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Local quantum criticality in the two-dimensional dissipative quantum XY model
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We use quantum Monte Carlo simulations to calculate the phase diagram and the correlation functions
for the quantum phase transitions in the two-dimensional dissipative quantum XY model with and without
fourfold anisotropy. Without anisotropy, the model describes the superconductor-to-insulator transition in two-
dimensional dirty superconductors. With anisotropy, the model represents the loop-current order observed in the
underdoped cuprates and its fluctuations, as well as the fluctuations near the ordering vector in simple models
of two-dimensional itinerant ferromagnets and itinerant antiferromagnets. These calculations test an analytic
solution of the model which reexpressed it in terms of topological excitations: the vortices with interactions
only in space but none in time, and warps with leading interactions only in time but none in space, as well
as subleading interactions which are both space and time dependent. For parameters where the proliferation of
warps dominates the phase transition, the critical fluctuations as functions of the deviation of the dissipation
parameter α on the disordered side from its critical value αc are scale invariant in imaginary time τ as the
correlation length in time ξτ = τce

[αc/(αc−α)]1/2
diverges, where τc is a short-time cutoff. On the other hand, the

spatial correlations develop with a correlation length ξx ≈ ξ0 ln (ξτ ), with ξ0 of the order of a lattice constant.
The dynamic correlation exponent z is therefore ∞. The Monte Carlo calculations also directly show warps and
vortices. Their densities and correlations across the various transitions in the model are calculated and related to
those of the order-parameter correlations in the dissipative quantum XY model.
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I. INTRODUCTION

The dissipative quantum XY model was introduced [1,2]
to describe the observed quantum phase transition [3] in thin
metallic films from a superconductor to insulator at a universal
value of their normal-state resistance. In the past few years,
the model has acquired applications in other physical contexts.
The new physical contexts are the quantum-critical point of
the loop-current order in cuprate superconductors [4–6], and
the two-dimensional (2D) itinerant antiferromagnetic (AFM)
quantum-critical point [7], which may be of relevance to Fe-
based superconductors and some heavy-fermion compounds.
It is also of course directly applicable to quantum critical points
in 2D XY ferromagnets.

Electronic-fluctuation-induced superconductivity in
cuprates, Fe-based superconductors, and in heavy-fermion
superconductors always appears together with a normal state
which does not obey the Fermi-liquid paradigm. For cuprates,
the properties of the normal state, sometimes called the
strange metal phase, could be phenomenologically described
as a marginal Fermi liquid (MFL) [8], in which the coupling of
electrons is to quantum-critical fluctuations which are local in
space and power law in time. Such critical fluctuations violate
the paradigm of classical dynamical critical fluctuations [9]
or their simple quantum analogs [10–12]. The anomalous
normal-state properties have been associated with quantum
criticality of an order competing with superconductivity.
Thermodynamic and transport properties near the
antiferromagnetic quantum-critical point of some heavy-
fermion compounds [13] and at least some of the Fe-based
superconductors near their antiferromagnetic quantum-critical
point are remarkably similar to these in the cuprates [14,15].
The quantum-critical fluctuations of one of the heavy-fermion
compounds, measured by neutron scattering [16–18], has also

been fitted to a form of local-critical fluctuations [19]. All these
problems share the property that they are highly anisotropic
so that the fluctuation problem may be regarded as two dimen-
sional in space. The microscopic physics in these problems is
of course quite different. The universality class of local quan-
tum criticality appears to encompass diverse physical systems.

The dissipative quantum XY model is a quantum gener-
alization of the classical 2D XY model. The latter can be
solved by integrating over the spin-wave variables to cast the
model in terms of topological excitations, the vortices, which
are responsible for the Kosterlitz-Thouless (KT) transition:
vortices occur as bound pairs of zero net vorticity at low
temperatures while individual vortices proliferate in the
high-temperature disordered phase [20,21]. The dissipative
quantum XY model has two additional features: (1) the kinetic
energy of the fixed length 2D rotors, and (2) dissipation
of the (gradient of the) angular degrees of freedom. When
dissipation is unimportant, the quantum model has been shown
to have a quantum phase transition in the universality class of
classical three-dimensional (3D) XY model (with dynamical
critical exponent z = 1) [22] for the ratio of the kinetic energy
parameter to the spatial coupling of the rotors above a critical
value [23]. When dissipation is important, the problem may be
usefully reparametrized in terms of new degrees of freedom,
which are two orthogonal sets of topological excitations, the
vortices and the warps [6] (see also Sec. II B). It is claimed
that when the quantum phase transitions in the model are
governed by proliferation of warps, the transitions are of the
local critical type and the critical fluctuations are of the form
phenomenologically proposed for MFL [8]. It is important
to have an unambiguous check of this solution of the model
and its variants by other methods. The method used here is to
simulate the model with the quantum Monte Carlo method.
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In a set of Monte Carlo calculations already done on
the model [24], a rich phase diagram of the model was
discovered. However, the correlations of the order parameter
in some important regions were not studied, nor were the
properties of the model related to the topological excitations
proposed [6]. The results for all the quantities calculated here
which were also calculated earlier [24] are identical. In this
work, we calculate the correlation functions and relate them
to those of the topological excitations which can be identified
explicitly in the Monte Carlo calculations. We show that for
transitions driven by warps, the order-parameter fluctuations
at the critical point are scale invariant in imaginary time τ ,
and calculate the behavior of the correlation functions as the
critical point is approached. A result beyond those derived
analytically is that the spatial correlations are consistent with
a length scale ξx which grows only logarithmically with the
temporal length scale ξτ . This is consistent with a dynamical
exponent z → ∞, making it a model in which local quantum
criticality is explicitly proven.

We do not study, in this paper, the z = 1 transition where the
kinetic energy rather than the dissipation drives the transition,
nor the passage between these two distinct types of transitions.
That is clearly interesting and important but is reserved for
future work.

This paper is organized as follows. We introduce the model
and the details of quantum Monte Carlo method in Sec. II. In
Sec. II B, we explain how we identify the warps and vortices
in the calculations. We show the obtained phase diagram
and summarize the properties of three distinct phases: the
disordered, quasiordered, and ordered phases, in Sec. III. In
Secs. IV, V, and VI, we show the calculated critical fluctuations
of the order parameter at the transitions between them, and
their relation to the change in density and correlations of
warps and vortices across the transitions. We focus especially
on the transition from the disordered phase to the ordered
phase (Sec. VI), and explicitly show that the fluctuations have
a temporal correlation length exponentially larger than the
spatial correlation length. In Sec. VII, we discuss the effect
of a fourfold anisotropic field, relevant to cuprates and the
antiferromagnets. Our conclusion and the directions for future
analytical calculations are presented in Sec. VIII.

