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We calculate the current as a function of applied voltage in a nontopological s-wave superconductor–quantum
dot–topological superconductor (TS) tunnel junction. We consider the type of TS which hosts two Majorana
bound states (MBSs) at the ends of a semiconductor quantum wire or of a chain of magnetic atoms in the
proximity with an s-wave superconductor. We find that the I -V characteristic of such a system in the regime of
big voltages has a typical two-dot shape and is ornamented by peaks of multiple Andreev reflections. We also
consider the other options when the zero-energy states are created by disorder (hereby Shiba states) or by Andreev
zero-energy bound states at the surface of a quantum dot and a superconductor. The later are obtained by tuning
the magnetic field to a specific value. Unlike the last two cases the MBS I -V curves are robust to change the
magnetic field. Therefore, the magnetic-field dependence of the tunneling current can serve as a unique signature
for the presence of a MBS.
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I. INTRODUCTION

In recent years the exotic Majorana bound state (MBS) has
been the focus of investigations in condensed-matter physics.
Different platforms for obtaining a MBS and a variety of setups
for experimental observation were suggested [1–9]. In particu-
lar a zero-bias peak in the conductance was predicted [10–13].
Recently [14] Majorana fermions where observed at the edge
of a topological superconductor (TS) which was formed by
a ferromagnetic chain placed in proximity to an s-wave
superconductor with strong spin-orbital interaction. The other
of the leading candidates is a semiconductor quantum wire
in proximity to an s-wave superconductor—a system that
generates a TS with two MBSs at its ends. A signature of
a MBS in such a system has been detected in tunneling data in
normal metal—TS junctions [15–17], although the evidence
is not conclusive [18].

A setup has been suggested [19] for detecting an Aharonov-
Bohm interference between the MBS and a quantum dot,
predicting a structure in the tunneling data. Furthermore,
zero-frequency shot noise has been studied [20–22]. However,
more evidence of a MBS is needed.

The modified subgap features as signatures of the MBS
due to multiple Andreev reflections (MARs) in a weak link
between two topological superconductors was addressed in
Ref. [23]. It has been shown theoretically that MARs in
a weak link between two topological superconductors (i.e.,
hosting MBS) could cause novel subgap structures different
from the trivial case which can also be regarded as signatures
of the MBS [23,24]. The other more complicated setup was
recently theoretically investigated in Ref. [25]. There the
electronic transport through a junction where a quantum
dot (QD) is tunnel coupled on both sides to semiconductor
nanowires with strong spin-orbit interaction and proximity-
induced superconductivity is analyzed.

Generally, the tunneling through quantum dots integrated in
various tunneling systems has been a subject of considerable
interest [26–33]. A possible probe for Majorana fermions was
suggested in Ref. [26] where two MBSs that are coupled to
quantum dots, which themselves interact with two normal-

metal leads, can be uniquely tested by crossed Andreev
reflection. The crossed Andreev reflection itself was proposed
early in Ref. [34] as a method to probe nonlocality of a pair of
MBSs. A simpler setup with a normal lead connected through
one quantum dot to an MBS was analyzed in Ref. [27].
In this paper the nonlinear conductance as a function of
applied bias and gate voltages was calculated in both cases of
interacting and noninteracting QDs. The current peaks were
used to read off the parity break of the Majorana system.
The more complicated setup with one spinless quantum dot
connected to two external normal leads and to the one end
of a p-wave superconducting nanowire was considered in
Ref. [28]. In this paper the peak value of conductance in a
TS and nontopological phases was proposed as a method to
detect MBSs.

