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Signatures of nematic quantum critical fluctuations in the Raman spectra of lightly doped cuprates
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We consider the lightly doped cuprates Y0.97Ca0.03BaCuO6.05 and La2−xSrxCuO4 (with x = 0.02, 0.04), where
the presence of a fluctuating nematic state has often been proposed as a precursor of the stripe or, more generically
charge density wave phase, which sets in at higher doping. We phenomenologically assume quantum critical
longitudinal and transverse nematic, and charge-ordering fluctuations, and investigate their effects in the Raman
spectra. We find that the longitudinal nematic fluctuations peaked at zero transferred momentum account well
for the anomalous Raman absorption observed in these systems in the B2g channel, while the absence of such
an effect in the B1g channel may be due to the overall suppression of Raman response at low frequencies,
associated with the pseudogap. While in Y0.97Ca0.03BaCuO6.05 the low-frequency line shape is fully accounted
for by longitudinal nematic collective modes alone, in La2−xSrxCuO4, also charge-ordering modes with finite
characteristic wave vector are needed to reproduce the shoulders observed in the Raman response. This different
involvement of the nearly critical modes in the two materials suggests a different evolution of the nematic state
at very low doping into the nearly charge-ordered state at higher doping.
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I. INTRODUCTION

Growing experimental and theoretical evidence indicates
that (stripelike) charge ordering (CO) [1–3], possibly re-
lated to a hidden charge-density-wave quantum critical point
near optimal doping [4–8], plays a role in determining
the unconventional properties of superconducting cuprates.
Charge ordered textures were assessed by neutron scattering
experiments in La cuprates, codoped with Nd [9–11], Ba [12],
or Eu [13], and confirmed also by soft resonant x-ray
scattering [14,15]. The occurrence of stripelike charge- and
spin-density waves in other cuprates is supported by the
similarities of the noncodoped and codoped La cuprates in
the spin channel, e.g., the doping dependence of the low-
energy incommensurability [16], and the high-energy magnon
spectra in La2−xBaxCuO4 [17], La2−xSrxCuO4 (LSCO) [18],
and YBaCuO6+p [19,20]. These features are well described
in terms of striped ground states [21–23]. CO in cuprates,
possibly with fluctuating character, was also confirmed by
EXAFS [24], NMR experiments [25,26], scanning tunnel-
ing spectroscopy [27–29], and resonant x-ray measurements
[30–33]. A recent theoretical analysis of Raman spectra
in LSCO [34] showed that nearly critical spin and charge
fluctuations coexist at intermediate and high doping. This
coexistence also accounts [35] for the specific momentum, en-
ergy and doping dependence of the single-particle anomalies,
the so-called kinks and waterfalls, observed in photoemission
spectra [36].

The above facts, support the occurrence and relevance of
(fluctuating) stripes in cuprates and raise the question about
their precursors at very low doping [37]. The experimental
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evidence of rotational symmetry breaking [20,38–41] points
towards nematic order, although it is not yet clear whether
this order arises from a melted stripe state [42], from incipient
unidirectional fluctuating stripes [43], or from an unrelated
d-wave-type nematic order which preserves translational sym-
metry [44]. On the theoretical side, it was recently proposed
that a ferronematic state occurs at very low doping, formed by
stripe segments without positional order [45]. These segments
are oriented because they sustain a vortex and an antivortex
of the antiferromagnetic order at their extremes, and break
rotational and inversion symmetry. This phase has no order
in the charge sector, but induces incommensurate peaks in
excellent agreement with experiments in LSCO [46]. Recent
Monte Carlo calculations [47] showed that, lowering the
temperature, the ferronematic state turns into a ferrosmectic
state, where the segments have a typical lateral distance �c,
corresponding to CO with a characteristic wave vector qc

(with |qc| ∼ 1/�c). The segments thus appear as the natural
precursors of stripes.

It is therefore important to assess nematic order in cuprates.
The aim of the present work is to identify the signatures of
nematic fluctuations in Raman scattering. This is a bulk (nearly
surface-insensitive) probe and measures a response function
analogous to that of optical conductivity [48]. However, while
the latter averages over the Brillouin zone (BZ), different
polarizations of the incoming and outgoing photons weight
different parts of the BZ in Raman scattering [49], introducing
specific form factors. It turns out that the so-called B1g and B2g

channels are the most relevant to extract the contributions of
collective modes (CMs) in cuprates. We already investigated
how these form factors can be exploited to identify the
contributions of different (e.g., charge and spin) critical CMs,
based on their different finite wave vectors [34,50,53–55].
There are two classes of CM contributions. In one class, the
CMs dress the fermion quasiparticles, introducing self-energy
and vertex corrections, which affect the Raman spectra up
to substantial fractions of eV [34,53,54]. In the other class,
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FIG. 1. Diagrammatic representation of the Raman response due
to the excitation of two CMs. The grey dots represent the γB1g or
γB2g form factors. The solid lines are the propagators of the fermion
quasiparticles in the fermionic loops, the wavy lines represent the
NCM or CO CM propagators [Eqs. (2)–(4)], which are coupled to the
quasiparticles by the coupling functions gλ(k,q) (solid dots).

the excitation of pairs of CMs [50], reminiscent of the
Aslamazov-Larkin (AL) paraconductive fluctuations near the
metal-superconductor transition (see Fig. 1), affects mainly
the low-frequency part of the spectrum and produces an
anomalous absorption up to few hundreds of cm−1, as indeed
observed, e.g., in LSCO [56]. The analysis for LSCO [50]
was based on CO CMs with finite wave vector qc, while
the role of spin CMs was ruled out by symmetry arguments.
At moderate doping, the value qc ≈ (±π/2,0),(0,±π/2) was
deduced from inelastic neutron scattering as the double of
the wave vector of spin incommensuration [16], within the
stripe scheme (we use hereafter a square unit cell on the CuO2

planes, with lattice spacing a = 1). By symmetry arguments,
and in agreement with experiments, fluctuations with such
qc give rise to an anomalous absorption in the B1g channel
only. A rotated qc ≈ 2π (±2x,±2x) occurs for x < 0.05 [46],
making the anomalous Raman absorption show in the B2g