II. MODEL AND METHOD

A. (2+1)D quantum dissipative XY model

The action of the (2+1)D quantum dissipative anisotropic
XY model is [24]

S = −K0

∑
〈x,x′〉

∫ β

0
dτ cos(θx,τ − θx′,τ )

+ 1

2Ec

∑
x

∫ β

0
dτ

(
dθx

dτ

)2

+ α

2

∑
〈x,x′〉

∫
dτ dτ ′ π

2

β2

[(θx,τ − θx′,τ ) − (θx,τ ′ − θx′,τ ′)]2

sin2
(

π |τ−τ ′|
β

)
−h0

4

∑
x

∫
dτ cos(4θx,τ ), (1)

where x labels the coordinates of a lattice site in 2D spatial
dimension and τ labels an imaginary time in extra temporal
dimension. τ ∈ [0,β], where β is the inverse of temperature
1/(kBT ). θx,τ is the angle of the planar spin. 〈x,x′〉 denotes
nearest neighbors. The first term is the spatial coupling term
as in the classical XY model. The second term is the kinetic
energy where the charging energy Ec serves as the moment
of inertia. The third term describes quantum dissipations of
the Ohmic or Caldera-Leggett type [25]. The physical origin
of such a term in the context of superconductor-insulator
transitions [1,2], and in the context of loop-current order
in cuprates [6], has been discussed. In the former case, the
dimensionless dissipation strength α is the ratio of the quantum
of resistance RQ = h/(4e2) to the shunt resistance Rs : α =
(1/4π2)RQ/Rs [1,2]. A dissipation-driven phase transition oc-
curs typically at RQ ∼ Rs , or α ∼ 0.025. In the latter case, we
note that the symmetry of the loop-current order is described
by the Ashkin-Teller (AT) model with four discrete directions
of the θ variables (or two Ising variables σx,y). We simulate the
Ashkin-Teller model by imposing a strong fourfold anisotropic
field h0

4 (the fourth term). We recall that the anisotropy is
marginally irrelevant in the classical 2D XY model [26].
Strictly speaking, we should also add a term with interactions
∝ cos[2(θx,τ − θx′,τ )] to represent the Ashkin-Teller model
completely. Such a term has been shown to be irrelevant in
the analytic calculations [6] in the fluctuation regime. We have
verified this assertion in the Monte Carlo calculations.

In numerical simulations, we choose a 2D square lattice
with N × N lattice sites. Periodic boundary conditions are
imposed along both x and y directions. We further discretize
the imaginary-time axis [0,β] into Nτ slices. In this discretized
(2+1)D lattice, the action can be rewritten as

S = −K
∑

〈x,x′〉,τ
cos(	θx,x′,τ ) + Kτ

2

∑
x,τ

(θx,τ − θx,τ−1)2

+ α

2

∑
〈x,x′〉,τ,τ ′

π2

N2
τ

[	θx,x′,τ − 	θx,x′,τ ′ ]2

sin2
(

π |τ−τ ′|
Nτ

)
−h4

∑
x,τ

cos(4θx,τ ), (2)

where Kτ ≡ 1/(EC	τ ), K ≡ K0	τ , h4 = h0
4	τ , and 	τ =

β/Nτ . We choose K , Kτ , α, and h4 as independent dimension-
less variables, and tune them separately. In other words, we
consider the variables in units of the physical ultraviolet cutoff
	τ which is fixed. In this representation, the temperature
is controlled by N−1

τ . The calculations are asymptotically
correct for the quantum problem when 1/β = T → 0 or
Nτ → ∞. This requires in practice that we ensure that the
results converge in the range of Nτ actually studied.

B. Analytic transformation of the model: Warps, vortices etc.

It is useful to briefly review the analytic solution of the
model in order to understand several aspects of the Monte
Carlo results including the physics of the three different phases
found in Ref. [24] and the mechanism for the relative spatial
locality of the fluctuations. In Ref. [6], it is shown that after
making a Villain transformation [27] and integrating over the
small oscillations or spin waves, the action is expressed in
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FIG. 1. (Color online) Examples of vortex (a) and warp (b)
excitations in numeric simulation. The numbers at the lattice points
(in space or time) are the θ ’s in units of 2π/32 and are noncompact
variables. The numbers in the links are the velocity fields, i.e., the
difference of θ ’s that a link connects. (a) For the plaquette shown,
(∇ × m)i,j,τ is 32, or 2π , showing a vortex. In (b), the change of
(∇̂ · m)i,j,τ for two neighboring time slices is close to −2π , showing
an antiwarp.

terms of link variables which are differences of θ ’s at nearest-
neighbor sites, as shown in Fig. 1:

mx,x′(τ,τ ′) ≡ θ (x,τ ) − θ (x′,τ ′). (3)

Further,

m = m
 + mt , (4)

where m
, is the longitudinal (or curl-free) part and mt is the
transverse (or divergence-free) part. The appearance of m
 is
a distinct feature of the quantum dissipative XY model. Now,
define

∇ × mt (x,τ ) = ρv(x,τ )ẑ, (5)

so that ρv(x,τ ) is the charge of the vortex at (x,τ ), and

∂∇̂ · m
(x,τ )

∂τ
= ρw(x,τ ). (6)

ρw(x,τ ) is called the “warp” at (x,τ ).
Although a continuum description is being used for sim-

plicity of writing, it is important to do the calculation so that
the discrete nature of the ρv,ρw fields is always obeyed. In the
numerical implementation of (2+1)D discrete lattice, given
the two bonds per site (x), one may construct a vector field
mx,τ , whose components are the two directed link variables in
the Cartesian directions:

mx
i,j,τ = θi+1,j,τ − θi,j,τ ,

(7)
m

y

i,j,τ = θi,j+1,τ − θi,j,τ ,

as shown in Fig. 1. Here, x = (i,j ).
In terms of the vortex and warp densities, the action of the

model was shown to be [6]

S =T
∑
k,ωn

[
K

k2
|ρv(k,ωn)|2− α

|ωn| |ρw(k,ωn)|2

−G(k,ωn)
(
KKτ − αKτ |ωn| − α2k2

)|ρw(k,ωn)|2
]
, (8)

where

G(k,ωn) = 1

Kk2 + Kτω2
n + α|ωn|k2

. (9)

The first term is the action of the classical vortices interacting
with each other through logarithmic interactions in space but
the interactions are local in time. The second term describes
the warps interacting logarithmically in time but locally in
space. In the third term, the terms proportional to α may be
dropped in both the numerator and the denominator. Then,
this is just the action for a Coulomb field, which if present
alone is known [28] not to cause a transition and is therefore
marginally irrelevant in the present problem. The warp and the
vortex variables in the first two terms are orthogonal. With just
these two terms alone, the problem is exactly soluble. If the
first term dominates, one expects a transition of the class of
the classical Kosterlitz-Thouless transition through binding of
vortex-antivortex pairs in space, but there is nothing to order
the vortices with respect to each other in time. If the second
term dominates, there is a quantum transition to a phase with
binding of warp-antiwarp pairs in time but nothing to order
them with respect to each other in space. Given the ordering
driven by either the density of isolated vortices or of isolated
warps → 0, the flow from one to the other is determined by
the third term leading to possible ordering at T = 0 both in
time and space. The phase diagram calculated from the starting
model (1), shown in Fig. 2, is consistent with these expectations
from the transformed model (8). It should be noted that vortices
and warps enter asymmetrically in this model; although a
spatially ordered phase at a given time slice with no ordering
between time slices is expected for a range of parameters, no
phase with time order but no spatial order is expected.

