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Local temperatures of strongly-correlated quantum dots out of equilibrium
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Probes that measure the local thermal properties of systems out of equilibrium are emerging as new tools in
the study of nanoscale systems. One can then measure the temperature of a probe that is weakly coupled to a
bias-driven system. By tuning the probe temperature so that the expectation value of some observable of the
system is minimally perturbed, one obtains a parameter that measures its degree of local statistical excitation, and
hence its local heating. However, one anticipates that different observables may lead to different temperatures
and thus different local heating expectations. We propose an experimentally realizable protocol to measure such
local temperatures and apply it to bias-driven quantum dots. By means of a highly accurate open quantum system
approach, we show theoretically that the measured temperature is quite insensitive both to the choice of observable
and to the probe-system coupling. In particular, even with observables that are distinct both physically and in
their degree of locality, such as the local magnetic susceptibility of the quantum dot and the global spin-polarized
current measured at the leads, the resulting local temperatures are quantitatively similar for quantum dots ranging
from noninteracting to Kondo-correlated regimes, and are close to those obtained with the traditional “local
equilibrium” definition.
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I. INTRODUCTION

Temperature is a thermodynamic quantity of fundamental
importance in the description of systems at equilibrium.
However, the extension of this concept to systems far from
equilibrium is not obvious. From an operational point of
view, temperature is defined as that quantity measured by
a thermometer coupled to the system with which it reaches
thermal equilibrium. Precisely because the thermometer plus
the system reach a state of global equilibrium when coupled,
the quantity that is measured by the thermometer is then
attributed to the system in the limit of weak coupling and
negligible heat capacity of the thermometer. This definition is
no longer valid for a system out of equilibrium such as one
driven by a constant bias [1]. In this case, electron-electron
interactions and electron-phonon interactions are expected
to induce electronic and ionic “temperatures” different from
those of the same system at equilibrium [1]. The question then
is: what are these temperatures and how do we measure them
directly?

Several solutions have been proposed. For instance, En-
gquist and Anderson have introduced the concept of ideal
potentiometer/thermometer [2]. In this case, local chemical
potential and local temperature are defined by a “local equi-
librium condition”: the net particle and heat current flowing
through the potentiometer/thermometer are set to zero [3–11].
Although such a definition is appealingly intuitive and has been
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used extensively in the past, we do not have means to directly
measure heat currents (unlike particle currents for which
ammeters are available) [12], and therefore its experimental
realization is very limited. Other theoretical definitions include
the use of approximate distribution functions [13], information
compressibility [14], or generalized fluctuation-dissipation
theorems [15], to name just a few (for a more complete set
of definitions see, e.g., Ref. [12]). All of these, however, suffer
from some limitations in their experimental realizations and
therefore are also of limited use.

On the experimental side, methods have been devised to
determine local temperatures by monitoring properties that
are sensitive to thermal fluctuations, such as the bond rupture
force [16], the junction lifetime [17,18], the mechanical
stretching distance [19], the bias-driven current noise [20],
and the surface-enhanced Raman intensities [21,22]. These
probes, however, provide only an indirect measurement of a
“local temperature” leaving the original question still open.

There is, instead, an increasing body of experimental
studies in which thermal probes are coupled directly to
driven nanoscale systems with a resolution that is approaching
hundreds of nanometers or less [23–30], thus making them
ideal as local thermometers. With these thermometers an
operational definition of temperature has been proposed by
imposing a minimal perturbation condition [31], in which
the temperature of the probe, Tp, is varied, while monitoring
some observable of the system, in such a way that the
expectation value of that observable is minimally perturbed.
The probe temperature satisfying this condition is then a
parameter attributed to the system, which characterizes its
local excitations out of equilibrium. This type of definition
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has been used, for instance, in the study of the thermoelectric
response of nanoscale systems to applied thermal gradients,
leading to the prediction of temperature oscillations [10,32]. It
is an operational definition that is relatively straightforward
to implement experimentally. However, it leaves open the
prescription of what type of observable one should use, and
whether different observables lead to quantitatively different
temperatures. In addition, in the original paper [31], the
thermal probe was assumed to be a bosonic system, and
hence no electric current could flow between the system
and the probe. This is quite a strong limitation since the
experimental probes that are being developed are generally
fermionic systems [23–30]. In this case, an extra constraint
related to the local chemical potential of the thermal probe
needs to be introduced.