channel only, consistent with the experiments. However, a
similar anomalous absorption in the B2g channel is observed
in Y1−yCayBa2Cu3O6+x (YBCO) for doping p(x,y) between
0.01 and 0.06 [52]. Recent measurements [38] do not support
the rotation of the spin modulation vector in YBCO, at least
down to p = 0.05, and the extrapolation of the available
data indicates that spin incommensuration disappears for
p ≈ 0.02 − 0.03, while CO seems to disappear for p < 0.08
[33]. Thus, if only CO fluctuations were to play a role, the
anomalous peak observed in YBCO in the B2g channel would
be unexplained. Furthermore, CO CMs yield in LSCO spectra
that are fully satisfactory at x = 0.1, but less convincing at
x = 0.02, where the experimental line shape seems to have
a composite character, with a main peak accompanied by
a shoulder at slightly higher frequencies. This suggests the
presence of two CMs contributing to the anomalous absorption
in the B2g channel at low doping in LSCO and raises the
question about the nature of the additional CM. The uncertain

situation with YBCO and the compositeness of the LSCO
spectra call for a critical revision of the results of Ref. [50].

The above mentioned evidences for nematic order make it
natural to inquire whether the anomalous Raman absorption
observed in underdoped cuprates might be due to nematic
fluctuations (not considered in Ref. [50]), possibly mixed with
CO fluctuations (in LSCO). Therefore, within the same formal
scheme of Ref. [50], we include here the contribution of
nematic fluctuations. We find indeed that at low doping the
observed anomalous absorption can be due to the excitation
of long-wavelength overdamped nematic fluctuations with
longitudinal character, whose strong dynamics is apt to repro-
duce the observed line shape. While in strongly underdoped
YBCO this is enough, in LSCO, a secondary CM with finite
characteristic wave vector, which we identify with the CO
CM, is needed to better represent the line shape. The doping
dependence of the line shape in LSCO indicates that there is an
evolution from a dominating NCM towards a major relevance
of the CO CM, upon increasing doping.

The scheme of the paper is the following. In Sec. II, we
introduce a phenomenological model of fermion quasiparticles
coupled to nearly critical CO CMs and NCMs in underdoped
cuprates. Then, we proceed with the theoretical calculation
of the Raman response due to these CMs (Secs. II A, II B,
and II C). In Sec. III, we compare the theoretical results
with available Raman spectra for underdoped YBCO and
LSCO. Section IV contains our final remarks and conclusions.
Appendix A contains some details about the calculations of
the Feynman diagrams involved in the anomalous Raman
response. Details of the fitting procedure are found in
Appendix B, while a discussion on the role of the pseudogap
in the fermionic spectrum is found in Appendix C.

II. THE FERMION-COLLECTIVE MODE MODEL
AND THE RAMAN RESPONSE

A. The fermion-collective mode model

We consider a phenomenological model where, similarly to
the electron-phonon coupling, electrons are coupled to NCMs
or CO CMs. This approach relies on the presence of fermion
quasiparticles. This assumption, which is natural in the metal-
lic phase of cuprates, is still justified in the strongly underdoped
phase, where angle resolved photoemission [57,58] and trans-
port experiments [59,60] highlight the presence of fermionic
low-energy states (the so-called Fermi arcs) with a substantial
mobility, indicating that fermion quasiparticles still survive in
this “difficult habitat.” Thus we adopt the Hamiltonian

H =
∑
k,σ

ξkc
†
kσ ckσ +

∑
k,q,σ

∑
λ

gλ(k,q)c†k+qσ ckσ�λ
−q, (1)

where c
†
kσ (ckσ ) creates (annihilates) a fermion quasiparticle

with momentum k and spin projection σ , and ξk is the fermion
dispersion on the CuO2 planes of LSCO or YBCO (measured
with respect to the chemical potential). Its specific form is
rather immaterial for our analysis, once the generic shape
of the Fermi surface of cuprates is taken into account. The
index λ labels transverse (λ = t) or longitudinal (λ = �)
nematic fluctuations [61,62], and charge fluctuations (λ = c),
represented by the boson fields �λ. The quasiparticles couple
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to NCMs via gλ(k,q) ≡ gλd
λ
k,q, with d�

k,q = cos(2ϕk,q) and
dt

k,q = sin(2ϕk,q), where ϕk,q is the angle between k and q
(see, e.g., Eqs. (2) and (3) in Ref. [62]). The CO CM has
instead a finite characteristic wave vector qc and couples to
the fermion quasiparticle via a weakly momentum dependent
coupling gc(k,q) ≈ gc (i.e., dc

k,q ≈ 1).
We assume that these CMs are near an instability and

their propagators take the standard Gaussian form, valid
within a Landau-Wilson approach, and already adopted for
models of fermion quasiparticles coupled to nearly critical
charge [4] and spin [63,64] CMs in cuprates. As customary
in quantum critical phenomena, different damping processes
may lead to different dynamical critical exponents z, relating
the divergent correlation length ξ and time scale τ ∝ ξz. In the
case of the nematic instability, a multiscale criticality occurs
due to the different dynamics of transverse and longitudinal
fluctuations [62,65]. The longitudinal fluctuations are Landau-
overdamped, and decay in particle-hole pairs acquiring a
dynamical exponent z� = 3, and their propagator is

D�(q,ωn) = − 1

m� + c�|q|2 + |ωn|/|q| + ω2
n/��

, (2)

where ωn is a boson Matsubara frequency and wave vectors q
are henceforth assumed dimensionless and measured in units
of inverse lattice spacing a−1 (when needed, conventional units
are restored in our formulas by replacing q with aq). Apart
from the term ∝ω2

n, this propagator is the same as that in
Eq. (2.14) of Ref. [62]. Transverse fluctuations have instead
zt=2, and their propagator is (see, e.g., Eq. (2.15) in Ref. [62])

Dt (q,ωn) = − 1

mt + ct |q|2 + |ωn| + ω2
n/(�t |q|2)

. (3)

Both propagators, in the static limit (ωn = 0), are peaked at
q = 0. Similarly, the nearly critical CO CM has a dynamical
critical index zc = 2, with propagator (see, e.g., Eq. (1) in
Ref. [51] or Eq. (2) in Ref. [34])

Dc(q,ωn) = − 1

mc + cc|q − qc|2 + |ωn| + ω2
n/�c

, (4)

peaked at a finite wave vector qc (actually, at the whole star of
equivalent wave vectors). This circumstance allows to reabsorb
a factor |qc|2 in the definition of the parameter �c, and marks
the difference with respect to the propagator of the transverse
NCMs, Eq. (3). In the doping regime we are considering,
qc is directed along the diagonals of the BZ in LSCO with
x < 0.05 [16]. According to the discussion in Sec. I, we
consider instead that CO is absent in YBCO with p ≈ 0.015.