The transformation to the topological model relies on a
finite dissipation coefficient α. One cannot take the limit α →
0 and expect to get back the properties of the (2+1)D quantum
XY model without dissipation, which should have a quantum

 0
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K

α

Disordered

Quasi-ordered

Ordered
Ordering of
Votices (KT) 

Ordering of Warps

Ordering of Warps
inducing ordering

of Vortices

FIG. 2. (Color online) Phase diagram for the quantum dissipative
XY model in α-K plane. Here, Kτ = 0.01. The transition points
are determined from the nonanalyticity in various static properties
with a system size N = 50 and Nτ = 200 (the transition points for
infinite systems can be determined by a finite-size analysis). The
area where the lines join (blue shaded area) has not been explored
thoroughly enough to precisely determine how the phase boundaries
meet. The dashed lines show the sweep of parameters presented in
the following sections for the study of correlations across the three
types of transitions. The phase diagram is obtained by several such
sweeps across each transition.
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transition of the class of 3D classical XY model. An important
unsolved question is at what value of α do the transitions of
the starting model (1) change from that class to those studied
here.

It was derived in Ref. [6] based on (8) that when the ordering
is driven through warps, the fluctuations of the order parameter
at the critical point have 1/τ correlations, in time at the critical
point [which on appropriate thermal Fourier transformation
gives a spectral function tanh (ω/2T )]. This result will be
verified in the Monte Carlo calculations in the following on
the original model.

C. Quantum Monte Carlo simulations

We follow the numerical procedure as in Ref. [24] for the
Monte Carlo simulations. To speed up the simulation, we
choose θx,τ to be a discrete variable n2π/32 (n an integer),
rather than a continuous variable. Adding more states does not
affect the results, as found in Ref. [24] and confirmed in our
calculation. The system size typically chosen is N = 50 and
Nτ = 200, which are found to be adequate for the parameter
ranges not too close to the critical points. Other system sizes
are also used in scaling analysis calculations.

We start from a random configuration of {θx,τ }. To update
the configuration, we sequentially sweep the lattice sites
to update locally θx,τ to θx,τ + θ ′, where θ ′ is a random
angle between −2π and 2π . We make measurements of the
physical quantities of interest after 10 sweeps. We also employ
parallel tempering technique to speed up the relaxation.
The acceptance rate for this local update ranges from 46%
(disordered state) to 16% ( ordered state) in the range of
parameters being calculated. We typically choose O(104)
warm up sweeps and O(106) measurements in our Monte
Carlo simulations. For large enough measurements, the desired
thermodynamic averages and correlation functions are well
approximated.

The following quantities are calculated to characterize the
different phases and the transitions between them.

Action susceptibility. The action susceptibility is defined as

χS = 1

N2Nτ

(〈S2〉 − 〈S〉2), (10)

where 〈. . .〉 denotes averaging over the O(106) Monte Carlo
measurements. In classical systems, as S = βH , χS is related
to the specific heat χS = CV /kB . At T → 0, it is a measure
of zero-point fluctuations which are expected to be singular at
the critical point due to the degeneracy in the spectra.

Helicity modulus. The helicity modulus or spatial stiffness
is defined from the change of energy resulting from the slow
twist of spins along the spatial direction, or

ϒx = 1

N2Nτ

〈∑
〈x,x′〉

∑
τ

cos(	θx,x′,τ )

〉

− K

N2Nτ

〈⎛
⎝∑

〈x,x′〉

∑
τ

sin(	θx,x′,τ )

⎞
⎠

2〉
. (11)

In the disordered state, the two terms have comparable
contributions and ϒx → 0. In an ordered phase, the second
term vanishes while ϒx becomes finite.

Order parameter. For XY spins, the order parameter
M(x,τ ) = (cos θx,τ , sin θx,τ ). Its modulus, the magnetization
in the plane, is defined as

M = 1

N2Nτ

〈∣∣∣∣∣
∑
x,τ

eiθx,τ

∣∣∣∣∣
〉

. (12)

In the classical 2D XY model, the ordered phase has a
quasi-long-range order, where M ∼ (1/N)1/(8πK) vanishes for
N → ∞. A question which we will be able to answer is
whether there is a finite magnetization in the infinite-size
limit for the quantum dissipative XY model. We also found it
illuminating to calculate M2D, the magnitude of magnetization
in the planes at a given time τ and then average it over the
τ . This is equivalent to finding the Kosterlitz-Thouless order
parameter at each time slice and then averaging over the time
slices:

M2D = 1

N2Nτ

〈∑
τ

∣∣∣∣∣
∑

x

eiθx,τ

∣∣∣∣∣
〉

. (13)

By definition, M ≤ M2D. Also, M = M2D = 0 (for N → ∞)
only if there is perfect long-range order across time as well as
space.

Correlation function of the order parameter. The principal
results for the quantum-critical fluctuations are given by the
order-parameter correlation functions

Gθ (x,τ ) = 1

N2Nτ

∑
x′,τ ′

〈ei(θx′+x,τ ′+τ −θx′ ,τ ′ )〉. (14)

Gθ (x → ∞, τ → ∞) → M2 while Gθ (x → ∞, τ = 0) →
M2

2D. In Ref. [24], mean-square displacements in time W 2
	θ are

shown, which we have reproduced. These can also be obtained
from the second moment of the above correlation function at
x = 0.

Vortices and warps: Densities and self-/mutual correla-
tions. The curl of the vector field m can be calculated
numerically from the four link variables of a plaquette,

ρv(x,τ ) = 1

2π
(∇ × m)i,j,τ

= (
mx

i,j,τ + m
y

i+1,j,τ − mx
i+1,j+1,τ − m

y

i,j+1,τ

)
/(2π ),

(15)

where we restrict mx,y to be within (−π,π ) by adding
or subtracting n2π . If (∇ × m)i,j,τ = ±2π , we identify a
vortex/antivortex, or ρv(x,τ ) = ±1. Similarly, the divergence
of the vector field can be calculated from four links connected
to the site

(∇̂ · m)i,j,τ = (
mx

i,j,τ − mx
i−1,j,τ + m

y

i,j,τ − m
y

i,j−1,τ

)
/4. (16)

We therefore use the following criterion to identify a warp
(antiwarp) charge:

ρw(x,τ ) = 1, if (∇̂ · m)i,j,τ+1 − (∇̂ · m)i,j,τ > 2π − δθ,
(17)

ρw(x,τ ) = −1, if (∇̂ · m)i,j,τ+1 − (∇̂ · m)i,j,τ < −2π + δθ,
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TABLE I. Characteristic properties of three phases of the dissipative XY model. Definitions of these quantities are provided in Sec. II C.

Quantity Disordered Quasiordered Ordered

M 0 Decreases → 0 for N → ∞ Finite
ρv O(1) �1 �1
Gv(x) Exponential Power law Power law
ϒx 0 Finite, jump at transition Finite, no jump at transition
ρw O(1) O(1) �1
Gw(τ ) 1/τ 2 1/τ 2 1/τα(α > 2)
Gθ (x,0) Exponential Quasi-long range Long range
Gθ (0,τ ) Exponential Exponential Long range

where δθ � 2π to accommodate small-angle changes due to
spin waves. Examples of vortices and warps are also shown in
Fig. 1.