In this paper, we discuss a protocol to measure the local
temperature of a system out of equilibrium that is coupled to
a thermal probe. We consider a fermionic probe and allow the
measurement of an observable of the system in such a way that
the minimal perturbation condition be satisfied. We show that
by appropriately setting the chemical potential of the probe at
the beginning of the measurement, the choice of observables
quite distinct both physically and in their degree of locality
lead to local temperatures that are quantitatively similar even
for strongly correlated systems, and very close to those
obtained with the often-used local equilibrium temperature.
These results lend support to the extrapolated parameter as the
“temperature” of the system.

The remainder of this paper is organized as follows. In
Sec. II, we propose an experimentally realizable protocol to
measure local temperatures for quantum dot (QD) systems out
of equilibrium. We then give a brief introduction on the basic
features of the hierarchical equations of motion approach,
which is used to carry out the numerical investigations in
this paper. In Sec. III, we demonstrate the usefulness and
practicality of the proposed operational protocol by applying it
to QDs in both noninteracting and Kondo-correlated regimes.
Finally, concluding remarks are given in Sec. IV.

II. METHODOLOGY AND MODEL

A. An operational protocol for the determination
of local temperature

We consider a quantum dot in contact with two leads as
sketched in Fig. 1. Under a bias voltage or a thermal gradient
across the two leads, the temperatures (chemical potentials) of
left and right leads are TL and TR (μL and μR), respectively.
To determine the local temperature T ∗ and local chemical
potential μ∗ of the QD, the dot is coupled to a third lead (the
probe), whose chemical potential μp and temperature Tp are
tunable.

The first step of the protocol we suggest is the determination
of the chemical potential of the probe. Ideally, at zero bias
(equilibrium) the minimal perturbation condition [31] should
yield exactly the background equilibrium temperature Teq. This
can be accomplished as follows. In the presence of an applied
bias voltage or a thermal gradient [33], we first determine μ∗ as

μ∗ = ζL μL + ζR μR. (1)

FIG. 1. (Color online) Schematic diagram of the proposed proto-
col for the measurement of local temperature in a QD connected to
two leads (L and R). A weakly coupled probe with tunable μp and
Tp is used. The expectation value of an observable, Op , is monitored
while Tp is varied.

The weight coefficients ζL and ζR are determined by [34]

ζα = 1 −
∣∣∣∣ Ip(Tα,μα)

Ip(TL,μL) − Ip(TR,μR)

∣∣∣∣. (2)

Here, Ip(Tα,μα) is the electric current measured at the probe,
by setting the chemical potential and temperature of the probe
to be identical with those of lead α.

We then set μp = μ∗, and monitor the change of a given
system observable O = 〈Ô〉 as Tp varies. The local temper-
ature T ∗ is finally determined by the minimal perturbation
condition [31]

T ∗ = arg min
Tp

|O0 + δOp − Op(Tp,μ∗)|. (3)

Here, O0 is the expectation value of Ô measured without
the probe, while Op(Tp,μ∗) is its measured value with the
probe coupled to the dot. The nonzero probe-dot coupling, �p,
results in a finite perturbation to the intrinsic dot properties.
This effect is accounted for by the correction term δOp in
Eq. (3) determined by

δOp = ζL Op(TL,μL) + ζR Op(TR,μR) − O0. (4)

Here, Op(Tα,μα) is measured by setting Tp and μp to be
identical to their counterparts of lead α. In doing so, the probe
is deemed as part of lead α. Since the QD is coupled to both
left and right leads, the overall influence of the probe can be
estimated as a weighted average given by Eq. (4). There, the
weight coefficients {ζα} are assumed to be the same as those
used in Eq. (1).