The non-Abelian statistics of Majorana fermion states
can be tested with the systems without quantum dots by
studying the half quantum vortices in a two-dimensional chiral
p-wave superconductor [35] or the fluxons’ interferometry
in a Josephson junction in a TS [36]. An interferometer for
Majorana fermion edge states, which occur at an interphase
between a superconductor and a magnet placed in the prox-
imity of a topological insulator, was proposed in Ref. [37]. In
this system the MBS transmission can be probed by charge
transport. Separated MBSs in a network of nanowires in a
topological phase have non-Abelian exchange statistics and
were suggested for purposes of quantum computation [38]. To
distinguish the MBS conductance peak from the zero-energy
peak due to other effects (such as disorder) the tunneling in the
presence of dissipation has been considered in Ref. [39]. Here
the resistance of the lead is an important parameter that helps to
identify MBS peak conductance as a function of temperature.
Yet the other evidence for existence of the nanowire Majorana
modes in a simple tunneling structure is based on the fact
that nanowire Majorana modes always come in pairs [40].
Therefore, the hybridization due to finite-length wires leads
to the splitting of the zero mode. It was shown [40] that this
splitting has oscillatory dependence as a function of Zeeman
energy or chemical potential.
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The interacting quantum dot in the Kondo regime as a
tunneling link between a normal lead and a MBS located
at one end of the TS was considered in works [29–32].
Unlike the standard normal–quantum dot–normal (N-QD-N)
tunneling systems, the Kondo effect in N-QD-TS junctions
predicts a stronger temperature dependence of conductance at
T � TK (TK stands for Kondo temperature) [29,30,32]. This
fact can by used for identification of a MBS. A setup with
two normal leads and one QD connected to the Majorana zero
mode of the TS was proposed to provide experiments which
can probe Majorana physics by conductance and shot-noise
measurements [33], wherein the dot may by in the Kondo
regime.

Here we consider a simpler case of a tunnel junction s-wave
superconductor–quantum dot–topological superconductor (S-
QD-TS) where S stands for a topologically trivial s-wave
superconductor and TS hosts one MBS at his tunneling end
to the quantum dot. We study the case of large voltages V

(although eV < �) which permits ignoring constant phase
difference. We use the approximation of a noninteracting dot
(U = 0). This is justified if TK < �. In this case the Kondo
effect has little impact on transport current. Moreover, we
consider the low-temperature regime.

If interaction is small we assume that the charging energy
of the dot is much smaller than � and may be ignored [41]. We
also consider the weak tunneling limit when direct tunneling
between superconductors is small and, therefore, multiple
Andreev reflections due to these direct tunneling events are
negligible in the subgap region.

Including the QD change in the situation: The transport
current acquires a structure typical for two-dot tunneling
processes [42]. However, we show that the contributions which
come from a MBS of the TS can be easily distinguished
from random impurity zero-energy states inside the gap of
a topologically trivial s-wave superconductor. As an example
of such an impurity we take classical magnetic impurity with
spin S (Shiba model [43,44]). The Shiba resonance is strongly
influenced by the applied magnetic field. The same is true in
other cases of Andreev zero-energy bound states which we
also consider in detail.

The structure of the paper is as follows. In Sec. II we
introduce the model and present the Hamiltonian of the
tunneling setup. In Sec. III we consider the case of a TS with
Majorana bound states at the ends of the nanowire. Sections IV
and V describe two other models without MBSs: the impurity
zero mode (Shiba resonance) and Andreev zero-energy bound
states, respectively. Finally, we conclude in Sec. VI. The
techniques we include in Appendix.

II. THE HAMILTONIAN

The Hamiltonian of our system consists of the topologically
trivial s-wave superconductor lead part HL, the quantum dot
Hd , and the tunnel couplings HT Hamiltonian. The geometry
is depicted in Fig. 1. Here tR,tL define the tunnel couplings
between the MBS and the dot, between the dot and the lead.
N (0) is the density of states of the lead in the normal state, and
the tunneling widths turn out to be �L = 2πN (0)t2

L � tL,R .
The superconducting s-wave lead is placed at voltage bias V

which is bigger compared to all other energy scales in the

FIG. 1. (Color online) Structure of the tunneling junction which
consists of a nontopological s-wave superconductor lead, an embed-
ded quantum dot, and a topological superconductor with a Majorana
fermion at its ends. The interaction couplings are presented. The
phase is φ = 2eV t (we have dropped the constant phase).