After identifying the vortex and warp charges ρv,w(x,τ ) in
the system, we can calculate their densities

ρv,w = 1

N2Nτ

∑
x,τ

〈|ρv,w(x,τ )|〉, (18)

as well as their correlation functions

Gv,w(x,τ ) = 1

N2Nτ

∑
x′,τ ′

〈ρv,w(x′ + x,τ ′ + τ )ρv,w(x′,τ ′)〉.

(19)

Charge neutrality for both vortices and warps should be
preserved. We verify this by calculating the net density
δρv,w = [

∑
x,τ 〈ρv,w(x,τ )〉]/(N2Nτ ), and find that, in practice,

|δρv|/ρv < 10−5 and |δρw|/ρw < 10−2. To capture the corre-
lations between warps and vortices, we also calculate

Gvw = 1

N2Nτ

∑
x,τ

〈|ρv(x,τ )ρw(x,τ )|〉, (20)

i.e., the probability to find vortices in the vicinity of a warp
and vice versa. If warps and vortices are not correlated, we
expect Gvw = ρvρw.

For the spatial dependence of various correlation functions
G(x,τ ) where x = (x,y), we in practice only calculate the
correlations along the x-axis G(x,τ ) by setting y = 0, due to
the symmetries along x and y axes.

III. SUMMARY OF THE PHASE DIAGRAM

We first study the dissipative quantum XY model [cf.
Eq. (2)] without the fourfold anisotropic field h4, whose effect
is addressed in Sec. VII. We focus on the transitions driven
by dissipations, for which a small kinetic energy parameter
Kτ is chosen. The phase diagram in α-K plane with fixed
Kτ = 0.01 is given in Fig. 2. It is similar to the Kτ = 0.002
phase diagram obtained in Ref. [24]. Here, three distinct phases
are identified: a “disordered” phase, a “quasiordered” phase,
and an “ordered” phase (named as NOR, CSC, and FSC phases,
respectively, in Ref. [24]). Their properties are summarized in
Table I. The disordered phase has short-ranged correlations
in both the spatial and temporal directions. The quasiordered
phase, while also having short-ranged temporal correlations,
has a quasi-long-range order in 2D spatial plane (for each
time slice), consistent with KT spatial order. M2D is finite and

falls off slowly for large N , as shown in Fig. 3. The order
parameter M follows M2D asymptotically for N � Nτ while
M → 0 for N � Nτ . The ordered phase has long-range order
in both spatial and temporal directions, where M goes to a
finite value as N,Nτ → ∞.

The transition from the disordered to the quasiordered phase
can be achieved by increasing K at small α. As the temporal
correlations remain relatively unchanged across the transition,
the transition is characterized by the spatial ordering as in the
KT transition, due to binding of vortex of antivortex pairs. The
quasiordered phase is a phase in which K is effectively ∞,
and there is little fluctuation of phase difference in the spatial
bonds. Then, we have a one-dimensional problem in the time
direction, which for small enough α is disordered. For increas-
ing α, the system also orders in time, leading to a transition
from the quasiordered to the ordered phase. For small K , there
is a direct phase transition from the disordered to the ordered
phase. This is in general in accord with the discussion in the
previous paragraph based on the properties expected for the

 0.01

 0.1

 1

 0.001  0.01  0.1

M
, M

2D
, Υ

x

1/N

M, α=0.01, K=1.3
M2D, α=0.01, K=1.3

M, α=0.03, K=0.4
M2D, α=0.03, K=0.4

Υx,α=0.03,K=0.4

FIG. 3. (Color online) The spatial size dependence of M2D and
M in the quasiordered (top two curves) and ordered phases (bottom
two curves). Also shown is ϒx in the ordered phase. The parameters
chosen for the quasiordered phase are Kτ = 0.01, α = 0.01, K = 1.3,
and Nτ = 20, while for the ordered phase, Kτ = 0.01, α = 0.03,
K = 0.4, and Nτ = 100. The slow decrease of the topmost curve
(M2D) is just the finite-size scaling to 0 at N → ∞ in the Kosterlitz-
Thouless phase [29], which M asymptotically joins. Their behaviors
are different in the ordered phase, where asymptotically they are both
consistent with a finite value at N → ∞. The difference in ϒx across
the disordered to quasiordered and across the disordered to ordered
phases is discussed in the text.
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topological model of Eq. (8). We will show that the transition
from the quasiordered to the ordered phase (in Sec. V) as well
as that from the disordered to the ordered phase (in Sec. VI)
occur primarily through freezing of warps. In the second tran-
sition, the vortices freeze as an accompaniment to the freezing
of warps, in a manner distinct from that at the KT transition.

IV. TRANSITION FROM THE DISORDERED TO
THE QUASIORDERED PHASE

The transition from the disordered to the quasiordered
phase is studied by fixing α = 0.01 and varying K . The
static properties are shown in Fig. 4. We find that above a
critical value Kc, which weakly depends on α, the spatial
magnetization M2D becomes finite. As shown in Fig. 3, M2D

decreases slowly when N increases. As discussed later, this
decrease is consistent with the logarithmic decrease found
in earlier calculations [29]. M → M2D when Nτ � N and
M → 0 when Nτ � N . The difference between M and M2D

is also reflected in the order-parameter correlations in the time
direction, which shows oscillatory features at long times (not

shown). This phase has only quasi-long-range (power-law)
spatial order. As shown in Ref. [24], the helicity modulus ϒx

becomes finite in the quasiordered phase. Finite-size scaling
of the helicity modulus ϒx shows a Nelson-Kosterlitz [30]
jump at Kc. This is related to the vortex density seen in Fig. 4,
which decreases with increasing K , and changes slope at Kc.
These are consistent with KT transition in the classical 2D
XY model. Meanwhile, we find that in the temporal direction,
all quantities remain relatively unchanged from those in the
disordered phase. The vortex-warp correlation Gvw ≈ ρvρw,
indicating vortices and warps are not correlated, in either the
disordered or the quasiordered phase.

We also plot the correlation functions of warps and vortices
in Fig. 4. For the equal-time vortex correlation Gv(x,τ = 0),
Gv(0,0) = ρv > 0 (not shown due to the logarithmic scale)
while Gv(x = 0,0) < 0, reflecting that the vortex-antivortex
correlations dominate at long distance. When K increases,
−Gv(x,0) changes from an exponential decay in the disordered
phase to a power-law decay in quasiordered phase. These
are consistent with the KT transition as well. The warp
correlation along temporal direction at the spatial site Gw(0,τ )
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FIG. 4. (Color online) Static properties (top panel), vortex and warp correlation functions (bottom panels) of transition from the disordered
to the quasiordered phase. Here, Kτ = 0.01, α = 0.01, and K is varied. The results shown are for N = 50 and Nτ = 200. Note that some
quantities are scaled to fit in the figure. The vortex density changes rapidly below the transition while the warp density remains smooth. Other
aspects of the transition and of the quasiordered phase are discussed in the text.
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also satisfies Gw(0,0) = ρw > 0 and Gw(0,τ = 0) < 0. In this
transition, it remains unchanged in asymptotic form ∝1/τ 2.