Note that the protocol proposed above is easily realizable
experimentally, and is universally applicable to any QD
system. Also, for all the QDs studied in this work, the minimal
perturbation of 〈Ô〉 searched for in Eq. (3) is always found to
be zero, i.e., Op(Tp,μ∗) = O0 + δOp can always be satisfied
at a certain Tp. This indicates that the chosen observable Op

changes monotonically and sensitively as Tp varies in the
vicinity of T ∗.

It is important to verify that at exactly zero bias the local
temperature measured by the minimal perturbation condition
is exactly the physical equilibrium temperature Teq. This can
be seen from Eqs. (1)–(4). At zero bias, we find that from
Eq. (1) the local chemical potential is just the equilibrium
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Fermi energy. Then Eq. (3) reduces to the simple form
Op(Tp) = Op(Teq), with the trivial solution Tp = Teq.

B. Hierarchical equations of motion approach
for quantum impurity systems

We now apply Eqs. (1)–(4) to QD systems described
by a single-impurity Anderson model (SIAM) [35,36]. The
total Hamiltonian of the QD system is H = Hdot + Hlead +
Hcoupling. The dot is described by Hdot = εd n̂d + Un̂↑n̂↓.
Here, n̂d = ∑

s n̂s = ∑
s â

†
s âs , where â

†
s (âs) creates (an-

nihilates) a spin-s electron on the dot energy level εd ,
and U is the on-dot electron-electron interaction strength.
Hlead = ∑

αks εαk d̂
†
αks d̂αks and Hcoupling = ∑

αks tαk â
†
s d̂αks +

H.c. represent the noninteracting leads and dot-lead couplings,
respectively. Here, d̂†

αks (d̂αks) creates (annihilates) an electron
on the orbital |k〉 of lead α (α = L,R or p); and tαk is the
coupling strength between the dot level and lead orbital |k〉.

We employ a hierarchical equations of motion (HEOM)
approach to compute the reduced density matrix ρ of open
fermionic systems [37,38], so as to characterize the equilib-
rium and nonequilibrium properties of the SIAM [39,40]. The
HEOM approach has been used to study static and dynamic
Kondo effects in QDs [41–45], and it is in principle exact if all
orders of the hierarchy expansion were included. In practice,
the numerical results converge to the exact values rapidly and
uniformly with the increasing truncation level of the hierarchy.
Once the convergence is achieved, the results are guaranteed
to be quantitatively accurate [38].

The derivation of the HEOM formalism for fermionic
environment has been detailed in Refs. [37,41,43,46]. Here,
we only introduce some of its basic features. The final form of
the HEOM can be cast into a compact form as follows [37]:

ρ̇
(n)
j1···jn

= −
(

iL +
n∑

r=1

γjr

)
ρ

(n)
j1···jn

− i
∑

j

Aj̄ ρ
(n+1)
j1···jnj

− i

n∑
r=1

(−)n−r Cjr
ρ

(n−1)
j1···jr−1jr+1···jn

. (5)

Here, ρ(0)(t) = ρ(t) ≡ trenv ρtotal(t) is the reduced density
matrix, and {ρ(n)

j1···jn
(t); n = 1, . . . ,L} are the auxiliary density

matrices, with L denoting the truncation level. Usually a
relatively low L (say, L = 4 or 5) is often sufficient to yield
quantitatively converged results.

In Eq. (5), the multicomponent index j ≡ (σαμνm)
characterizes the transfer of an electron from/to (σ = +/−)
the impurity level μ to/from level ν via the αth lead and
associated with a characteristic memory time γ −1

m . The
Grassmann superoperators Aj̄ ≡ Aσ̄

μ and Cj ≡ Cσ
μνm are de-

fined via their fermionic/bosonic actions on an operator Ô

as Aσ̄
μÔ ≡ [âσ̄

μ,Ô]∓ and Cσ
μνmÔ ≡ ησ

μνmâσ
ν Ô ± (ησ̄

μνm)∗Ôâσ
ν ,

respectively, with σ̄ being the opposite sign of σ . The on-
dot electron interactions are contained in the Liouvillian of
impurities, L · ≡ [Hdot,· ].

