (|�k|2 + r(t))f�k(t) = 0, (5a)

r(t) = r0,f + λ

6

∫
k

|f�k(t)|2 (5b)

with initial conditions fk(0) = 1√
2ωk,i

, ḟk(0) = −i
√

ωk,i

2 ,

ωk,i =
√

|�k|2 + ri , which are fixed by the requirement that

a�k and a
†
�k diagonalize the initial Hamiltonian.

The numerical integration [31] of Eqs. (5) shows that r(t)
always relaxes to a stationary value different from the equilib-
rium as a result of the fact that the distribution of quasiparticles
after the quench remains nonthermal; see Appendix A. To
predict this stationary value we make the ansatz that the
stationary part of the equal-time two-body Green’s function
is the same as in a free theory (λ = 0) with initial parameter ri

and final parameter r
 to be self-consistently determined [30].
Following this route, we obtain

r
 = r0,f + λ

24

∫
k

2|�k|2 + ri + r


(|�k|2 + r
)
√

|�k|2 + ri

. (6)

A comparison with the exact integration of Eq. (5) shows that
this ansatz gives the correct asymptotic value as long as r0,f is
above or at the dynamical transition, identified by the condition
r
 = 0. When r0,f < rc

0,f it predicts a negative value, while
the numerical solution for the asymptotic value is always zero.
Using Eq. (6) one obtains

rc
0,f = − λ

24

∫
k

2|�k|2 + ri

|�k|2
√

|�k|2 + ri

. (7)

We notice that rc
0,f is finite for d > 2, which thus is the lower

critical dimension of the transition. Furthermore, rc
0,f is always

less than r0,c, i.e., always within the zero temperature ordered
phase.

From Eq. (6) it is also possible to derive the behavior of
the asymptotic mass r
 for small deviations of r0,f from the
dynamical critical point, δr0,f = r0,f − rc

0,f . For δr0,f > 0 we
then have

r
 = δr0,f − λ

6
r


∫
k

√
|�k|2 + ri

4|�k|2(|�k|2 + r
)
. (8)

For d > 4 the integral is convergent in the limit r
 → 0,
so that r
 ∼ δr0,f , while for 2 < d < 4 the integral is the
dominant term implying r
 ∼ (δr0,f )2/(d−2). This translates
to the behavior of the correlation length in the stationary
state ξ
, since (ξ
)−1 ∼ √

r
. Defining the exponent ν
 as
(ξ
)−1 ∼ (δr0,f )ν




, we thus have ν
 = 1
d−2 for 2 < d < 4 and

ν
 = 1/2 for d � 4, with d = 4 playing the role of an upper
critical dimension.

Apparently the critical properties described above are
similar to that of the finite-temperature transition [22]; i.e.,
critical dimensions and exponents are obtained by a shift up
by one dimension as compared to the corresponding quantum
phase transition. However, we will now show that, contrary

to the thermal case, the dynamical transition leaves strong
signatures on the statistics of excitations produced in the
quantum quench.

B. Statistics of excitations and signatures of critical behavior

Let us now imagine starting in the disordered phase and
performing a first quench of r0 at or close to the dynamical
critical point (see Fig. 1). We then let the system evolve
for a time t and finally return to r0,i in order to count
the number of excitations generated, and the observable
described by the operator N̂ = ∫

k
a
†
�ka�k [32]. This is definitely a

fluctuating quantity characterized by a probability distribution
P (N,t), which equivalently can be described in terms of the
moment-generating function G(s,t) = 〈e−sN̂ 〉t . For the O(N )
model in the large-N limit, this quantity can be computed
exactly. Indeed, since the theory is effectively quadratic and
the different k modes interact only through the renormalization
of the mass r(t), we obtain G(s,t) = ∏

�k G�k(s,t) with G�k(s,t)
representing the generating function for a single mode.