In Eqs. (2)–(4), the parameters cλ set the curvature at the
bottom of the CM dispersions, whereas the parameters �λ

set high-frequency cutoffs. The low-frequency scales mλ are
proportional to the inverse squared correlation lengths ξ−2

λ ,
thus being the relevant parameters that measure the distance
from criticality.

B. The fermionic loop in the Raman response

Our theoretical analysis is based on the calculation of the
Raman response represented by the Feynman diagrams of
Fig. 1 (more details are given in Appendix A). The first step
is to calculate the sum of the fermionic loops with attached
direct and crossed boson lines (see top and bottom diagrams

in Fig. 1):



λη

i (q,νl,ωm) = T
∑
k,n

γi(k)gλ(k,q)gη(k,−q)

× [G(k + q,εn − ωm) + G(k + q,εn

+ωm + νl)]G(k,εn)G(k,εn + νl), (5)

where T is the temperature, i = B1g,B2g labels the form
factors, γB1g(k) = cos(ky) − cos(kx) and γB2g(k) =
sin(kx) sin(ky) [49], νl is the external Matsubara frequency
which, once analytically continued, represents the frequency
shift between the incoming and the scattered photons, ωm

is the Matsubara frequency of one of the boson propagators
in Fig. 1 (the other carries ωm + νl), εn is the fermion
frequency to be summed over in the fermionic loop,
and G(k,εn) = (iεn − ξk)−1 is the fermion quasiparticle
propagator. In Eq. (5), we exploited the parity of G(k,εn),
γi(k), and gλ(k,q)gη(k,−q) with respect to k.

The dependence of the loop on the CM indexes λ and η

is diagonal: the CO CM cannot mix with the NCMs, having
a finite characteristic wave vector, and the � and t NCMs
cannot mix, because the product of g�(k,q) and gt (k,−q),
each depending only on the angle between k and q and having
a different parity, averages to zero when summed with respect
to k. This fact entails a selection rule stating that the two NCMs
attached to the same fermionic loop must be either longitudinal
or transverse. The average over the Fermi surface of two
couplings with the same NCM yields a result that is weakly
dependent on q and can be safely approximated to a constant
that can be reabsorbed in the definition of the dimensional
coupling gλ. Thus 


λη

i (q,νl,ωm) ≡ g2
λδλη
i(q,νl,ωm).

Summing over the fermion frequencies, one obtains the
general expression


i(q,νl,ωm) = 2
∑

k

γi(k)�fk
[
�ξ 2

k − ωm(ωm + νl)
]

(
�ξ 2

k + ω2
m

)[
�ξ 2

k + (ωm + νl)2
] ,

where �fk ≡ f (ξk+q) − f (ξk), �ξk ≡ ξk+q − ξk, and f (z) ≡
(ez/T + 1)−1 is the Fermi function.

The next steps are different in the case of NCMs (with
characteristic wave vectors q ≈ 0) and of CO CMs (with
finite characteristic wave vectors qc), and will be dealt with in
Secs. II B 1 and II B 2, respectively.

1. The fermionic loop for NCMs

To proceed with the calculation of the fermionic loop in the
case of NCMs, we consider that the main features of the boson
propagators (2) and (3) are their poles at small momenta q =
|q| and even smaller frequencies, because of their dynamics
with z� = 3 (ω ∼ q3) or zt = 2 (ω ∼ q2). Thus, expanding the
above result for small frequencies and keeping the lowest order
in the Matsubara frequencies ωm and ωm + νl , one obtains


i(q,νl,ωm) ≈ 2
∑

k

γi(k)�fk

�ξ 2
k

≈ 2
∑

k

γi(k)

�ξk

∂f (ξk)

∂ξk
.

The summation on k can be transformed into a two-
dimensional integral, yielding


i(q) ≈ 2M

(2π )2

∫∫
dk dθ δ(k − kF )

γi(k,θ )

�ξk
, (6)
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where θ is the angle between the wave vector k and the x axis in
reciprocal space, and M is the quasiparticle effective mass. By
noticing that the form factor γi(k), calculated on the Fermi
surface, depends weakly on k = |k| while it substantially
depends on θ , one can write γB1g(k,θ ) ≈ cos(2θ ) ≡ γB1g(θ )
and γB2g(k,θ ) ≈ sin(2θ ) ≡ γB2g(θ ). When expanding �ξk
one has to keep track of the inverse band curvature M

(otherwise the integral vanishes). The limit |q| → 0 can then
be taken, and the final result is that the fermionic loop
depends only on the angle φ between q and the x axis.
This dependence can be made explicit observing that the
denominator �ξk in Eq. (6) depends on the cosine of the angle
θ − φ between k and q. Shifting the variable θ − φ → θ ,
one is left with γi(θ + φ) in the numerator. Expanding,
one has γB1g(θ + φ) = γB1g(θ )γB1g(φ) − γB2g(θ )γB2g(φ) and
γB2g(θ + φ) = γB2g(θ )γB1g(φ) + γB1g(θ )γB2g(φ). The inte-
gral with respect to θ of the terms with γB2g(θ ) vanishes by
symmetry. Thus we finally obtain


i(φ) ≈ M2

πk2
F

γi(φ). (7)

This result, which is crucial in our development, implies
that the original form factor γi(θ ) coupling the fermion
quasiparticles to the incoming and outgoing photons in the
Raman vertex, in the integrated form of the loops, is translated
into a direct coupling of the photons to the NCMs with the
same form factor γi(φ).