In the framework of the HEOM, the effect of
the leads is captured by the hybridization functions
�α(ω) ≡ π

∑
k |tαk|2δ(ω − εαk). For numerical convenience,

a Lorentzian form �α(ω) = �αW 2/[(ω − μα)2 + W 2] is

adopted, where �α is the coupling strength between the dot and
lead α, and W is the lead band width. Hereafter, � = �L + �R

is taken as the unit of energy.
The expectation value of any system observable Ô is com-

puted via O = tr(ρÔ). The energy distribution of electric and
heat currents flowing into lead α as required to determine T ∗
with the “local equilibrium condition” [47–50] are calculated
as

jk
α (ω) = (−1)k+1

(
i

π

)
(ω − μα)k�α(ω)

×{G<(ω) + 2 ifβ (ω − μα) Im[Gr (ω)]}. (6)

Here, we have set e = � = 1; k = 0 and 1 correspond to
the electric and heat currents, respectively; fβ(ω) is the
Fermi function; and the lesser and retarded Green’s functions
G< and Gr are computed from correlation functions. The
global electric and heat currents flowing into lead α are Iα =∫

dω j 0
α (ω) and J H

α = ∫
dω j 1

α (ω), respectively. Note that the
electron-phonon interactions and the phonon contribution
to heat current have been neglected, since their effects are
negligibly small in QDs at low temperatures [51].

To have an accurate measurement of T ∗ and thus test
its robustness with respect to the choice of observables,
the probed observable O must vary sensitively with Tp.
We then choose some spin-related properties, because spin
polarization processes require low excitation energies. A
promising candidate is the local magnetic susceptibility

χm(ω) = i

∫ ∞

0
dt eiωt 〈[m̂z(t),m̂z(0)]〉. (7)

Here, m̂z = gμB(n̂↑ − n̂↓)/2 is the local magnetic mo-
ment due to on-dot spin polarization, g is the gyromag-
netic ratio, and μB is the Bohr magneton. In this work,
we focus only on the zero-frequency (static) component
of χm(ω), i.e., χm ≡ χm(ω = 0) = i

∫ t

0 dt 〈[m̂z(t),m̂z(0)]〉 =
limHz→0〈m̂z〉/Hz, with Hz being the applied magnetic field. It
has been demonstrated that the HEOM approach is capable of
yielding highly accurate χm for strongly correlated QDs; see
Fig. 4 of Ref. [40]. Another choice is the global spin-polarized
current

Im
α = 〈Îα↑〉 − 〈Îα↓〉, (8)

with Îαs = i
∑

k[n̂αks,Hcoupling]. The different degree of local-
ity of these quantities provides an even stronger test for our
operational protocol.

III. RESULTS AND DISCUSSIONS

A. Local temperature of a noninteracting QD

We consider first a noninteracting QD (U = 0) under a
bias voltage μR = −μL = 1

2V . The HEOM method has the
virtue that, for noninteracting systems the hierarchy terminates
automatically at L = 2 without any approximation [37].
Figure 2(a) plots T ∗ determined by Eqs. (1)–(4) versus
the background temperature T = TL = TR . We have set the
dot-lead couplings to be asymmetric with �L = 2�R . The
weight coefficients in Eq. (1) are then ζα = �α/� [34], and
the local chemical potential is thus μ∗ = 1

3 μL = − 1
6V .
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FIG. 2. (Color online) (a) Local temperature T ∗ of a noninter-
acting QD determined by different protocols versus background
T . The dashed line is a guide to eyes. (b) Variation of the local
magnetic susceptibility χm and total spin current Im

L with Tp at a
background T = 0.133�. The parameters adopted are (in units of
�): εd = −2.67, U = 0, �L = 2�R = 0.67, μR = −μL = 0.53, and
W = 40.