In order to compute G�k(s,t) we first express the time-
evolved state |ψ(t)〉�k as a function of a�k and a

†
�k . The starting

point is the expansion of the time-evolved field φ�k(t) in the
same basis, which can be translated from the Heisenberg to
Schrödinger picture by writing

φ�k(0) = f�k(t)ã�k(t) + f 

�k (t)ã†

−�k(t), (9a)

��k(0) = ḟ�k(t)ã�k(t) + ḟ 

�k (t)ã†

−�k(t). (9b)

The operators ã�k and ã
†
−�k are defined by the relation

ã�k(t) |ψ(t)〉 = 0; i.e., they annihilate the time-evolved state.
At the same time, we know that

φ�k(0) = 1√
2ωk,i

(a�k + a
†
−�k), (10a)

��k(0) = i

√
ωk,i

2
(a†

−�k − a�k). (10b)

By inverting Eq. (9), taking into account that f�k(t)ḟ 

�k (t) −

ḟ�k(t)f 

�k (t) = i, and inserting the result into Eq. (10), one

obtains

ã�k(t) = α

�k(t)a�k − β


�k (t)a†
−�k, (11)

with

α�k(t) = f�k(t)

√
ωk,i

2
+ i

ḟ�k(t)√
2ωk,i

, (12a)

β�k(t) = f�k(t)

√
ωk,i

2
− i

ḟ�k(t)√
2ωk,i

. (12b)

From Eq. (11) and the requirement that ã�k(t) annihilate the
time-evolved state, one finally finds

|ψ(t)〉k = 1√|α�k(t)| exp

(
β


�k (t)

2α

�k(t)

a
†
�ka

†
−�k

)
|0〉 , (13)

with a�k |0〉 = 0.
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FIG. 3. (Color online) Saturation value of the defect density
N (t → ∞)/V , V = Ld , red solid line, for quenches from r0,i = 5
to r0,f and λ = 10. N (t → ∞)/V is nonanalytic at the dynamical
phase transition, indicated by the thick gray line. Inset: The first
derivative of the asymptotic defect density − 1

V

dN(t→∞)
dr0,f

exhibits a
pronounced kink at the transition.

Having the expression of the state in terms of a�k and a
†
�k ,

the computation of Gk(s,t) can be straightforwardly done,
for example using coherent states. We finally get G(s,t) =
exp[−Ldf (s,t)] with

f (s,t) = 1

2

∫
k

ln[1 + ρk(t)(1 − e−2s)], (14)

defined for s > −s̄ = 1
2 supk ln ρk (t)

1+ρk (t) . Here, L is the linear
size of the system and

ρk(t) = |β�k|2 = |f�k(t)|2 ωk,i

2
+ |ḟ�k(t)|2

2ωk,i

− 1/2, (15)

with k = |�k|. The function ρk , which fully determines the
statistics of the excitations, is obtained from integrating Eq. (5)
and represents the average number of excitations in each mode.

Let us now characterize the dynamical critical behav-
ior of the system by studying all the cumulants Cn’s of
the distribution of excitations, using the formula Cn(t) =
(−1)n ∂n

∂sn ln G(s,t)|s=0. Below, we present the first two cu-
mulants, i.e., the average N (t) and the variance σ 2(t), in
d = 3 and discuss their characteristic dynamics for quenches
to intermediate values of the bare mass r0,f which are above,
below, or at the dynamical critical point. For additional data
see Appendix B.

First of all, it is important to notice that the time evolution of
the average and of the variance are qualitatively different. The
former does not display striking features and saturates for all
r0,f in the long-time limit. However, its asymptotic value as a
function of r0,f displays nonanalytic behavior at the dynamical
critical point; see Fig. 3. We observe similar nonanalyticities
also in the infinite-range Ising model, as discussed in Sec. III.
In contrast, the variance exhibits three qualitatively different
behaviors, as schematically introduced in Fig. 2. When the
first quench is at the dynamical critical point, i.e., r0,f = rc

0,f ,
the variance per unit volume grows logarithmically in time
t ; see Fig. 4(a). This should be contrasted with what one
would expect for a free field theory, where the variance grows
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FIG. 4. (Color online) (a) Variance per unit volume σ 2/V , V =
Ld , in a log-linear scale for quenches above or at the dynamical
transition, i.e., r0,f � rc