V. TRANSITION FROM THE QUASIORDERED
TO THE ORDERED PHASE

We choose a suitable K and tune the transition from the
quasiordered phase to the ordered phase by increasing the
dissipation strength α. Various static properties as functions
of α and correlation functions for selected α’s are shown in
Fig. 5. The peak in the action susceptibility χS implies a phase
transition at αc ≈ 0.02. We find that properties characterizing
spatial orders, such as M2D, ρv , and ϒx , have small nonanalytic
changes, as already discovered in Ref. [24]. The significant
changes are properties characterizing temporal order. The
asymptotic behavior of the warp density is similar to that
of vortex density at KT transition: it changes slope at αc

and decreases exponentially as α further increases. M keeps
increasing and saturates to M2D at α � αc (at large system
sizes). The warp correlation functions decay faster for larger
α, changing from 1/τ 2 in the quasiordered phase to 1/τa

(a ∼ 3 for α = 0.023 in the figure) in the ordered phase.
This indicates that warps and antiwarps, which are free in

the quasiordered phase, also are bound in the ordered phase.
Near αc, a slower decay at large times is observed. As shown
in the figure, it can be fitted as 1/τ . This is in agreement with
the analytical analysis [6]. While the vortex-warp correlation
Gvw ∼ ρvρw in the quasiordered phase, we find Gvw > ρvρw

in the ordered phase, and their difference increases when α is
further increased from αc. This implies that vortices and warps
are correlated inside the ordered phase.

VI. TRANSITION FROM THE DISORDERED
TO THE ORDERED PHASE

This is the part of the problem which we shall discuss most
thoroughly. We show results for a suitable value K = 0.4 and
tune α across the transition at α = αc(K). Similar results have
been obtained for other values of these parameters across the
transition, keeping Kτ = 0.01 fixed at this low value. Note the
fine scale on which α is varied compared to K in Fig. 2 to tune
across the transition.

A. Static properties and correlations

The static properties shown in Fig. 6 are all nonanalytic
near αc ≈ 0.0260. We estimate an uncertainty of ±0.0002
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FIG. 5. (Color online) Static properties (top panel), vortex and warp correlation functions (bottom panels) of transition from the quasiordered
to the ordered phase. Here, Kτ = 0.01, K = 1.5, and α is varied. The results shown are for N = 50 and Nτ = 200.
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FIG. 6. (Color online) Static properties (top panel), vortex and warp correlation functions (bottom panels) of transition from the disordered
to the ordered phase. Here, Kτ = 0.01, K = 0.4, and α is varied. The results shown are for N = 50 and Nτ = 200. We find that when M2D

becomes finite, M varies with the size and only approaches M2D at large system size (see Fig. 3). The vortex and warp correlations are discussed
in the text.

in αc, due to finite-size effects. The helicity modulus ϒx and
magnetization m become finite for α > αc. We notice that
both the vortex and the warp densities change slope across
αc. So long-range order appears to develop simultaneously
along both the spatial and the temporal directions. However,
on the disordered side, the warp density decreases by an order
of magnitude as the transition is approached while the vortex
density remains unchanged. This indicates a large critical
region in which the temporal correlations are expected to
grow while the spatial correlations remain short range. On the
ordered side, for α > αc, the warp density has a more rapid
change than the vortex density. We also plot ρvρw explicitly to
be compared with the mutual correlation between vortices and
warps Gvw. We observe that Gvw ∝ ρw and Gvw > ρvρw when
α > αc, i.e., suggesting coupling of vortices to warps inside the
ordered phase, while their difference Gvw − ρvρw vanishes at
the critical point and becomes invisible on the disordered side.
The study of correlation functions following will show that
the spatial correlations do develop on the disordered side but
with an exponentially slower dependence on (αc − α) than the
temporal dependencies. These facts suggest that the transition

is driven by the quantum freezing of warps. We speculate
that this occurs through the third term in the action (8), which
drives the fugacity of the vortices so that they also freeze.

The self-correlation functions of vortices and warps are also
shown in Fig. 6. The vortex correlation functions are relatively
unchanged as α changes across the transition compared to the
warp correlation functions, which have similar changes as in
the quasiordered phase to the ordered phase transition. Near αc,
the latter shows slower decay at long times. However, whether
it has the 1/τ behavior requires a calculation with larger time
slices and more iterations to demonstrate.

B. Size dependence of ϒx and M

We have also studied the difference of the vortex freezing
across the disordered to ordered phase transition compared
to that across the disordered to quasiordered phase transition
(which is of the pure KT type) by contrasting the scaling
behavior of the helicity modulus ϒx at the transitions. We
perform a finite-size scaling analysis on ϒx and the order
parameter M , and compare their behaviors with those in
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FIG. 7. (Color online) The order-parameter correlation functions Gθ (x,τ ) for transition from the disordered to the ordered phase. Parameters
are the same as in Fig. 6. We show Gθ (x,τ ) as a function of x for fixed τ = 2 (left panel) and as a function of τ for fixed x = 2.

KT transition. The results for two sets of parameters in the
quasiordered and the ordered phases have been shown in Fig. 3.

In the classical XY model, the helicity modulus scales with
the finite size N of the system as

ϒx(N ) = ϒx(∞)

(
1 + 1

2

1

lnN + C

)
, (21)

where C is an undetermined constant [31]. At the KT transition
point K = Kc, the helicity modulus has a jump ϒx(∞)Kc =
2/π . Both the finite-size scaling and the value at the jump
have been verified [24] at the disordered to the quasiordered
transition. The behavior is quite different in the ordered phase.
The stiffness ϒx(N ) in this transition already develops for
α > αc at small sizes and remains unchanged with N . For
α < αc, ϒx(N ) decreases exponentially.

The magnetization in the quasiordered KT phase is 0 in the
limit N → ∞. But, the passage to this limit is very slow [29].
The finite-size scaling is quite different at the ordered state
as shown in Fig. 3. While M2D decreases with N at small
N , it is consistent with saturation at a finite value at large N ,
merging with the value of M . As discussed immediately after
the definition of M and M2D above, this is consistent with a
truly ordered state.

C. Scaling of the order-parameter correlation functions

The most revealing results about the critical properties
are of course obtained from the order-parameter correlation
functions. It is seen in Fig. 7 that there exists a separatrix in
Gθ (x,τ ) for a fixed x or for a fixed τ such that, for α < αc the
asymptotic correlation → 0 for large τ , and for α > αc, they
tend to a constant value depending on α. We present scaling
analysis of the order-parameter correlation functions on the
disordered side.