2. The fermionic loop for the CO CMs

The fermionic loop for the CO CMs has been calculated
in Ref. [50], and we recall here the main results. The main
difference with respect to the calculation of Sec. II B 1, is that
the propagator (4) is peaked at finite wave vectors qc. Then, the
sum over k in Eq. (5) is now dominated by the neighborhood
of the points along the Fermi surface where ξk = ξk+qc

, i.e.,
the so-called hot spots (HS). The result is


i(qc) ≈ 1

2π2
ln

∣∣∣∣W+
W−

∣∣∣∣
∑
HS

γi,HS

v2
HS sin αHS

, (8)

where W± are the upper and lower cutoffs for the linearized
band dispersion at the hot spot, while γi,HS and vHS are,
respectively, the Raman form factor and the Fermi velocity
at k = kHS, and αHS is the angle between the Fermi velocities
at the two hot spots connected by the given qc. For qc along
high-symmetry directions (i.e., the axes and the diagonals) of
the BZ, the moduli of the Fermi velocities in kHS and kHS + qc

are equal. As pointed out in Ref. [50], summing over k at
fixed qc, various different hot spots are visited, where, due
to the above-mentioned symmetry, the form factors can have
pairwise equal magnitude and equal or opposite signs. As a
consequence, the terms in the above hot-spot summation can
add or cancel each other. This induces a “selection rule” which,
in the case pertinent to the strongly underdoped LSCO, where
qc is short and directed along the (±1,±1) directions, leads to
finite B2g vertex loops, while the B1g vertex loops vanish by
symmetry.

C. The Raman response

Few considerations are now in order. First of all, the
NCM propagators, Eqs. (2) and (3), do not depend on the
angle φ and therefore the product of the two fermionic loops
entering the diagrams of Fig. 1 only introduces a multiplicative
constant factor, which can be enclosed in the overall intensity
of the Raman response. However, we emphasize that the
φ integration, to be performed when the summation over
q is carried out, introduces an important selection rule; the
fermionic loops with attached Raman vertices, enter pairwise
in the response diagrams of Fig. 1 and must both be of the
same symmetry, B1g or B2g . Similarly, the CO propagator (4)
depends only on the magnitude of the deviation of q from qc.
In this case, the Raman response is given by a first summation
on all the possible qc of [
i(qc)]2 and an internal integral over
|q − qc| of two CO CM propagators.

Thus both for the two nematic CMs and for the CO CM,
the sum of the two diagrams of Fig. 1 reads

χi,λ(νl) = Ki,λT
∑

n

∫ q̄

0
dq

q

q̄2
Dλ(q,ωn)Dλ(q,ωn + νl),

where q̄ ∼ 1 is the momentum cutoff, its precise value being
re-absorbable in a multiplicative rescaling of the parameters of
the CM propagator, q = |q| for the NCMs, and q = |q − qc|
for the CO CMs. The factor Ki,λ comes from the product
of two fermionic loops and is proportional to g4

λ (each
loop 
i carrying two fermion-CM coupling constants). For
NCMs, Ki,λ ≡ M4g4

λ〈[γi(φ)]2〉/(πk2
F )2, with λ = � or t , and

〈[γi(φ)]2〉 is the angular average of the square of the function
γi(φ) that appears in Eq. (7), whereas for the CO CM we
have [cf. Eq. (8)] Ki,c = g4

c

∑
qc

[
i(qc)]2, that vanishes in the
B1g (B2g) channel for diagonal (vertical/horizontal) qc. This
“selection rule” is the only place where the finite wave vector
of the CO CM plays a role within our nearly critical theory of
Raman absorption. This selection rule is instead absent in the
case of the NCMs, which are peaked at q = 0.

The analytic continuation to real frequencies iνl → ω +
iδ and the use of the spectral representation of the boson
propagators finally yield the Raman response

χ ′′
i,λ(ω) = Ai,λ

∫ +∞

−∞
dz [b(z−) − b(z+)]

∫ 1

0
dq

× 2q Fλ(z+,q)Fλ(z−,q), (9)

where b(z) ≡ (ez/T − 1)−1 is the Bose function, and we
performed the customary symmetrization z → z − ω

2 ≡ z−
and z + ω → z + ω

2 ≡ z+, which makes explicit the fact that
Eq. (9) is an odd function of ω. The constant multiplicative
prefactors, including those transforming the Raman suscepti-
bility into the measured Raman response, are reabsorbed in the
parameters Ai,λ. Unfortunately, a fully analytical expression
for Ai,λ cannot be given, the Raman response being affected
by resonance effects that prevent even order-of-magnitude
estimates. However, whenever we studied the contribution
of critical CMs in situations where the prefactors can be
explicitly calculated, like optical conductivity [34,51], or angle
resolved photoemission spectra [35], we always found that the
dimensionless coupling constants are of order one, in a regime
of moderate coupling.
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FIG. 2. (Color online) Schematic representation of the AL-like
Raman response of the three different CMs: longitudinal L-NCM
(black curve), transverse (T) NCM (green curve), and CO CM (red
curve). (Inset) AL-like Raman response from different CMs, but taken
with the same nearly critical set of parameters (mλ = 17 cm−1, �λ =
70 cm−1, cλ = 3.16). The amplitudes are instead rescaled by factors
of order one to bring all responses to a common maximal height for
easier comparison. The coloring of the lines is the same as in the main
panel.

The spectral density of the longitudinal NCMs is

F�(z,q) =
z
q(

m� + c�q2 − z2

��

)2 + z2

q2

,

while the spectral density of the transverse NCMs is

Ft (z,q) = z(
mt + ctq2 − z2

�tq2

)2 + z2
.

Finally, for the CO CMs, we find

Fc(z,q) = z(
mc + ccq2 − z2

�c

)2 + z2
.