0,f in d = 3, for different values of the
predicted asymptotic effective parameter r
; see Eq. (6). The inset
shows ratios of different cumulants Cn(t → ∞) as a function of
r
, solid lines, and compares them to the corresponding equilibrium
cumulants at finite temperature, dashed lines. (b) Variance per unit
volume σ 2/V in a log-log scale for quenches below the dynamical
transition, i.e., r0,f < rc

0,f in d = 3. δr0,f = rc
0,f − r0,f measures the

distance from the dynamical critical point. In all plots λ = 10 and
ri = 5.

linearly in d = 3; see Appendix A. A totally different behavior
is observed for quenches below the dynamical critical point (to
the dynamically ordered phase), i.e., r0,f < rc

0,f : in this case
the variance grows as a power law tα with α = 1 in d = 3,
Fig. 4(b). Finally, for quenches to an intermediate value of the
bare mass above the dynamical transition (to the dynamically
disordered phase), i.e., r0,f > rc

0,f , the variance saturates at a
finite value, Fig. 4(a).

The physical motivation to explore higher moments of the
excitations is that they probe the small momentum modes
which inevitably characterize dynamical criticality. More
specifically, the statistics of the excitations and the scaling
of all the cumulants for large times t are fully determined by
the scaling of ρk(t) for small k. Indeed ρk(t) is singular as
1/kγ up to an infrared cutoff shrinking to zero as 1/t . Since
the nth cumulant is given by a weighted sum of the integrals
over k of all the integer powers of ρk up to n, we can infer that
its asymptotic behavior in t is given by

Cn ∼
∫

1/t

dk kd−1−γ n ∼ tγ n−d . (16)
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FIG. 5. (Color online) Long-time saturation value of the first two
cumulants for a finite volume as a function of the quench parameter
r0,f . They show signatures of the dynamical phase transition,
indicated by the thick gray solid line.

Numerical results in d = 3 confirm that, as expected from the
behavior of the variance, γ = 3/2 for quenches to the critical
point and γ = 2 for quenches below the critical point, while
in d = 4 we have γ = 2 and γ = 3 in the two respective cases
(see in Appendix B).

Let us now briefly discuss how the above discussed behavior
of the cumulants is affected by the presence of a finite (but
still large) volume V = L3. This scenario can be described by
an infrared cutoff ∼π/L in the integrals over the momenta.
In this case, the variance does not grow indefinitely but rather
saturates as a function of time. Therefore, the time dependence
observed before applies only to the transient. However, there
are still signatures of the dynamical transition in the behavior
of the saturation value as a function of the quench parameter
r0,f , as one may easily ascertain from Fig. 5.

III. INFINITE-RANGE ISING MODEL

As stated in the Introduction, we expect the connection
between the statistics of the excitations and dynamical phase
transitions not to be limited to the specific case of the O(N )
model in the large-N limit. To corroborate such a statement, we
will briefly discuss here the simpler case of the infinite-range
Ising model, which is also known to display a dynamical phase
transition [19].

The Hamiltonian of the infinite-range Ising model reads

HI = − K

2N

N∑
i,j=1

σ z
i σ z

j − λ
∑

i

σ x
i

= − K

2N
(Sz)2 − λSx, (17)

where Sα = ∑
i σ

α
i and N is the total number of spins.

Differently from the O(N ) model studied above, the
statistics of the excitations of this model coincides with the
statistics of the magnetization, i.e., the number of spin flips
along the z directions. The computation can be readily done,
assuming that the initial state is a coherent state (and so is its

0.1 0.2 0.3 0.4 0.5 0.6

0.2

0.4

0.6

0.8

1.0

FIG. 6. (Color online) First two cumulants of the time-averaged
statistics of the magnetization as a function of the final quench
parameter λf starting from the ground state at λi = 0.1.

subsequent time evolution),

|θ,ϕ〉 = e
1
2 θeiϕS−− 1

2 θe−iϕS+|N/2〉. (18)

From this we obtain for the generating function

G(s) = 〈θ,ϕ|e−sSz |θ,ϕ〉 = esN/2

(
e−s + |z|2
1 + |z|2

)N

. (19)