system, including Zeeman energy (although, V is less than the
superconducting gap). We also assume that the MBS is well
separated from other MBSs, e.g., at the other end of a TS wire,
and therefore neglect the coupling between them. We write
the Hamiltonian in spin (s matrices) and Nambu (particle-hole
space, τ matrices) as

Hd = 1
2d†(εs0τz + Hszτ0)d,

(1)
HT = 1

2 [(tLc†(0) + tRγ V̄ †s0)τzd + H.c.,

where s0,τ0,si,τi (i = x,y,z) are unit and Pauli matrices,
respectively, and 2H is the Larmor frequency, including the g

factor. The Hamiltonian HL of the superconducting lead has a
standard form. The lead and dot electron operators are of the
form c = (c↑,c↓,c

†
↓, − c

†
↑)T , and the Majorana fermion oper-

ator γ comes with the spinor V̄ϕ = (eiϕ,eiϕ,e−iϕ, − e−iϕ)T , ϕ

is the constant phase. The average energy level of the dot is ε.
Here we use a simplified form of interacting between

the MBS and the QD suggested in Ref. [27]. In another
model (model 2) which includes only interaction with one
spin direction the first and last components of the spinor are
replaced by zero (interacting with the down-spin of the dot).
Model 2 may be relevant for strong magnetic fields.

The current operator is defined as J = e d
dt

NL =
−ie[NL,H ] and acquires a form J = (−i/4)jd where

jd = tL[c†(0)τ0d − H.c.]. (2)

We use the current in the Keldysh space [45,46] (ĵd ) to
construct the effective action with a source term. In the
Keldysh theory the source field consists of two components:
the classical αcl and the quantum one α. The classical part αcl

is irrelevant for noise and current calculations, and we set it to
zero. In this case the source action has a form

Asour = 1

4

∫
t

αĵd . (3)

III. MAJORANA BOUND STATES AT THE ENDS OF THE
TOPOLOGICAL SUPERCONDUCTOR

At first we consider a case with a TS as the right lead. The
MBS states exist at both ends of a topological superconductor.
For sufficiently long TS only one MBS is involved in tunneling.
After integrating out the lead and dot operators we arrive at the
effective action in terms of a Majorana Green’s function (GF)
which depends on coupling strengths and on quantum source
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field α(t),

At = 1

2

∫
t

γ T G−1
M γ, G−1

M = G−1
M0 − �(α),

�(α) = t2
RV̂ †τ3Gdτ3V̂ , (4)

here G
R,A
M0 (E) = 1/(E ± iδ); the quantum dot GF Gd (E) =

[G−1
d0 − �LgT ]−1 depends on left lead GF with included source

term gT = T−gT+, where

T± = τzσ0 ± ατ0σx/2, (5)

here σx,y,z are the Pauli matrices in the Keldysh space. In the
limit α → 0 we obtain

Gd (E) = [
G−1

d0 − �Lτ3gτ3
]−1

. (6)

The GF of the noninteracting dot in magnetic field H has a
form

GR
d0(E) = [(E + iδ)s0τ0 − εs0τz − Hszτ0]−1. (7)

The Keldysh GFs of the lead,

g =
(

gR gK

0 gA

)
, (8)

in equilibrium (V = 0) gR has a form

gR = −i

2
[a(E)s0τ0 + b(E)s0τ1], (9)

a(E) = |E|θ (|E| − �)√
E2 − �2

+ Eθ (� − |E|)
i
√

�2 − E2
, (10)

b(E) = �

E
a(E), (11)

where θ (x) is a step function equal to one if x > 0 and is
zero otherwise. The energy gap � describes the lead presented
by a topologically trivial s-wave superconductor. Advanced
function (A) is equal to the adjoint of the given retarded
function; and gK (E) = [gR(E) − gA(E)] tanh(E/2T ).