The anomalous peak of the Raman response, both in LSCO
and YBCO, is strongly temperature dependent, it shrinks and
softens upon reducing T . This behavior is naturally encoded
in the temperature dependence of the mass mλ of the CMs.
In general, the low-frequency scale mλ controls the slope
of the Raman response, while the scales ω1 ∼ √

mλ�λ and
ω2 ∼ √

(mλ + cλ)�λ set the frequency window over which the
spectral function of the corresponding CM is sizable. However,
the different dynamical properties and values of the parameters
of the CMs mirror into different shapes of the AL-like Raman
responses, which are schematically represented in Fig. 2. We
point out that the curves displayed in this panel do not exhaust
all the possible regimes of parameters, and only represent
the corresponding CM in the regime where, after a thorough
analysis, they were found to better reproduce the various
features of the Raman response. The inset of the same figure
reports instead the behavior of Raman absorption spectra (from
the AL processes) due to the various CMs. In this inset,
while we rescale the height to bring all responses to the
same maximal height, we use the same nearly critical set of
parameters to highlight the differences arising purely from the
different form of the propagators and dynamical critical index

z. Apparently, the shape of the spectra is quite similar, but the
behavior upon changing the mass is different on a quantitative
level. In particular we found that the z = 2 propagators shift
the position of the maxima upon reducing m more rapidly
than the NCM z = 3 propagator. Since we apply a strict fitting
protocol (see below in Sec. III), which fixes all parameters and
follows the temperature evolutions of the main peaks by only
changing m, these different behavior affects in a substantial
way the accuracy of the fits. An inspection of Fig. 3 in Ref. [50]
shows that the fits with a z = 2 CO-CM are not very accurate at
low temperatures. Instead, we will see in the next section that
the z = 3 NCM does a much better job within the adopted strict
fitting protocol and therefore it will be considered henceforth
as the primary (i.e., most critical) CM. The additional shoulder
in the spectra of LSCO, is instead better reproduced by the CO
curve in Fig. 2 than by the broader T-NCM curve, when both
CMs are taken in the regime of parameters apt to describe this
spectral feature. Therefore, at these doping levels, the CO CM
acts as the secondary CM in LSCO.

III. RESULTS

A. Raman absorption in Y0.97Ca0.03Ba2Cu3O6.05

An anomalous Raman absorption at low frequencies,
up to few hundreds of cm−1, is experimentally found in
the B2g channel in lightly doped YBCO with p � 0.05
[52]. Since, however, the whole spectra also display broad
absorptions up to electronic energy scales, we first extract
the specific anomalous low-frequency contributions. To this
purpose, we subtract from the low-temperature spectra the
spectra obtained at the highest measured temperature. This
subtraction is delicate because at temperatures below about
150–200 K, the spectra are characterized by the formation
of a pseudogap over a frequency range of several hundreds
of cm−1, which reduces the electronic background. Then, the
simple subtraction leads to regions of negative absorptions,
which are obviously meaningless. In Appendix B, we provide
the detailed procedure adopted to circumvent this drawback. In
Fig. 3, the data, processed according to the previous procedure,
are shown for p ≈ 0.015.

The experimental line shape clearly resembles the L-NCM
spectrum in Fig. 2, which is narrow due to the z� = 3 damped
dynamics of the corresponding CM, whose temperature
dependence is ruled by the mass m�. Indeed, the data in
Fig. 3 are best fitted with the only contribution of longitudinal
NCMs. In the spirit of our nearly-critical approach, we only
adjust their mass m�(T ), while keeping all other parameters
(i.e., the high-frequency cutoffs of the CM propagator, the c�

coefficients, and the overall intensity coefficient A�) fixed at all
temperatures. This strict procedure was already successfully
adopted in Ref. [50] and seems to us the most suitable to
pinpoint the quantum nearly-critical character of the collective
excitations responsible for the anomalous Raman absorption.
The fits with this restricted procedure turn out to be quite good.
Of course, they could be further improved if this constrained
procedure were relaxed. The fits reproduce well the line
shapes and the strong temperature dependence of the peak,
encoded in the rapid decrease of the mass with temperature,
as shown in the inset of Fig. 3. From this inset, it is evident
that m�(T ) decreases with T . Its linear extrapolation starting
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FIG. 3. (Color online) Subtracted experimental Raman absorp-
tion spectra in the B2g channel, at various temperatures, for YBCO
at p ≈ 0.015 (symbols). The theoretical fits (solid lines) consider the
contribution of the longitudinal NCM only. The fitting parameters are
c� = 0.63 cm−1, �� = 110 cm−1,A� = 5.0 (a.u.). The inset reports
the temperature dependence of the mass of the longitudinal NCM
(black circles).

from high temperature should vanish at some finite critical
temperature for the onset of nematicity (≈125 K), if static
order would occur. However, at lower temperatures, the mass
seems instead to saturate, likely indicating that nematic order
stays short-ranged and dynamic.

B. Raman absorption in La2−xSrxCuO4

Figures 4 and 5 report the experimental Raman spectra
in the B2g channel, for LSCO samples at doping x = 0.02
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FIG. 4. (Color online) Subtracted experimental Raman absorp-
tion spectra in the B2g channel, at various temperatures, for LSCO at
x = 0.02 (symbols). The theoretical fits (solid lines) consider the
contribution of the longitudinal NCM and of the CO CM, with
c� = 3.16 cm−1, cc = 333 cm−1, �� = 70 cm−1, A� = 8.3 (a.u.).
The other fitting parameters are reported in Fig. 6. The inset reports
the temperature dependence of the mass of the longitudinal NCM
(black circles) and of the CO CM (red squares).
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FIG. 5. (Color online) Subtracted experimental Raman absorp-
tion spectra in the B2g channel, at various temperatures, for LSCO at
x = 0.04 (symbols). The theoretical fits (solid lines) consider the
contribution of the longitudinal NCM and of the CO CM, with
c� = 3.16 cm−1, cc = 333 cm−1, �� = 50 cm−1. A� = 7.14 (a.u.).
The other fitting parameters are reported in Fig. 6. The inset reports
the temperature dependence of the mass of the longitudinal NCM
(black circles) and of the CO CM (red squares).

and 0.04 and various temperatures. The raw data were
again processed according to the procedure described in the
Appendix B. As mentioned above, the anomalous Raman
absorption observed in LSCO is characterized by a line shape
that is more complex than in YBCO, and displays a peculiar
shoulder or, at low T , even a secondary peak, see Fig. 5.
The anomalous peak and the shoulder (or secondary peak)
both depend on temperature, but their frequency and intensity
are not simply related by constant multiplicative factors. The
shoulder (or secondary peak) becomes stronger with increasing
doping. This indicates that the excitations responsible for this
absorption have a distinct dynamics.