The final step is to obtain differential equations for the
parameters θ (t) and φ(t), which can be achieved start-
ing from the Bloch equations for the spin operators, tak-
ing averages 〈SiSj 〉 � 〈Si〉〈Sj 〉, and using the parametriza-
tion Sz = N

2 cos θ,Sx = N
2 sin θ cos ϕ,Sy = N

2 sin θ sin ϕ. Af-
ter some lines of calculation, the final result is

∂tθ = λ sin ϕ, (20a)

sin θ∂tϕ = −K

2
cos θ sin θ + λ cos ϕ cos θ. (20b)

Solving these equations gives the time-dependent statistics
of the excitations. For a quantum quench starting in the
ferromagnetic phase to a certain λf , one finds oscillatory
solution for both θ (t) and φ(t), so we actually focus on the
statistics of the time-averaged magnetization Sz.

In Fig. 6 we show the behavior of the first two cumulants
per unit spin at long times as a function of the final quench pa-
rameter λf for a fixed initial state, corresponding to the ground
state at λi = 0.1. We can see that both the cumulants signal
the presence of the dynamical phase transition at λf = 0.3
through their nonanalyticities.

We stress that, even though in the above discussed case of
the Ising model measuring the statistics of the excitations and
looking at the order parameter are essentially equivalent, this
is not true in general, as in the case of the O(N ) model and of
Hubbard-like models.

IV. ONE-DIMENSIONAL BOSE-HUBBARD MODEL

The statistics of excitations may be a useful quantity to
study even when no dynamical criticality is expected. In order
to illustrate this, in this section we study the quench dynamics
in the nonintegrable, one-dimensional Bose-Hubbard model
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FIG. 7. (Color online) Statistics of the global defect density in the nonintegrable, one-dimensional Bose-Hubbard model. First and second
cumulant as a function of the quench parameter Jf /Uf , left, and their ratios, right, at filling (a) n = 1 and (b) n = 2. Vertical lines indicate
the equilibrium phase transition, solid gray line, and the ratio Jf /Uf at which the equilibrium gap in the Mott phase corresponds to the energy
density pumped into the system, dashed line. The thin solid lines show the thermal value of the cumulants at the self-consistently determined
effective temperature.

using exact numerical techniques, where our simulations
provide insights into the nonequilibrium crossover diagram
taking into account the full many-body interactions.

We introduce the Bose-Hubbard model on a lattice

ĤBH = −J
∑
〈i, j〉

(b†i bj + H.c.)

+ U

2

∑
i

n̂i(n̂i − 1) − μ
∑

i

n̂i , (21)

where J is the kinetic energy, U the interaction energy, and
μ the chemical potential. The boson creation and annihilation
operators are b

†
i and bi , respectively, which define the density

operator n̂i = b
†
i bi .

We follow the protocol of the double quench introduced
in the Introduction (see Fig. 1), by starting out deep in the
disordered phase at commensurate filling with Ji/Ui = 0.01,
where the ground state |ψ0〉 is close to a product state. The
dynamics is initialized by quenching the kinetic energy to
Jf /Uf . Consequently the system evolves for the wait time t

at which the statistics of global defects

D̂ =
∑

i

|n̂i − n| (22)

is measured, where n is the density of bosons. Higher
cumulants can be obtained from the generating function in
the usual way. In our simulations all cumulants saturate. We
attribute this to the fact that the nonlinearities are fully treated
in the exact simulations and therefore the unbounded growth
observed in the field theory gets regularized.

In Fig. 7 we show the saturation value of the first and
second cumulant (i.e., the average and variance, respectively)
normalized by the volume of the system for various quench pa-
rameters Jf /Uf and commensurate density n = 1 and n = 2.
We find that the more energy is pumped into the system by
the quantum quench, i.e., the larger the final kinetic energy
Jf /Uf is, the larger is the saturation value of the global defect
density D and its higher order statistics.