Figure 2(b) depicts the relative change of observable O =
χm or Im

L , [Op(Tp,μ∗) − (O0 + δOp)]/(O0 + δOp), versus
the temperature of probe Tp. Clearly, Op(Tp,μ∗) varies
monotonically with the increasing Tp, and it crosses the
reference value (O0 + δOp) at a certain Tp, where the
minimal (zero) perturbation condition is fulfilled, and we
have Op(Tp,μ∗) = O0 + δOp. The perturbations of the two
observables by the probe reduce to zero at roughly the same
Tp � 0.28�. Therefore, from Eq. (3), we have T ∗ = 0.28� at
T = 0.133�.

In Fig. 2(a), we also compare T ∗ obtained by different
protocols over a large range of T . It is shown that T ∗
determined by the minimal (zero) perturbation of χm and
Im
L agree remarkably well with each other (with a relative

error less than 0.1%). They also agree closely and consistently
with that obtained with the local equilibrium condition (with
a relative error less than 4.5%). A closer look at both the
electric and heat currents that flow between the probe and
the system when the minimal perturbation is satisfied reveals
that they are both close to zero (see Tables I and II), thus
explaining the agreement between the two protocols. It is also
found that, under a bias voltage, T ∗ is always higher than T ,
and their deviation increases as T decreases. In particular, T ∗
maintains a finite value (0.25�) even as T → 0. This indicates
that the local heating feature becomes more visible at a lower
background T [1].

Thermodynamically, the dot can be deemed as a reversed
heat engine, and the leads act as heat baths as well as electron
reservoirs. The internal energy of the dot is

U = Q + W + μ∗〈n̂d〉, (9)

with Q and W being the heat and work gained by the dot,
respectively. Taking the time derivatives of both sides of Eq. (9)
leads to

J E
d = J H

d + P + μ∗ d〈n̂d〉
dt

. (10)

Here, J E
d (J H

d ) is the energy (heat) current flowing into the dot,
and P is the electric power. In a stationary state,U is a constant,
and thus J E

d = d〈n̂d〉/dt = 0. Therefore P = −J H
d = ∑

α J H
α .

Figures 3(a) and 3(b) depict the energy distribution of bias
driven electric and heat currents [j 0

α (ω) and j 1
α (ω)] in the

noninteracting QD system studied in Fig. 2, respectively. In the
absence of the probe, j 0

L(ω) = −j 0
R(ω) holds for any ω, which

ensures the conservation of electric current (
∑

α Iα = 0). In
contrast, the heat currents flowing through left and right leads
do not cancel out (

∑
α JH

α �= 0)—the dot behaves as a hot spot
and dissipates heat into both leads.

To utilize the local equilibrium condition, the chemical
potential μp and temperature Tp of the probe are tuned until
the electric and heat currents flowing into the probe, Ip =∫

dω j 0
p(ω) and J H

p = ∫
dω j 1

p(ω), are both zero. Figures 3(c)
and 3(d) display j 0

p(ω) and j 1
p(ω) when local equilibrium is

reached (Ip = J H
p = 0), respectively.

B. Local temperature of a Kondo QD

We now investigate interacting QDs under an antisymmetric
bias voltage. We choose to examine a half-filling dot with U =
−2εd = 2.4�. It has been shown (through the temperature-
dependent conductance) that this QD exhibits prominent
Kondo features at T < TK [38], with TK = 0.82� being the
characteristic Kondo temperature [52]. This is evident from
the inset of Fig. 4(a) where the dot spectral function A(ω) =
− 1

π
Im[Gr (ω)] is plotted for various background temperatures

showing that the QD exhibits more prominent Kondo features
as T lowers, as confirmed by the higher and sharper Kondo
spectral peak centered at ω = μ∗. The chemical potentials
of the leads are μR = −μL = 0.25�. With the symmetric
dot-lead couplings (�L = �R), the local chemical potential
on the dot is μ∗ = 0 by Eq. (1).