The off-diagonal GF of an s-wave superconductor de-
pends on the phase of the order parameter exp[±iφ(t)] =
exp[±i2eV t]. Therefore, at nonzero voltage V we have a Flo-
quet periodic time-dependent problem with a basic frequency
of ω0 = 2eV . A superconducting lead (topologically trivial)
under a fixed voltage is described by time-dependent GFs.
Their Fourier transforms are expressed in terms of equilibrium
ones (a generalization to a 4 × 4 dimension of the relations
from Ref. [47]),

g(E,E) = g11(E − eV )s0P+ + g22(E + eV )s0P−,

g(E,E − 2eV ) = g21(E − eV )s0τ+,

g(E,E + 2eV ) = g12(E + eV )s0τ−, (12)

where P± = (τ0 ± τ3)/2, τ± = 1
2 (τx ± τy). The lead GF g

may by any function (R, A, or K). We have dropped a constant
phase which is justified for not very small voltages. A complete
representation of GFs in the Floquet basis is presented in the
Appendix.

We evaluate the current by taking derivatives of the effective
action with respect to α and use dimensionless notations: All

energies are taken in units of �. The total dc current is given
by three contributions,

j/j0 = t2
R�L

2�3
(j1 + j2 + j3), (13)

where j0 = e/(2�) and j1, j2, and j3 are expressed in terms
of a Majorana, a quantum dot, and left lead GFs (see the
Appendix).

We calculate the I -V characteristics of a setup (Fig. 1) in the
subgap region and consider zero and nonzero magnetic fields.
It is known that in low transparency superconductor-normal
metal-superconductor junctions the subgap current is small
(approaching zero value) [24,47]. The tunneling through the
dot between superconducting leads is responsible for MARs
which contribute to the current. The MBS states, acting as
the other dot, however, being structureless (mixing the spin)
are quite robust to the change in magnetic field. Thus we
have obtained characteristics (Fig. 2) typical for two-dot
I -V curves [42]. However, unlike the nontopological case
these I -V curves have different peak positions. In the whole
subgap region current-voltage characteristics weakly depend
on magnetic field. This is clearly reflected by Fig. 2: The peak
position for three values of magnetic field: H = 0, 0.1�, and
0.2� practically coincide. This is a principal criterion which
helps to identify the MBS.

The inset in Fig. 2 displays the I -V dependence for model
2. Here the current peak is shifted in comparison with the
spin mixing model [Eq. (1)]. The magnetic-field dependence
shows the bigger shift, although the peak’s height is more
suppressed. This difference comes out because in model 2
Majorana fermions do not mix the spins.

To calculate the I -V characteristics the number of Floquet
states (2n) is adjusted until the result is insensitive to a further
increase in n. The calculations include 12 Floquet states.

FIG. 2. (Color online) Current-voltage characteristics of the tun-
nel junction (Fig. 1). We set the dot energy ε = −0.01�, the
temperature T = 0.1�, and the tunneling widths �L/� = 0.02 and
t2
R/�2 = 0.2. The lines correspond to zero magnetic field (solid line),

to H = 0.1� (dashed line), and H = 0.2� (dotted line). The inset:
the current-voltage characteristics in model 2.
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IV. IMPURITY ZERO MODE IN THE GAP (NO MBS)

To prove that we have a clear difference between topological
and nontopological cases in this section we study the current
for trivial topology but when, nevertheless, the zero bound
states exist. This may be caused by Andreev bound states, by
localized by disorder states (impurity), or by a surface state as
in a d-wave superconductor [48]. We investigate the I -V char-
acteristics in the case of single Shiba resonance [43,44] when
it is tuned to form in-gap zero-energy bound states [49,50]. For
a single impurity in the host superconductor lead (with V = 0)
the scattering problem can be easily solved [43,44,49,50]. We
consider a single (classical) magnetic impurity with spin S at
the origin, interacting with the electron states,