We find that the leading asymptotic behaviors of Gθ (x,τ )
can be captured in the scaling form

Gθ (x,τ ) = A

τ 1+ητ
e−(τ/ξτ )1/2 1

xηx
e−x/ξx , (22)

where ξτ (ξx) are correlation lengths along temporal (spatial)
directions, and A is the amplitude. From the detailed results
given in Appendix A, we determine that the anomalous ex-

ponent ητ ≈ 0. We cannot determine the anomalous exponent
ηx reliably in the numerical calculations because even close to
the critical point, where the temporal dependence fits the 1/τ

behavior, the spatial dependence continues to be exponentially
decreasing as a function of x up to more than 1

2 the largest sizes
that we can numerically calculate (please see Fig. 7). Above
that range, it appears to approach a constant, but could be
consistent with a logarithmic (ηx = 0) form. Some discussion
of this issue is given in the concluding section.

The correlation functions are shown for a few fixed x as
functions of τ in the left panel of Fig. 8 and for a few fixed τ

as functions of x in the right panel of the same figure. Fitting
the correlation functions to the scaling form in Eq. (22), we
determine ξx and ξτ for each α. We show them as functions of
α − αc in Fig. 9. More details are provided in Appendix A. In
the fluctuation regime not too close to the critical point in the
disordered side, for (αc − α)/αc � 0.1 with αc ≈ 0.0260, we
observe that in the parameter range shown, ξτ increases by a
decade when α → αc while ξx remains relatively unchanged
ξx ≈ ξ0,x ≈ 1.0, i.e, a lattice constant. In this range of α, the
behavior of ξτ is consistent with

ξτ (α − αc) = τce
a
√

αc/(αc−α), (23)

where a is a constant of O(1). This relation, as well as the
leading behavior of the correlation function Gθ (x,τ ),

Gθ (x,τ ) ≈
(

τc

τ

)
e−(τ/ξτ )1/2

ln

(
xc

x

)
e−x/ξ0,x , (24)

are identical to those derived analytically [6] (the dependence
on ξτ , e−(τ/ξτ )1/2

, has not been derived explicitly). τc is the short-
time cutoff scale. It was also derived that, within factors of
O(1), τc = (1/

√
K0Ec)/	τ = 1/

√
K/Kτ . For the parameters

chosen, 1/
√

K/Kτ = 0.16, while the numerically obtained
value is τc ≈ 0.12.

However, for (α − αc)/αc � 0.1 on the disordered side,
there are deviations from Eqs. (23) and (24). For example, we
notice in Fig. 7 a crossover from an exponential to a power-law
behavior in the spatial correlation as α → αc before going
to a constant value on the ordered side, consistent with true
long-range order. As shown in the left panel of Fig. 9, ξx

also increases when α → αc, though at a much slower rate
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FIG. 8. (Color online) Scaling analysis of the order-parameter correlation function Gθ (x,τ ) for fixed x = x0 (left panel) and for fixed τ = τ0

(right panel) from the disordered side of the disordered to ordered phase transition as shown in Fig. 7. In the left panel, we fit each curve of
τGθ (x0,τ ) with the form Aτ (x) exp[−(τ/ξτ )1/2], where the amplitude Aτ and the correlation length ξτ are fitting parameters adjusted for each α

and x. In the right panel, we fit each curve of Gθ (x,τ0) with Ax(τ ) exp(−x/ξx) where Ax(τ ) and ξx are fitting parameters. The results of ξτ (x0,α)
and ξx(τ0,α) are shown in Fig. 9. We find that Aτ ≈ τc exp(−x/ξ0,x) with τc ≈ 0.12 and ξ0,x ≈ 1.0, and Ax ≈ (τc/τ ) exp{−[τ/ξτ (α − αc)]1/2}
with ξτ (α − αc) given in Eq. (23). It is expected that all curves of τGθ (x0,τ )/Aτ for difference α and x0 collapse into a single curve exp(−t)
with t = (τ/ξτ )1/2, which are plotted (for clarity, they are rescaled by a factor 10(x0/2) for different x0). Gθ (x,τ0)/Ax as functions of x/ξx are
plotted in the same fashion. Because of the rapid decay of the correlation function in this range of α, it has not been numerically possible to
follow its behavior for larger x and τ .

compared to ξτ . Their monotonic growth suggests scaling one
with respect to the other. In the right panel of the same figure,
we show that within our numerical capabilities that

ξx/ξ0,x ≈ ln (ξτ /τc), (25)

i.e, the spatial correlation length is consistent with growing as
the logarithm of the temporal correlation length. This means
that the dynamical critical exponent is z = ∞. One should
expect, as is consistent with Fig. 9, transients for x � ξx and
τ � ξτ approaching the forms given above. In Appendix B,
we show that within the numerical precision of our results,
the relation ξx ∝ ξ

1/8
τ , rather than the logarithmic relation is

allowed. Exponents larger than 1
8 or z < 8 are disfavored.

These properties, as well as what has been calculated
above about the vortices, appear to be consistent with the sug-
gestion [6] that when warps begin to freeze, spin waves might
develop a gap so that the vortices also order (however, this
has not been explicitly derived). The approximate correlation
function (24) is a separable function of space and time, and so
is the final form of the correlation function (22). However, a
weak τ dependence ∝ ln (τ/τc) cannot be excluded in ξx very
close to criticality. This question can only be settled by further
analytical calculations, possibly by a proper renormalization
group calculation of the effect of the last term in Eq. (8).

It is worth summarizing the reasons for our suggestion
that the freezing of warps drives the (much slower) freezing
of vortices: (a) The warp density in Fig. 6 changes by an
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FIG. 9. (Color online) The left panel shows ξx and ξτ as functions of [αc/(αc − α)]1/2. They have been rescaled to their respective values
at α = 0.020 {[αc/(αc − α)]1/2 ≈ 2} . The error bar is typically smaller than the symbol size; it increases for large ξx , i.e., closer to the critical
point (note the logarithmic scale). For x0 = 0, ξτ can be fitted as τc exp[0.62

√
αc/(αc − α)]; the numerical coefficient in the exponent changes

to about 1 for x0 = 4. The right panel shows the relation between ξx(α) and ξτ (α). We find that ξx/ξ0 ∼ ln(ξτ /τc). This relation appears to
become independent of x and τ at large x and τ . Finite-size effects do not permit a detailed exploration beyond ξτ /τc ≈ 70.
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order of magnitude before there is a discernible change in
the density of vortices. (b) The temporal correlation length ξτ

grows by an order of magnitude as α → αc before one notices
any change in ξr . (c) The disordered to ordered transition
is essentially continuous with the quasidisordered to ordered
transition which is (vortices having already frozen) driven by
the freezing of warps. To notice this in Fig. 2, it should be
noted that the figure is drawn with an extremely fine scale of α

variation compared to that of K . (d) The exact transformation
in terms of warps and vortices from the starting model suggests
a renormalization of the parameters for a transition driven by
vortices through the variation of fugacity of the warps near
their freezing.

From the results here as well as from Ref. [6], the phe-
nomenological expression [8] for quantum-critical fluctuations
acquires a crossover towards purely quantum fluctuations
below a crossover temperature Tx ≈ ξ−1

τ . This presents an
essential singularity at the critical point in terms of the tuning
parameter of the transition α − αc(K,Kτ ).