Figure 4(a) compares T ∗ determined by different protocols.
Limited by computational resources at our disposal, the
HEOM calculations are done at L = 4 for the interacting
QD [53]. The results are considered to be highly accu-
rate within the explored range of temperatures, since the
computed conductance well reproduces the Kondo scaling
relation [38,45]. As shown in Fig. 4(a), the local temperatures
T ∗ determined by the minimal (zero) perturbation of χm and
Im
L agree remarkably well with each other (with a relative error

less than 2%), as well as with the local equilibrium temperature

TABLE I. Electric and heat currents flowing into leads coupled to a noninteracting QD when the minimal (zero) perturbation condition is
satisfied. The parameters adopted are (in units of �) εd = −2.67, U = 0, �L = 2�R = 100�p = 0.67, μR = −μL = 0.53, and W = 40.

Scaled electric current (e/h) Scaled heat current (�/h)

T/� Ip/�p IL/�L IR/�R J H
p /�p J H

L /�L J H
R /�R

(
J H

L + J H
R

)
/�

0.133 2.9 × 10−3 −0.37 0.74 −9.8 × 10−3 0.16 0.47 0.26
0.667 −5.5 × 10−2 −0.54 1.08 −0.17 −0.25 1.65 0.39
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TABLE II. Electric and heat currents flowing into leads coupled to an interacting QD when the minimal (zero) perturbation condition is
satisfied. The parameters adopted are (in units of �) εd = −1.2, U = 2.4, �L = �R = 100�p = 0.5, μR = −μL = 0.25, and W = 5.

Scaled electric current (e/h) Scaled heat current (�/h)

T/� Ip/�p IL/�L IR/�R J H
p /�p J H

L /�L J H
R /�R

(
J H

L + J H
R

)
/�

0.4 −1.3 × 10−9 −1.32 1.32 −6.9 × 10−3 1.33 1.33 2.66
0.8 −4.9 × 10−11 −1.01 1.01 −3.9 × 10−3 1.02 1.02 2.04

(with a relative error less than 0.6%). This is again because the
electric and heat currents flowing into the probe are both close
to zero when the minimal perturbation is satisfied; see Tables I
and II.

Similar to the noninteracting QD, the local temperature T ∗
on the interacting dot is always higher than the background T ,
and it approaches a finite value (T ∗ � 0.15�) as T → 0. As
clearly indicated by Fig. 4(b), both the relative changes of χm

and Im
L vary monotonically with Tp, while the latter has a much

more sensitive temperature dependence. More importantly, the
perturbations of both χm and Im

L reduce to zero at almost
the same Tp, which highlights again the generality of our
operational definition.

C. The influence of probe-dot coupling strength � p

We then investigate the influence of the coupling strength
between the probe and the system. For numerical convenience
we choose to examine the noninteracting QD explored in
Fig. 2. Figure 5 shows T ∗ determined by using the minimal
perturbation as well as the local equilibrium conditions. As
the probe-dot coupling reduces to zero, all these temperatures
approach a constant value as expected. More telling though is
the fact that, even with a relatively large probe-dot coupling
strength (comparable with the dot-lead couplings) the resulting

FIG. 3. (Color online) (a) and (b) depict the energy distribution
of electric and heat currents flowing into α lead (α = L,R),
respectively. (c) and (d) plot the energy distribution of electric and heat
currents flowing into the probe when the local equilibrium condition
Ip = J H

p = 0 is satisfied, respectively. The parameters adopted are
(in units of �): εd = −2.67, U = 0, �L = 2�R = 100�p = 0.67,
μR = −μL = 0.53, W = 40, and TL = TR = 0.133.

T ∗ shows only a minor change of ∼7%, indicating again the
robustness of the proposed protocol. We thus conclude that the
measured local temperature depends rather insensitively on the
probe-dot coupling �p, which is favorable for experimental
realizations.