Again these absorptions are described by the AL-like pro-
cesses (direct and crossed, see Fig. 1). Owing to the selection
rules found in Sec. II, the response due to two (or more) CMs
is the sum of the responses associated with each individual
CM. As already mentioned, our thorough analysis showed that
the primary anomalous absorption should be attributed to the
longitudinal NCM, which has the stronger dynamical behavior.
Within our context, the transverse NCM and the CO CM
are the two candidates for the shoulder (or secondary peak).
Looking at the line shape of the two CMs reported in Fig. 2,
it is easy to convince oneself that the best choice for a good
fit is the CO CM, due to its much more pronounced peaked
form at intermediate frequency. We also attempted a fit with
the transverse NCM. At x = 0.02, we obtained a reasonable
fit taking a very large and almost temperature independent
CM mass, which is hardly compatible with our assumption of
nearly critical CMs. Moreover, at x = 0.04, when the shoulder
evolves into a secondary peak, the attempt failed completely.
Thus we ruled out a contribution of transverse NCMs.

Again, having attributed the main peak to the more critical
longitudinal NCM, we describe the low-frequency side of the
spectra by only adjusting the mass m�(T ) of this excitation,
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FIG. 6. (Color online) (a) High-frequency cutoff �c for the CO
CM for a sample at x = 0.02 (black empty squares) and at x = 0.04
(red filled squares). (b) Amplitude coefficients Ac for the CO CM
for a sample at x = 0.02 (black empty squares) and at x = 0.04
(red filled squares).

while keeping all other parameters of this mode (i.e., the high-
frequency cutoff of the CM propagator, the c� coefficient, and
the overall intensity coefficient A�) fixed at all temperatures,
within the temperature range considered here. Thus we obtain
the marked temperature dependence of the longitudinal NCM
mass, which is reported in the insets of Figs. 4 and 5. On
the other hand, the complete quantitative agreement between
data and theoretical fits is only obtainable by adjusting more
freely the secondary CO CM. This mode is therefore allowed
to vary its parameters with T , as reported in Fig. 6. The
temperature dependence of the CO CM parameters �c and
Ac ∝ g4

c likely reflects an increasing damping and a decreasing
coupling to the fermion quasiparticles with increasing T . Of
course, the estimates and variations of these parameters may
be quantitatively affected if the constraint of T -independent
parameters for the longitudinal NCM (but for its mass m�)
were relaxed. Furthermore, we cannot exclude that static
nematic order has eventually occurred, e.g., in the sample with
x = 0.02 at the lowest temperature. In this case our analysis,
which is only valid above the critical temperature, should be
modified to deal with a broken-symmetry phase. This might
reflect in a reduction of the primary peak, due to the freezing of
NCM fluctuations, and could be the cause of the non monotonic
behavior of the peak height as a function of T , observed in
the sample with x = 0.02. To asses the occurrence of static
nematic order at low temperature, a systematic experimental
investigation in this temperature regime is needed.

IV. DISCUSSION AND CONCLUSIONS

Our analysis showed that the anomalous Raman absorption
observed in underdoped cuprates can be interpreted in terms
of direct excitation of nearly critical CMs (see Fig. 1). The
strong temperature dependence of the mass (i.e., inverse square
correlation length) of the “primary” CM, identified as the
longitudinal NCM (with dynamical critical index, z� = 3),
captures the correspondingly strong variation of the spectra.
This CM alone fully accounts for the spectra of YBCO. In
LSCO, instead, a distinct “secondary” CM, with different

FIG. 7. (Color online) Schematic comparison of the theoretical
expectations and the experimental observation of an anomalous
Raman absorption. The theoretically involved CMs are indicated
with N in the case of the NCM, while for CO we also report the
direction of the characteristic wave vector, as established by inelastic
neutron scattering. The related symbols only appear in the box where
they are expected to contribute on the basis of symmetry arguments.
The experimental observation of an anomalous Raman absorption is
depicted as a green case in the column of the corresponding channel.
Red cases indicate instead the lack of anomalous Raman absorption
in experiments. Our remarks and possible indications (in boldface)
are contained in the comment boxes.

dynamical critical index z = 2, is needed to reproduce the
composite line shape. Within the two candidates considered in
our scheme (transverse NCM and CO CM), our fits indicate
that the CO CM is the most suitable.

For symmetry reasons, the secondary CO CM cannot
occur in all channels: the first two rows in the sketch of
Fig. 7 summarize the findings of Ref. [50] in LSCO as far
as CO is concerned. The correct CO (i.e., with finite qc

in the direction compatible with inelastic neutron scattering
experiments) appears as an observed absorption (green case)
only in the theoretically predicted channel.

Two questions still remain to be answered, in order to
complete the scheme of Fig. 7. First of all, the NCMs would
equally contribute to the B1g and B2g channels. Therefore they
would not only add to the CO fluctuations that give absorption
in the B1g channel at larger doping (x > 0.05) in LSCO, but
would also give rise to absorption in the B2g channel. Since
this is not observed (the corresponding box is red in Fig. 7),
we infer that NCMs disappear in LSCO at x > 0.05 (see the
comment box in the first row of Fig. 7). This is consistent
with the observation of an increasingly stronger stripe order
at higher doping [50], where CO CM alone [along the (1,0)
and (0,1) directions of the BZ] accounted for the anomalous
Raman absorption at x = 0.10 and 0.12.

The second related question is: if the NCMs are present
and contribute to the absorption in B2g at low doping both
in LSCO and YBCO, why are they not visible in the (for
them allowed) B1g channel? As yet, we do not have a definite
answer. We argue that the strong pseudogap occurring in
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FIG. 8. (Color online) Schematic evolution of the nematic (blue
region) and stripe CO (green region) phases in underdoped cuprates
with doping (disregarding superconductivity). The pseudogap region,
where the Raman response in the B1g channel is expected to be
suppressed, is highlighted in red. Upon increasing doping, the nematic
phase evolves into a CO phase, which in turn vanishes at a CO
quantum critical point around optimal doping. The orientation of the
segments and/or stripes may change with cuprate family and doping.

lightly doped cuprates at T < 200 K could play a key role
in suppressing the B1g absorption. Specifically, the B1g form
factors select the quasiparticles in the fermionic loops of Fig. 1
precisely from the BZ regions where the pseudogap is largest.
Therefore, only the quasiparticles in the remaining Fermi arcs,
mostly weighted by the B2g form factors, remain to couple the
Raman photons with the NCMs. In Appendix C, we obtained
a numerical estimate of this suppression, finding indeed that it
can be substantial.