We have presented results for the correlation lengths as a
function of (α − αc). As is evident from the phase diagram,
αc depends on K , and (not explored in this paper) on Kτ , as
well. Away from the meeting point of the three transitions, αc

depends smoothly on K . Therefore, we should expect that for
fixed α, the change of correlation length is the same function
of (K − Kc) as it is of (α − αc) for a fixed K . However, this
point could benefit from further study.

We provide here the form of the correlation functions in
frequency-momentum space (assuming ητ = ηx = 0) which
is convenient to compare with experiments as well as to
calculate scattering of fermions from such fluctuation. The
Fourier transform from the imaginary-time dependence to
real frequency is described in Appendix C, where we show
that the final result can only be obtained numerically. We find
that the numerical results can be approximately fitted by the
form

ImGθ (q,ω) ≈ G0
1

q2 + κ2
x

ρ(ω,T ,κτ ), (26)

ρ(ω,T ,κτ ) → ω

2
√

T 2 + 0.4κ2
τ

, for ω/T → 0

→ 1

4

(
1 + 3e−[κτ /(2T )]1/2)

, for ω/T � 1. (27)

Here, κx = ξ−1
x (α,K,Kτ ), κτ = ξ−1

τ (α,K,Kτ ), and G0

measures the integrated strength of the fluctuations. The
following features of ImGθ (q,ω) are especially noteworthy.
(i) It is a separable function of q and ω. (ii) In the critical
region, i.e., T/κτ � 1, ρ ∝ tanh( ω

2T
). It should be noted that

κτ is such a slow function of (α − αc)/αc [see Eq. (23)]
that the quantum-critical region may be visible over a
very wide region of parameters on the disordered side.
(iii) The low-frequency part is cut off for T/κτ � 1 with κτ

replacing T . (iv) For large ω/T , there is a rapid decrease of
the correlation function with κτ /T . Ultimately, there is an
ultraviolet cutoff of the frequency ωc = τ−1

c . In any given
experimental systems, there may be cutoffs not included in the
XY model, for example, the Fermi energy in itinerant Fermion
systems.
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FIG. 10. (Color online) χS and M for different h4. Here, K =
0.4, Kτ = 0.01, and α is varied. The system size is kept the same,
N = 50 and Nτ = 200.

VII. EFFECT OF FOURFOLD ANISOTROPY

We now turn on the fourfold anisotropic field h4 in the
Monte Carlo simulation to study its effect. In the classical
XY model, fourfold anisotropy is marginally irrelevant [26].
In the quantum model, it has been argued [6] to be irrelevant.
When h4 → ∞, XY spins become two Ising variables, as
in the Ashkin-Teller model. We focus on the transition from
the disordered to the ordered phase, by choosing K = 0.4,
Kτ = 0.01, and tuning α for transitions for different h4. We
find that the transition persists and all quantities have similar
properties across the transition as in the h4 = 0 case. In Fig. 10,
we compare χS and M for three different values of h4 = 0,1,5.
We find that up to h4 = 1, the properties are almost the same
as in h4 = 0. In h4 = 5, we notice that αc has been shifted
to 0.0272, and the peak in χS is sharper. M increases more
rapidly.

We further show the scaling results of the spin correlation
functions for h4 = 5 in Fig. 11. We find similar behaviors as
in the h4 = 0 case, which indicates that the transition is also
of the local critical type.

VIII. DISCUSSION

In this paper, the properties of the dissipative quantum XY
model have been investigated by Monte Carlo simulations to
verify and extend the analytical calculations in Ref. [6] and the
previous Monte Carlo simulations in Ref. [24]. At criticality,
we have found properties consistent with the scaling in ω/T ,
precisely of the form proposed in Ref. [8] and derived in
Ref. [6] with a crossover in time/temperature to the disordered
quantum state. We have also found some important results
not obtained before that, at criticality, the spatial correlation
length also diverges. To our numerical accuracy, the temporal
and spatial correlations near criticality are separable. The
spatial correlation length varies very slowly, consistent log-
arithmically with the temporal correlation length. Therefore,
the dynamical critical exponent z = ∞. It is hoped that this
result can also be derived analytically, as also the anomalous
exponent ηx . It can be shown, using the separability of the
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FIG. 11. (Color online) Order-parameter correlation functions for h4 = 5. The left panel shows scaling analysis of the x = 0 spin correlation
function Gθ (0,τ ) from the disordered side of the transition. The fitting curve is similar to that in h4 = 0 case, Gθ (0,τ ) = (τ0/τ ) exp[−√

τ/ξτ ]
with τ0 ≈ 0.08. The inset shows ξτ /τ0 as a function of

√
αc/(αc − α). One finds that ξτ (α)/τ0 ≈ 0.5 exp[

√
αc/(αc − α)], with αc = 0.0272.

The right panel shows equal-time spin correlation functions Gθ (x,0) as functions of x. For x � 10, they have also the same form as in h4 = 0
case Gθ (x,0) = exp(−x/ξx) with ξx ≈ 0.8.

spatial and temporal correlations and the scaling in ω/T , that
scattering of fermions scattering from such fluctuations leads
to marginal Fermi-liquid [8] properties.

We reemphasize that the conclusions based on numerical
results at finite N and Nτ can at most be highly suggestive.
In Appendix B, we show that a dynamical critical exponent
of 8 fits the data as well as ∞. The separability of the
spatial and temporal dependence of the correlations, which is
a feature of the results, depends on the numerical capabilities
in which the results are obtained. It is possible that very
close to the critical point (αc − α)/αc � 10−2, the results
could be different. This region is affected by the finite-size or
finite-temperature effect, where classical dynamics dominates.
Critical slowing down could also be a contributing factor. Such
issues are best addressed by analytic methods, to which the
present results serve as a guide. However, we can be fairly
certain that over the range which is quite close to a critical
point, the spatial correlations vary very slowly compared to
the temporal correlations and the two are separable, and that
the disordered to ordered transition is driven by freezing of the
warps with the vortices freezing when the warp correlations
become sufficiently long. These results are in the range in
which experiments are usually done.

We should also stress that most of the study on the
correlation functions is on the disordered side of the quantum-
critical point. Some comments may be worthwhile on the
ordered side. The ordered side for the problem studied has
the properties of the model without dissipation, i.e., it is the
ordered phase of the 3D XY type. Some of our preliminary
results indicate that as Kτ is increased, the region of the
quasiordered phase decreases in the K-α plane. This is in
agreement with the fact that when α → 0, the transition as
tuned by the ratio of K/Kτ is of the 3D XY type, in which
the correlations are expected to be a function of the coordinate
(x2 + v2τ 2)1/2, where v2 is given dimensionally in the third
term of Eq. (9) by K/Kτ . The results in this paper on the
disordered side suggest that v2 scales near the transition in an
interesting way. In the critical region on the disordered side, it

vanishes when away from the critical point, indicating that the
long-range correlations develop only in time. On the ordered
side, it acquires a finite value. We also know that the theory
is nonanalytic as α → 0. Properties in the Kτ -α plane are
subjects of further study.