Since the Bose-Hubbard model is not integrable, it is
expected to thermalize. To study this effect, we perform finite-
temperature simulations in which the effective temperature T ∗
is self-consistently determined by the energy density pumped
into the system by the quantum quench

〈ψ0|HBH(Jf ,Uf )|ψ0〉 = Tr[HBH(Jf ,Uf )e−HBH(Jf ,Uf )/T 


]

Tr[e−HBH(Jf ,Uf )/T 
 ]
,

(23)
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where |ψ0〉 is the state that initializes the dynamics which is
the ground state of HBH(Ji,Ui). The statistics of excitations
evaluated in the thermal state are indicated by the thin solid
lines in Fig. 7(a) and support thermalization for large values
of Jf /Uf already after a few inverse hopping times. At
low values of Jf /Uf � 0.3, which marks the equilibrium
phase transition, gray thick line, small deviations between the
thermal and the long-time average can be observed. However,
we study rather small systems of L = 8 sites and in order to
make a conclusive statement in that regime a proper finite-size
scaling needs to be done. The thick dashed line shows the
ratio of Jf /Uf at which the equilibrium gap corresponds
to the energy density of the quantum quench. Around this
coupling the deviations of the global defect statistics from the
thermalized state seem to be largest. Note, however, that the
deviations from the thermal results are vanishingly small for
all Jf /Uf when we consider the statistics of local (instead of
global) defects, not shown. In the right column of Fig. 7(a)
we show the ratio of the cumulants. The trend here is that the
larger Jf /Uf , the larger the ratios C1/C2 and C2/C3, which
is opposite to the prediction of the field theory for higher
dimension; see inset of Fig. 4(a).

An important difference between the Bose-Hubbard model
at low filling and the field theory is the following: While
infinitely many particle excitations can be created in the
Bose-Hubbard model on top of a certain state with commen-
surate filling n, only n holes can be created locally. This
has to be contrasted with the field theory which does not
obviously discriminate between particle and hole excitations.
Therefore, one could expect that for nonequilibrium dynamics
the agreement between field theory and the Bose-Hubbard
model improves at higher filling. In Fig. 7(b) we thus show the
saturation values when starting out at filling n = 2. The main
difference here is that the ratio C1/C2 decreases for larger
Jf /Uf similarly to the results obtained from the field theory
in higher dimension.

V. CONCLUSIONS

In conclusion, we observed that the dynamical phase tran-
sition of the quantum O(N ) model in the large-N limit leaves
a strong imprint on the statistics of excitations generated in a
quantum quench. We expect this phenomenon to be generic for
systems where dynamical transitions are known to be present at
mean-field level. We corroborated this claim by also studying
the infinite-range Ising model in Sec. III which displays similar
behavior.

Whether signatures of such dynamical transition can be
observed in realistic systems such as the Bose-Hubbard model
is an important open question. We argued that the statistics
of excitations could be an experimentally accessible tool to
solve this problem. Indeed, even though the excitations will not
grow indefinitely in a real experimental system, the dynamical
phase transition can still leave a unique fingerprint on the
statistics of excitations in the intermediate prethermal state
before full thermalization occurs. Experimental studies with
ultracold atoms might therefore be able to shed light on this
challenging question.

ACKNOWLEDGMENTS

We thank G. Biroli, A. Gambassi, and A. Polkovnikov
for useful discussions. The authors acknowledge support
from Harvard-MIT CUA, the ARO-MURI Quism program,
ARO-MURI on Atomtronics, as well as the Austrian Science
Fund (FWF), Project No. J 3361-N20.

APPENDIX A: FREE THEORY AND STATIONARY STATE

In this Appendix we will consider the dynamics of the
systems for a quench of r0 from r0,i to r0,f , when there is no
quartic interaction, i.e, λ = 0. The first obvious consequences
are that there is no renormalization of the initial mass and also
no dynamics of the mass after the quench. The equation for the
functions f�k(t), which are the coefficients of the expansion of
the field φ�k(t) in the basis of the initial Hamiltonian, becomes

d2f�k(t)

dt2
+ (|�k|2 + r0,f )f�k(t) = 0, (A1)

with initial conditions fk(0) = 1√
2ωk,i

, ḟk(0) = −i

√
ωk,i

2 ,

ωk,i =
√

|�k|2 + r0,i , set by the requirement that a�k and a
†
�k

diagonalize the initial Hamiltonian.
The solution of the previous equation is readily

found to be f�k(t) = 1√
2ωk,i

cos(t
√

|�k|2 + r0,f ) −
i√

|�k|2+r0,f

√
ωk,i

2 sin(t
√

|�k|2 + r0,f ). From this expression

we can compute all the quantities of interest, including
the equal-time two-point correlator of the field
〈φ�k(t)φ−�k(t)〉 = |f�k(t)|2:

〈φ�k(t)φ �−k(t)〉 = 2|�k|2 + r0,i + r0,f

4(|�k|2 + r0,f )
√

|�k|2 + r0,i

+ r0,f − r0,i

4(|�k|2 + r0,f )
√

|�k|2 + r0,i

× cos(2t

√
|�k|2 + r0,f ). (A2)

Instead, in the case of the interacting theory with λ �= 0 the
time-dependent effective mass is given by

r(t) = r0,f + λ

6

∫
k

〈φ�k(t)φ−�k(t)〉. (A3)

The numerical integration of the equation of motions shows
that for large t this relaxes toward a stationary value. To predict
this stationary value we make the ansatz that the stationary part
of the equal-time Green’s function 〈φ�k(t)φ−�k(t)〉 is the same
as the free theory but with renormalized masses. In particular,
we take Eq. (A2), disregard the cosine contribution, and make
the substitutions r0,i → ri and r0,f → r
, with r
 denoting the
stationary value of the mass, to be self-consistently determined
from Eq. (A3). In this way we obtain the self-consistent
equation for r
 written in the main text, that is,

r
 = r0,f + λ

24

∫
k

2|�k|2 + ri + r


(|�k|2 + r
)
√

|�k|2 + ri

. (A4)
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FIG. 8. (Color online) Comparison between r(t) obtained by numerical integration of Eq. (A1) for quenches to different r0,f > rc
0,f (curves

of different colors) and the asymptotic value predicted by Eq. (A4) (black dashed lines) for d = 3 (a) and d = 4 (b).

Figure 8 demonstrates how accurately this equation predicts
the stationary value of r(t) up to the dynamical critical
point, identified by the condition r
 = 0 focusing on d = 3
or d = 4, but we checked Eq. (A4) also in lower and higher
dimensions.

Using the solution of Eq. (A1) for λ = 0 and Eq. (15), one
can find the function ρk(t), and thus determine the full statistics
of excitations for the free case. The result of such a procedure
is

ρk(t) = (r0,f − r0,i)2

4(|�k|2 + r0,f )(|�k|2 + r0,i)
sin(t

√
|�k|2 + r0,f )2. (A5)

As discussed at the end of Sec. II B, from this expression,
and in particular from its low-k behavior, one can extract the
behavior of all cumulants. We see that, apart from the sine

which provides an infrared cutoff evolving as 1/t , for r0,f �= 0,
ρk is regular at low k, while for r0,f = 0, which is the critical
point of the free theory, ρk ∼ 1/k2. This implies kn ∼ t2n−d ,
with kn denoting the nth cumulant and t0 corresponds to a
subleading logarithmic growth.

APPENDIX B: SUPPLEMENTAL RESULTS

A systematic study of the time-dependent fluctuations in
d = 3 for various parameters of our model is shown in
Fig. 9. In addition, in Fig. 10 the results obtained for the
variance in d = 4 are shown. The variance shows again three
different qualitative behaviors: saturation when r0,f is above
the dynamical critical point, logarithmic growth when r0,f is
at the dynamical critical point, and power-law growth with
exponent of two when r0,f is below the dynamical critical
point.
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FIG. 9. (Color online) Fluctuations of excitations for quenches (a) above, (b) to, and (c) below the dynamic phase transition for various
parameters as indicated in the figure caption and legend.
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FIG. 10. (Color online) (a) Variance per unit volume σ 2/V in log-linear scale for quenches above or at the dynamical transition, i.e.,
r0,f � rc

0,f in d = 4, for different values of the predicted asymptotic effective parameter r
; see Eq. (A4). (b) Variance per unit volume σ 2/V ,
V = Ld , in log-log scale for quenches below the dynamical transition, i.e., r0,f < rc

0,f in d = 4. δr0,f = rc
0,f − r0,f measures the distance from

the dynamical critical point. In all plots λ = 10 and ri = 5.
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I. Bloch, and S. Kuhr, Nat. Phys. 9, 235 (2013).