Based on the above discussion, we can draw the schematic
“phase diagram” for underdoped cuprates reported in Fig. 8.
Despite its speculative character, it is compatible with various
theoretical and experimental findings, and accounts for the
assessed relevance of nematic order in cuprates [20,38–41]. It
also complies with the proposal of a nematic order resulting
from the melting of stripes [42] or of a nematic or smectic phase
in strongly underdoped LSCO (and possibly YBCO) [47],
arising from the aggregation of doped charges in short
segments (blue region). The orientation of these segments
breaks the lattice C4 rotational symmetry preparing the route
to CO at higher doping, when the segments merge into stripes
(green region). The fluctuating character of the nematic phase
should give rise to nearly critical fluctuations of the form of
Eqs. (2) and (3). On the other hand, CO fluctuations become
prominent by increasing doping and appear in the B1g channel
above x = 0.05. In LSCO these fluctuations are present (in the
diagonal directions of the BZ) also at x < 0.05 and contribute
to the B2g absorption, but the tendency of CO fluctuations
to become more relevant at larger doping is clearly visible
by comparing Figs. 4 and 5. At the same time, the insets of
Figs. 4 and 5 also display an increase of the low-temperature
limit of the correlation length of the CO CM upon increasing
doping. Hence nematic and CO fluctuations coexist in very
underdoped LSCO, the predominance shifting from nematic
to CO with increasing doping. This indicates a continuous

evolution from the nematic (charge segment) phase to the stripe
phase where charge and spin degrees of freedom are tightly
bound, yielding a definite relation between spin and charge
incommensurabilities (typical of the stripe phase). We relied
on this relation to implement our symmetry-based selection
rules for LSCO. On the other hand, our finding that NCMs
alone are relevant in YBCO at very low doping supports the
idea that oriented charge segments may occur in this material
as well, accounting for the order-parameter-like disappearance
of the incommensurability in the spin response with increasing
temperature [45,47], as observed in Refs. [20,38]. The lack of
CO fluctuations at low doping and the opposite doping depen-
dence of the charge and spin characteristic wave vectors [33]
indicate a nematic-to-CO switching different from that in
LSCO. However, both materials seem to eventually evolve into
a charge-density-wave phase ending into a quantum critical
point around optimal doping, as theoretically proposed [4]
and recently observed [33].
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APPENDIX A: DETAILS ON THE CALCULATION
OF THE RAMAN RESPONSE

Inspection of Fig. 1 shows that the diagrammatic structure
of the Raman response due to the excitation of two CMs
involves two inequivalent fermionic loops (on the left of
the two diagrams), which multiply two CM propagators and
the fermionic loop on the right of the diagrams. Calling



λη

i (q,νl,ωm) the sum of the two different fermionic loops
(frequencies and momenta are those displayed in Fig. 1), we
can write the expression for the sum of the two diagrams as

χ
λη

ij (νl) = T
∑
q,m



λη

i (q,νl,ωm)

×Dλ(q,ωm)Dη(q,ωm + νl) L
λη

j (q,νl,ωm),

where i,j = B1g,B2g , λ,η = �,t,c, and L
λη

j (q,νl,ωm) stands
for the fermionic loop in the right part of the diagrams. The
above expression can be made symmetric also with respect to
the latter fermionic loop, observing that the integrated k′ can be
changed into −k′, and the fermionic Matsubara frequency ε′

n

can be shifted to ε′
n − νl (frequencies and momenta are those

displayed in the fermionic loop on the right of both diagrams
in Fig. 1). Then, exploiting the parity of the CM propagators
with respect to both momentum and frequency arguments, we
can take q → −q and ωm → −ωm, νl → −νl . Summing the
two equivalent expressions and dividing by 2 we are finally
led to calculate

χ
λη

ij (νl) = T

2

∑
q,m



λη

i (q,νl,ωm)

×Dλ(q,ωm)Dη(q,ωm + νl) 

λη

j (q,νl,ωm).
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This expression has the formal structure of a Raman
response where to CMs are directly excited by the scattered
electromagnetic radiation, and 


λη

i (q,νl,ωm) plays the role
of an effective Raman vertex, resulting from the sum of
the fermionic loops with attached direct and crossed boson
lines in Fig. 1. In Sec. II B, we discuss the calculation of
the effective vertex 


λη

i (q,νl,ωm). This calculation is further
specialized to the cases of NCMs and CO CMs in Secs. II B 1
and II B 2, respectively.

APPENDIX B: FITTING PROCEDURE OF
THE ANOMALOUS RAMAN ABSORPTION

To fit the anomalous contribution of the Raman absorption
due to two virtual CMs, as represented in Fig. 1, one needs to
subtract the regular part of the spectra arising, e.g., from the
dressed quasiparticles. However, the subtraction procedure has
to face the problem of pseudogap formation occurring in the
underdoped regime; at substantially high temperatures (above
300 K), there is no pseudogap, which instead sets in below
200 K. The anomalous absorption peak we are interested in
starts to appear on top of the (pseudogapped) broad absorption
spectra at lower T . Thus, when the nonpseudogapped spectra
at T ≈ 300 K are subtracted from the low-temperature
pseudogapped ones, a negative differential absorption is found
over the frequency range of the pseudogap. Although this is not
crucial for the qualitative description of the anomalous peaks,
to get quantitatively more precise fits we exploit the fact that the
pseudogap sets in rather rapidly and, once established, depends
only very weakly on T . Therefore we add a smooth parabolic
contribution χ ′′

b = ω(�MAX − ω)/[B(T )]2, with ω in cm−1

and T in K, just designed to cancel the negative part at each
temperature. For YBCO, we take �MAX = 1000, B(55) =
760, B(86) = 860, B(127) = 1100, while at T = 190,