It is not the purpose of this paper to discuss the experiments
which may be related to the findings here. But, a few
comments about future directions in relation to both theory
and experiments may be worthwhile.

The dissipative quantum XY model was first proposed [1,2]
in connection with the superconductor-to-insulator transition
in thin superconducting films [3]. Quite correctly, the transition
as a function of dissipation was proven. But, the fluctuation
spectra in various calculations [32] in two dimensions were
not obtained in a controlled manner and do not agree with
the results presented here and in Ref. [6]. (However, the
results for the one-dimensional array of Josephson junctions
in a dissipative environment [33] are closely related to the
results here and in Ref. [6].) Nor do the results of these
calculations give the rich phase diagram found in [24] and
here, which is suggested by reexpression of the model in terms
of warps and vortices. It would be interesting to think of how
experiments might discover the different phases in a super-
conducting thin film. We are also not aware of experiments to
probe the fluctuation spectra at the superconductor-to-insulator
transitions. This would also be very interesting to pursue,
possibly by studying fluctuations across a Josephson junction
to a three-dimensional superconductor below its transition
temperature. To fully understand such possible experiments,
this work should be extended to include (the equivalent of) a
magnetic field.

The dissipative quantum XY model (with fourfold
anisotropy) has also been proposed [4] as a model for the
observed order in the under-doped region of the cuprates.
The phenomenological quantum-critical fluctuations, which
have been successful in explaining the diverse anomalies in
the strange metal region of these compounds, have now been
proven to be the property of the fluctuations of the observed
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FIG. 12. (Color online) ln[τGθ (x0 = 2,τ )] as functions of τ (left panel) for selected α’s in transition from the disordered to the ordered
phase. Other parameters are the same as in Fig. 6. The right panel shows them as functions of τ 1/2 instead.

order. It is remarkable that some of the same anomalies
observed in the cuprates in this region also occur in the AFM
quantum-critical region of some of the heavy fermions and
in the Fe-based superconductors. This has led to the inquiry
and the conclusion [7] that the criticality of a simple model of
itinerant AFM is also described by the dissipative XY model.
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APPENDIX A: SCALING FORM OF THE
ORDER-PARAMETER CORRELATION FUNCTIONS

We present here results with a much finer variation in α so
as to place better bounds on our results. We first discuss the
correlations along temporal direction with x fixed at a small
value, which take the general scaling form

Gθ (x0,τ ) ∼ 1

τ 1+ητ
e−(τ/ξτ )p , (A1)

where ξτ → ∞ approaching the critical point. In practice,
fitting η and p simultaneously leads to uncertainties. The
analytical study shows the anomalous scaling dimension
for temporal correlation is ητ = 0. Figure 12 shows how
the results fit into this form, by plotting τGθ (x0 = 2,τ ) as
functions of τ . Indeed, we find that near αc, τGθ (x0 = 2,τ )
become almost a constant. Another systematic check is that,
very close to αc and τ � ξτ , Gθ (x0,τ ) ∼ 1/τη, with only
parameter to fit. Fittings to α = 0.026,0.0261,0.0262 yield
η = 1.12 ± 0.03,1.03 ± 0.04,0.94 ± 0.03, respectively. We
therefore determine ητ ≈ 0. Subsequently, we can decide p. A
comparison between fits to the Monte Carlo data with p = 1

and 1
2 is shown in Fig. 12. This shows that p = 1

2 is much
preferred over p = 1.

From Fig. 8, it is easy to see the exponential falloff of
the spatial correlations characterized by the spatial correlation
length ξx and determine its dependence on (α − αc). But, it has
proven harder to determine the scaling dimension ηx of the spa-
tial dependence at criticality, as already discussed in the paper.

APPENDIX B: RELATION BETWEEN ξx AND ξτ :
POWER-LAW FITTING

In Fig. 13, we show the relation between ξx and ξτ could
also be fitted as ξx ∼ ξ

1/8
τ , or a dynamic exponent z ≈ 8. An

equally good fit has been shown to a logarithmic form (see
Fig. 9). On aesthetic grounds, we may choose the latter.

APPENDIX C: SPECTRAL FUNCTION OF THE
ORDER-PARAMETER CORRELATION FUNCTION

The correlation function is in a separable form of τ - and x-
dependent terms. Here, we provide the details on Fourier trans-
form from the imaginary-time variable τ to the real-frequency
variable ω of the function in Eq. (22), with ητ = 0. A bosonic

 1

 2

 1  10  100

ξ x
 / 

ξ 0

ξτ/τc

ξτ(x0=2),ξx (τ0=2)
ξτ(x0=3),ξx (τ0=3)
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FIG. 13. (Color online) ξx(α; τ0)/ξ0 as functions of ξτ (α; x0)/τc

in log-log scale.
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correlation function in imaginary time Gb(τ ) is related to its
spectral function ρb(ω) = −(1/π )ImGb(ω + i0+) by

Gb(τ ) =
∫ ∞

−∞

e−τω

1 − e−βω
ρb(ω)dω, (C1)

for 0 � τ � β. Setting t = i(τ − β/2), we have

Gb(−it + β/2) =
∫ ∞

−∞

eitω

2 sinh(βω/2)
ρb(ω)dω (C2)

or

ρb(ω) = sinh(βω/2)

π

∫ ∞

−∞
Gb(−it + β/2)e−itωd t. (C3)

We rewrite the time-dependent part of the order-parameter
correlation into a periodic form

Gθ (τ ) = πτc

β sin(πτ/β)

(
e−(τ/ξτ )1/2 + e−[(β−τ )/ξτ ]1/2)

, (C4)

which is also particle-hole symmetric Gθ (β − τ ) = Gθ (τ ),
and therefore

ρθ (ω) = 2τc sinh
βω

2

×
∫ ∞

0

cos βωt

cosh(πt)
e−(β/ξτ )1/2[(1/2)2+t2]1/4 cos[( 1

2 tan−1 2t)]

× cos

{
(β/ξτ )1/2[(1/2)2 + t2]1/4

× sin

(
1

2
tan−1 2t

)}
d t. (C5)
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FIG. 14. (Color online) ρθ (ω)/τc as functions of βω for selected
values of β/ξτ . When βω � 1, ρθ (ω)/τc → f1(β/ξτ )βω/2. When
βω � 1, ρθ (ω)/τc ≈ f2(β/ξτ ). The functions f1 and f2 are shown in
the inset. Their functional forms in the range of β/ξτ shown can be
fitted as f1(β/ξτ ) = 1/[1 + 0.42(β/ξτ )1/2]2 and f2(β/ξτ ) = 1

4 (1 +
3e−[β/(2ξτ )]1/2

), which are shown in solid lines.

This integral can only be evaluated numerically. Results as
a function of βω for several β/ξτ are shown in Fig. 14.
For β/ξτ → 0, ρθ (ω) → tanh(βω/2), i.e., at finite β/ξτ , ξ−1

τ

replaces β−1 as the infrared cutoff. A different asymptotic
form prevails at large βω. The fit to the numerical results is
shown in the inset of the figure with analytic forms given in
the figure caption and reproduced in Eqs. (26) and (27).
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