[29] M. Moshe and J. Zinn-Justin, Phys. Rep. 385, 69 (2003).
[30] S. Sotiriadis and J. Cardy, Phys. Rev. B 81, 134305 (2010).
[31] All the numerical results shown in the manuscript were obtained

by setting � = π ; however, the convergence of the results has
been checked by varying the cutoff.

[32] We note that the statistics of this operator cannot be simply
reduced to the structure factor 〈∫

k
φ�kφ−�k〉 (or its powers), since

the operators φ�k and a�k do not commute in general.

205136-9

http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1126/science.1197294
http://dx.doi.org/10.1126/science.1197294
http://dx.doi.org/10.1126/science.1197294
http://dx.doi.org/10.1126/science.1197294
http://dx.doi.org/10.1103/PhysRevLett.110.257204
http://dx.doi.org/10.1103/PhysRevLett.110.257204
http://dx.doi.org/10.1103/PhysRevLett.110.257204
http://dx.doi.org/10.1103/PhysRevLett.110.257204
http://dx.doi.org/10.1103/PhysRevE.50.888
http://dx.doi.org/10.1103/PhysRevE.50.888
http://dx.doi.org/10.1103/PhysRevE.50.888
http://dx.doi.org/10.1103/PhysRevE.50.888
http://dx.doi.org/10.1038/nature06838
http://dx.doi.org/10.1038/nature06838
http://dx.doi.org/10.1038/nature06838
http://dx.doi.org/10.1038/nature06838
http://dx.doi.org/10.1103/PhysRev.106.620
http://dx.doi.org/10.1103/PhysRev.106.620
http://dx.doi.org/10.1103/PhysRev.106.620
http://dx.doi.org/10.1103/PhysRev.106.620
http://dx.doi.org/10.1103/PhysRevLett.98.050405
http://dx.doi.org/10.1103/PhysRevLett.98.050405
http://dx.doi.org/10.1103/PhysRevLett.98.050405
http://dx.doi.org/10.1103/PhysRevLett.98.050405
http://dx.doi.org/10.1103/PhysRevLett.93.142002
http://dx.doi.org/10.1103/PhysRevLett.93.142002
http://dx.doi.org/10.1103/PhysRevLett.93.142002
http://dx.doi.org/10.1103/PhysRevLett.93.142002
http://dx.doi.org/10.1103/PhysRevLett.100.175702
http://dx.doi.org/10.1103/PhysRevLett.100.175702
http://dx.doi.org/10.1103/PhysRevLett.100.175702
http://dx.doi.org/10.1103/PhysRevLett.100.175702
http://dx.doi.org/10.1103/PhysRevB.84.054304
http://dx.doi.org/10.1103/PhysRevB.84.054304
http://dx.doi.org/10.1103/PhysRevB.84.054304
http://dx.doi.org/10.1103/PhysRevB.84.054304
http://dx.doi.org/10.1103/PhysRevLett.111.197203
http://dx.doi.org/10.1103/PhysRevLett.111.197203
http://dx.doi.org/10.1103/PhysRevLett.111.197203
http://dx.doi.org/10.1103/PhysRevLett.111.197203
http://dx.doi.org/10.1103/PhysRevB.89.165104
http://dx.doi.org/10.1103/PhysRevB.89.165104
http://dx.doi.org/10.1103/PhysRevB.89.165104
http://dx.doi.org/10.1103/PhysRevB.89.165104
http://dx.doi.org/10.1103/PhysRevLett.113.210402
http://dx.doi.org/10.1103/PhysRevLett.113.210402
http://dx.doi.org/10.1103/PhysRevLett.113.210402
http://dx.doi.org/10.1103/PhysRevLett.113.210402
http://dx.doi.org/10.1088/1367-2630/13/7/073018
http://dx.doi.org/10.1088/1367-2630/13/7/073018
http://dx.doi.org/10.1088/1367-2630/13/7/073018