As demonstrated clearly in Secs. III A and III B, the local
temperatures measured by using the minimal perturbation
condition agree closely and consistently with those determined
by the local equilibrium condition. This is because both the
electric and heat currents flowing into the probe are close
to zero when the minimal perturbation condition is satisfied.
Tables I and II verify that when the minimal perturbation is
reached the values of both Ip and J H

p are indeed negligibly
small for the noninteracting and interacting QDs investigated
in Sec. III, respectively. It is clearly seen from the tables
that, even after being scaled by the small dot-probe coupling
strength �p, the electric and heat currents flowing through the
probe are still much smaller than the currents flowing into the
left and right leads.

D. Local temperature of a QD subjected to a thermal gradient

Finally, we demonstrate that the proposed operational
definition of local temperature, Eqs. (1)–(4), is also applicable
to QDs subjected to an applied thermal gradient, i.e., when
�T = TR − TL �= 0. Note that for this to be true, the bias
voltage must be zero (μR = μL), and thus the electric current
is driven only by the thermal gradient �T .

In the absence of bias voltage, Eq. (1) becomes trivial since
μ∗ = μL = μR . Therefore the chemical potential of the probe
is fixed at μp = μL = μR , and we only need to tune Tp [31].

FIG. 4. (Color online) (a) Local temperature T ∗ of an interacting
QD determined by different protocols versus background T . The
dashed line is a guide to eyes. The inset shows the Kondo spectral
peak of the dot at various T . (b) Variation of system observables χm

and Im
L with Tp , at a background T = 0.1� lower than the Kondo

temperature TK = 0.82�. The parameters adopted are (in units of �):
εd = −1.2, U = 2.4, �L = �R = 0.5, μR = −μL = 0.25,
and W = 5.
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FIG. 5. (Color online) Local temperature T ∗ of a noninteracting
QD determined by different protocols versus the system-probe
coupling strength �p . The background temperature is fixed at
T = 0.133�. The parameters adopted are (in units of �) εd = −2.67,
U = 0, �L = 2�R = 0.67, μR = −μL = 0.53, and W = 40.

When Tp = T ∗, the electric current flowing into the probe
vanishes. We thus have

(T ∗ − TL)LT
Lp = (TR − T ∗)LT

Rp. (11)

Here, LT
αp is the thermoelectric transmission coefficient be-

tween lead α and probe. Through an analysis similar to that in
Appendix, one arrives at a simple expression of T ∗ as

T ∗ = ζL TL + ζR TR. (12)

Here, the weight coefficients ζL and ζR are also given by the
last equality of Eq. (2). However, Eq. (12) turns out to be a
rather crude estimate of T ∗, as shown in Fig. 6. The accurate
measurement of T ∗ is achieved by using Eqs. (3)–(4).

For instance, consider a general case such that dot-lead
couplings are asymmetric with �L = 5�R . The weight coef-
ficients ζL = 5

6 and ζR = 1
6 agree well with the “measured”

values of ζL = 0.8333 and ζR = 0.1667 by Eq. (2). Figure 6
compares T ∗ obtained by different approaches. Clearly, T ∗

FIG. 6. (Color online) T ∗ of a noninteracting QD vs the temper-
ature of left lead TL. The parameters adopted are (in units of �)
εd = −3.33, U = 0, �L = 5�R = 0.83, μR = μL = 0, �T =
TR − TL = 0.17, and W = 50.

determined by minimal (zero) perturbation of χm and Im
L

agree remarkably well with the prediction of local equilibrium
condition.

It should be pointed out that, when a bias voltage and
thermal gradient are both present, the electric current through
a certain lead is driven by both V and �T . In such a case,
the simple relation of Eq. (A1) no longer holds. Therefore
the proposed operational definition is not applicable to the
scenario in which both V and �T are nonzero.

IV. CONCLUDING REMARKS

In conclusion, we have proposed an operational definition
of local temperature for bias-driven QDs using a “minimal
perturbation condition,” as represented by Eqs. (1)–(4). The
same definition is also applicable to QDs subjected to external
thermal gradients. The operational definition applies equally
well to systems ranging from noninteracting to Kondo-
correlated regimes. Since this definition does not require
measurements of heat currents, its experimental realization
is straightforward. The “minimal perturbation condition” thus
provides a useful practical means to examine local electron
excitations in a nonequilibrium process, in which local heating
plays an important role.