Himp = −J �ScRs̄τ0cR(0),

where J is the exchange strength and cR stands for the electron
operator in the right superconductor. If we define the spin
vector as �S = S(sin θ cos φ, sin θ sin φ, cos θ ), then at zero
order in tunneling strength tR , Green’s function Gs0 of the
right lead acquires a form (in dimensionless units and for the
frequencies less than the superconducting gap �, i.e., |E| < 1),

[2GR
s0(E)]−1 = E√

1 − E2
s0τ0 + ᾱ cos θszτ0

− 1√
1 − E2

s0τx − Hszτ0

+ ᾱ cos φ sin θsxτ0

+ ᾱ sin φ sin θsyτ0, (14)

where ᾱ = πNRJS is the dimensionless impurity interaction
and NR is the density of electron states in the right lead. We did
not take into consideration the Rashba spin-orbit interaction,
although, the result for single impurity is similar to the case
without spin-orbit scattering [50]. It was shown [49], and this
can be directly checked by setting to zero the determinant of
the matrix (14), that at ᾱ → 1 and H → 0 we arrive at the
zero-energy bound states. In the low-energy domain close to
the in-gap zero mode we can consider Gs0 at small E. For
voltages less than � this level defines transport. The tunneling
interaction with the dot is described by the same Hamiltonian
HT (1) where instead of γV + we write projected to low-
energy domain electron operator f †. As in the case of MBS
we integrate out the electron operators of both the left lead
and the quantum dot. Thus we arrive at a general form of the
effective action and GF, which include interaction with the
quantum dot,

G−1
s = G−1

s0 − t2
RGd. (15)

The current consists of three contributions similar to those
in Eq. (A15) however, there is an important difference: The
Majorana GF is replaced by the GF of Shiba resonance Gs .
In equilibrium GR

s0(E) (14) is a 4 × 4 matrix in spin and
Nambu spaces. In the Floquet basis this matrix has a dimension
of 4(1 + 2n) × 4(1 + 2n), and the trace (see the Appendix)
operates in this dimension. We calculate the current taking into
consideration 12 Floquet states (n = 6) using the same set of
parameters as in the case of the MBS. We consider several
values of magnetic field: H = 0, 0.1�, 0.2�, and 0.3�. In

FIG. 3. (Color online) The same as in Fig. 2, where, however,
the TS is replaced by Shiba resonance at ᾱ → 1. For this figure we
took direction angles: φ = 0, θ = π/2. The other parameters are as in
Fig. 2 but in addition dot-dashed curve which corresponds H = 0.3�

is included.

Fig. 3 we see a shift in a peak of transport current as the
magnetic field is changed. This does not occur in the MBS
case [Eq. (1)]. Unlike the MBS case (Fig. 2), here the peak
position shifts with Zeeman energy, and this dependence on
H can serve as a possible method to distinguish the Shiba
resonance from the MBS.

V. ANDREEV ZERO BOUND STATES

Andreev bound states can appear in a system, such as
ours, when a quantum dot contacts with a superconductor.
The zero-energy limit mimics the MBS and may be obtained
by proper tuning the Zeeman energy. Let us consider setup,
such as presented by Fig. 1 where, however, instead of a
topological superconductor on the right-hand side, we have
an s-wave superconductor which is grounded. By tuning the
magnetic field we intend to get the low-energy subspace due to
interaction with the s-wave superconductor, i.e., we associate
Andreev zero bound states (AZBSs) only with an s-wave
superconductor which couples to a quantum dot. Integrating
out the electron operators of superconductors (left lead and
right) we obtain a total GF Gt of the dot which includes
interactions with both superconductors. Actually, Gt has a
form of Eq. (6), although, Gd0 is replaced by Gt0,

G−1R
t0 (E) =

⎛
⎝E + �RE

2
√

�2
R − E2

+ iδ

⎞
⎠ s0τ0 − εs0τz

−Hszτ0 − �R�R

2
√

�2
R − E2

s0τx, (16)

where we, anticipating a low-energy domain, consider only
the case of |E| < �R . It is a direct way to show (by finding the
roots of equation det[G−1R

t0 ] = 0) that the zero-energy bound
state can appear when we tune Zeeman energy to the value

H = H0 =
√

�2
R/4 + ε2.