http://dx.doi.org/10.1088/1367-2630/13/7/073018
http://dx.doi.org/10.1209/0295-5075/107/30002
http://dx.doi.org/10.1209/0295-5075/107/30002
http://dx.doi.org/10.1209/0295-5075/107/30002
http://dx.doi.org/10.1209/0295-5075/107/30002
http://dx.doi.org/10.1103/PhysRevLett.103.056403
http://dx.doi.org/10.1103/PhysRevLett.103.056403
http://dx.doi.org/10.1103/PhysRevLett.103.056403
http://dx.doi.org/10.1103/PhysRevLett.103.056403
http://dx.doi.org/10.1103/PhysRevLett.105.076401
http://dx.doi.org/10.1103/PhysRevLett.105.076401
http://dx.doi.org/10.1103/PhysRevLett.105.076401
http://dx.doi.org/10.1103/PhysRevLett.105.076401
http://dx.doi.org/10.1103/PhysRevLett.105.220401
http://dx.doi.org/10.1103/PhysRevLett.105.220401
http://dx.doi.org/10.1103/PhysRevLett.105.220401
http://dx.doi.org/10.1103/PhysRevLett.105.220401
http://dx.doi.org/10.1088/1742-5468/2011/11/P11003
http://dx.doi.org/10.1088/1742-5468/2011/11/P11003
http://dx.doi.org/10.1088/1742-5468/2011/11/P11003
http://dx.doi.org/10.1209/0295-5075/95/66007
http://dx.doi.org/10.1209/0295-5075/95/66007
http://dx.doi.org/10.1209/0295-5075/95/66007
http://dx.doi.org/10.1209/0295-5075/95/66007
http://dx.doi.org/10.1103/PhysRevB.88.201110
http://dx.doi.org/10.1103/PhysRevB.88.201110
http://dx.doi.org/10.1103/PhysRevB.88.201110
http://dx.doi.org/10.1103/PhysRevB.88.201110
http://dx.doi.org/10.1103/PhysRevB.88.024306
http://dx.doi.org/10.1103/PhysRevB.88.024306
http://dx.doi.org/10.1103/PhysRevB.88.024306
http://dx.doi.org/10.1103/PhysRevB.88.024306
http://dx.doi.org/10.1038/nature08482
http://dx.doi.org/10.1038/nature08482
http://dx.doi.org/10.1038/nature08482
http://dx.doi.org/10.1038/nature08482
http://dx.doi.org/10.1126/science.1192368
http://dx.doi.org/10.1126/science.1192368
http://dx.doi.org/10.1126/science.1192368
http://dx.doi.org/10.1126/science.1192368
http://dx.doi.org/10.1038/nature09378
http://dx.doi.org/10.1038/nature09378
http://dx.doi.org/10.1038/nature09378
http://dx.doi.org/10.1038/nature09378
http://dx.doi.org/10.1126/science.1209284
http://dx.doi.org/10.1126/science.1209284
http://dx.doi.org/10.1126/science.1209284
http://dx.doi.org/10.1126/science.1209284
http://dx.doi.org/10.1038/nature10748
http://dx.doi.org/10.1038/nature10748
http://dx.doi.org/10.1038/nature10748
http://dx.doi.org/10.1038/nature10748
http://dx.doi.org/10.1038/nphys2561
http://dx.doi.org/10.1038/nphys2561
http://dx.doi.org/10.1038/nphys2561
http://dx.doi.org/10.1038/nphys2561
http://dx.doi.org/10.1016/S0370-1573(03)00263-1
http://dx.doi.org/10.1016/S0370-1573(03)00263-1
http://dx.doi.org/10.1016/S0370-1573(03)00263-1
http://dx.doi.org/10.1016/S0370-1573(03)00263-1
http://dx.doi.org/10.1103/PhysRevB.81.134305
http://dx.doi.org/10.1103/PhysRevB.81.134305
http://dx.doi.org/10.1103/PhysRevB.81.134305
http://dx.doi.org/10.1103/PhysRevB.81.134305