The local temperature is a characterization of local statis-
tical excitations in the nanoscale systems. When the QDs are
tuned to different regimes, such as Kondo regime, Coulomb
blockade regime and mixed-valence regime, different elec-
tronic structures may lead to different local temperatures,
which remain to be further investigated. Such studies are
currently underway.
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APPENDIX: REMARKS ON THE WEIGHT
COEFFICIENTS ζL AND ζR

Suppose TL = TR . The electric current between left and
right leads is driven only by the applied bias voltage (difference
in chemical potentials). With the chemical potential of probe
μp aligned with the dot local chemical potential μ∗, the net
electric current flowing into the probe is exactly zero. This is
because the electric currents coming from the left and right
leads cancel out exactly:

(μ∗ − μL)GLp = (μR − μ∗)GRp. (A1)

Here, Gαp (α = L,R) is the electron conductance between
lead α and the probe. Rearranging Eq. (A1), we have

μ∗ = GRp

GLp + GRp

μR + GLp

GLp + GRp

μL. (A2)

By setting μp = μα and Tp = Tα , the probe can be deemed as
a part of lead α. Therefore the electric current flowing through
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the probe Ip amounts to

Ip(TL,μL) = GRp (μL − μR), (A3)

Ip(TR,μR) = GLp (μR − μL), (A4)

and hence GRp

GLp
= − Ip(TL,μL)

Ip(TR,μR ) . Here, the two currents have
opposite signs. By comparing Eqs. (A2) and (1), it is clear
that the weight coefficient ζα should be proportional to the
two-terminal conductance Gαp, as follows

ζα = Gαp

GLp + GRp

= 1 −
∣∣∣∣ Ip(Tα,μα)

Ip(TL,μL) − Ip(TR,μR)

∣∣∣∣. (A5)

Here, we have assumed that Gαp does not change significantly
with μp and Tp. Obviously, the weight coefficients should
normalize to unity, ζL + ζR = 1.

For the single-impurity Anderson model investigated in this
paper, if all leads have the same form of hybridization function,
i.e., �α(ω) = �α η(ω) (α = L, R and p), we have

Ip(TL,μL) =
(

�p

�L + �p

) (
− 2

π

)
(�L + �p)�R

�L + �R + �p

×
∫

dω [fβL
(ω − μL) − fβR

(ω − μR)]

×Im[Gr (ω)], (A6)

Ip(TR,μR) =
(

�p

�R + �p

) (
− 2

π

)
(�R + �p)�L

�L + �R + �p

×
∫

dω [fβR
(ω − μR) − fβL

(ω − μL)]

×Im[Gr (ω)], (A7)

TABLE III. The weight coefficient ζL for the QDs studied in
Figs. 2 and 4. The numbers are obtained via Eqs. (A5) and (A9),
respectively.

Fig. 2 Fig. 4
ζL noninteracting QD Kondo-correlated QD

Eq. (A5) 0.6666 0.5000
Eq. (A9) 2

3
1
2

with βα = 1/Tα . Here, the probe is deemed as part of lead α,
and the SIAM amounts to a two-terminal model. Therefore
Eq. (9) of Ref. [47] can be used. Equations (A6) and (A7)
immediately lead to the relation of

Ip(TL,μL)

Ip(TR,μR)
= −�R

�L

. (A8)

Equation (A8) thus offers a practical means of determining
the ratio �R/�L in experiments. Consequently, by combining
Eqs. (A5) and (A8), we have

ζα = �α

�L + �R

(A9)

for α = L or R.
Since the electric current flowing into the probe Ip can

be measured straightforwardly, the weight coefficients {ζα}
are obtained readily from Eq. (A5). Table III lists the weight
coefficient ζL for the QDs studied in Figs. 2 and 4. The numbers
obtained via Eqs. (A5) and (A9) agree precisely with each
other.
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