254, and 282 K no compensation is needed because the
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FIG. 9. (Color online) Subtraction procedure on the raw Raman
data of a LSCO sample at x = 0.04 and T = 52 K (blue curve and
symbols). The red curve and symbols correspond to the raw data
at T = 331 K. Once the latter are subtracted from the former, the
purple curve and symbols are obtained. To eliminate the negative
absorption, the parabola χ ′′

b = ω(1000 − ω)/6002, with ω in cm−1,
is added to finally yield the absorption reported with the black curve
and symbols.

pseudogap is not open. For LSCO at x = 0.02, we take
�MAX = 800, B(35) = 500, B(88) = 500, B(125) = 600, and
B(182) = 1000, while at T = 255 K, again no compensation
is needed because the pseudogap is not open. The same
procedure is carried out at x = 0.04, with �MAX = 1000,
B(52) = 600, B(105) = 600, B(137) = 800, B(154) = 1000,
B(169) = 800, B(207) = 1500, B(252) = 2000, B(301) =
2000. Figure 9 exemplifies the procedure for LSCO with
x = 0.04 at T = 52 K. The blue curve represents the raw data,
from which we subtract the red data at T = 331 K, obtaining
the purple curve with unphysical negative absorption. The
pseudogap effect is then corrected by the addition of the
smooth parabolic contribution, leading to the final black curve.
Once these differential spectra are thus brought to have a
zero background we proceed to fit the strongly T -dependent
anomalous peaks.

APPENDIX C: PSEUDOGAP, FERMI ARCS,
AND RAMAN RESPONSE SUPPRESSION

The strongly underdoped phase of cuprates is characterized
by the presence of a pseudogap that strongly suppresses the
low-energy electronic degrees of freedom. In particular, the
electronic states in the so-called antinodal regions of the BZ,
around (±π,0),(0,±π ), are gapped, while the so-called nodal
states, along the (±1,±1) directions, survive giving rise to
Fermi arcs which shrink upon lowering temperature and
doping. In this appendix, we investigate the effects of this
suppression of the low-energy electronic states on the coupling
between the Raman vertices and the NCMs. Indeed, the
fermionic loops entering the diagrams of Fig. 1 involve the
integration over fermionic degrees of freedom coupled to
the nearly critical CMs, with the low-energy fermions being the
most effective in coupling to the low-energy CMs. Therefore
the opening of gaps in the electronic spectra naturally entails
a substantial reduction of the overall response of the CM.
However, the Raman vertices γi(k) weight differently the
fermionic states along the Fermi surface and it is therefore
quite natural that the fermionic loops are differently suppressed
depending on the channel. To estimate this effect is the aim of
this Appendix. More specifically, we will consider the NCMs
only, because the CO modes in the very underdoped LSCO
were shown in Ref. [50] to be only visible in the B2g channel.
So it would be meaningless to compare the pseudogap effects
in the two Raman channels. On the contrary, the NCM are sin-
gular at q ≈ 0 and therefore should give a strong contribution
to the Raman response in both channels. This Appendix will
instead demonstrate that the interplay of Raman vertices and
momentum dependence of the pseudogap strongly suppress
the loop in the B1g channel in comparison to the B2g case.

We adopt the simplifying assumption of a circular Fermi
surface and we start from the expression for the fermionic
loop, Eq. (6). Since the NCMs are singular at small q, we
expand in this limit the quantity �ξk ≡ ξk − ξk+q. Expanding
up to order q2 the denominator and exploiting the δ function
to perform the integral along the radial momentum variable,
one obtains


i ≈ 2M2

(2π )2

∫ 2π

0
dθF (θ )

γi(θ )

1 − q2

2k2
F

+ cos(2θ − 2φ)
, (C1)
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where φ is the angle between q and the x axis in reciprocal
space. At this stage, we have phenomenologically introduced
a function

F (θ ) =
∑

n

1

1 + e{[θ−(2n−1)π/4]2−�2
M }/�2

θ

, (C2)

with n = 1,2,3,4, which simulates the effect of the pseudogap
on the Fermi surface of the 1−4 quadrants. The parameter
�M tunes the length of the residual arc on the Fermi surface.
Specifically, this function leaves the states near the diagonal
untouched, while for �M < π/4 it rather sharply suppresses
the integration in the gapped antinodal regions for θ ’s far from
the nodal direction θ = π/4 (for �M = π/4 one recovers the
full ungapped Fermi surface). This essentially restricts the
integration in Eq. (C1) to the angles of a Fermi arc allowing to
explore the different action of the Fermi surface shrinking on
the value of the fermionic loop. The parameter �θ measures
how rapidly the pseudogap is switched on and off along the
FS, and we take it to be much smaller than π/4.

Figure 10 displays the square of the fermionic loops in the
two Raman channels as a function of the angle φ between the
boson transferred momentum q and the x axis. The calculation
clearly shows the increasingly strong suppression of the B1g

fermionic loop (solid curves) upon reducing the length of
the Fermi arcs. The suppression is much less pronounced
in the B2g fermionic loop (dashed lines). These results are
rather natural because the pseudogap suppresses the states that
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FIG. 10. (Color online) Square of the fermionic loops as a func-
tion of the angle φ calculated according to Eq. (C1) in the B1g

channel (solid lines) and in the B2g channel (dashed lines). The
F (θ ) function [Eq. (C2)] has been set to produce arcs shrinking
the Fermi surface by a factor 1 (�M = π/4, whole Fermi surface,
black curves), 0.75 (�M = 3π/16, red curves), 0.5 (�M = π/8,
green curves), and 0.25 (�M = π/16, blue curves). The parameter
�2

θ = 0.05, was set to smoothen the angular cutoff producing the arcs.
The boson momentum q has been chosen such that q2/2k2

F = 0.01,
while M = 1.

more effectively contribute to the B1g loop, while the fermion
quasiparticles contributing more to the B2g channel survive in
the Fermi arcs.

[1] S. A. Kivelson, I. P. Bindloss, E. Fradkin, V. Oganesyan, J. M.
Tranquada, A. Kapitulnik, and C. Howald, Rev. Mod. Phys. 75,
1201 (2003), and references therein.
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