We compute the transport current (see Appendix) and
find the I -V characteristics of the junction (Fig. 4). We can
clearly distinguish AZBSs which are created at magnetic field
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FIG. 4. (Color online) The tunneling current versus voltage in the
case of formation of AZBS at H = H0 (dashed curve) and at H = 0
when AZBSs are depressed (solid line). Here we have chosen the dot
energy ε = −0.4�, the temperature T = 0.03�, and the tunneling
widths �L/� = 0.2 and �R/� = 0.3.

H = H0 from the Andreev bound states created at H 	= H0

(here H = 0). Many resonances which are shown in Fig. 4
correspond to a Floquet number shifted by the zero-energy pole
of the GF (16). Moreover, although, the AZBS can mimic the
resonance due to the MBS, this resemblance may be destroyed
by a magnetic field different from H0.

VI. CONCLUSION

We have applied the standard Keldysh technique [45,46]
to evaluate the tunneling current in the setup as presented
by Fig. 1. As a specific example we consider a Majorana
fermion at the end of a quantum wire which is placed in
proximity with a superconductor and under an applied external
magnetic field [5,6]. Evidently, control of the magnetic field
and the dot-MBS coupling tR can provide a sensitive test
for the MBS detection and may help to distinguish the MBS
from other zero bound states [18] caused either by Andreev
bound states or localized by disorder states or by surface
states as in d-wave superconductors [48]. The difficulty with
experimental identification of a MBS via the method of a
zero-bias conduction peak [15–18] is that similar peaks may
be due to other low-energy bound states [53], such as states
localized by disorder [51]. However, in the experiment [14] a
chain of interacting magnetic iron atoms (magnetic dots) on the
superconducting lead was investigated. For this system which
includes Hubbard interaction in the dot [52] the theory [51] is
not directly applied.

We provide the solution of several models: two with the
MBS, the other one is a model in which the MBS is replaced
by Shiba impurity resonance, and the last model represents
the AZBS that can appear at the contact of a quantum dot
and an s-wave superconductor at the specific value of Zeeman
energy. We consider multiple Andreev reflections which are
beyond the small voltage regime. We show that for the last
two (no MBS) models zero localized states may be identified
by strong peak position dependence on the magnetic field.
However, in model 2 of the MBS that describes the interaction
of Majorana fermions with only one spin state of a QD
(here spin-down) current peak decreases with magnetic field,

although, unlike the model Eq. (1) it is shifted. Physically this
happens because in the model [Eq. (1)] the interaction with
spins of the dot involves spin mixing and Majorana fermions
act like a Bogoliubov quasiparticle, whereas in model 2 spin
mixing is excluded. A further difficulty with experimental
identification is due to the accuracy with which a zero-energy
state can be determined as a function, e.g., of a magnetic
field [16,17,53,54]. Therefore, control of the magnetic field
and the dot-MBS coupling tR provides an option for a MBS
detection.
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APPENDIX

1. Green’s functions in Floquet space

Here we obtain the nonequilibrium GFs of the supercon-
ductor (left electrode), the Majorana, and the dot Green’s
functions [Eqs. (4) and (6)] as matrices in Floquet space.
At constant applied voltage V the tunneling between two
superconductors is described by GFs which depend on time
via the phase of the order parameter [47]. The nonequilibrium
GF of superconductor g̃ acquires a form

g̃(t,t ′) = exp

[
iφ(t)τz

2

]
g(t − t ′) exp

[−iφ(t ′)τz

2

]
, (A1)

where φ(t) = φ0 + 2eV t, φ0 is a constant phase which we
set to zero and g(t − t ′) is the equilibrium GF of the
superconductor. Due to off-diagonal terms in g the phase
exponent does not commute with g. Therefore, the Fourier
transform of g̃, which depends on two energies, includes
energies shifted by a period of 2eV , actually a multiple of
this period (12),

〈E|g̃|E′〉 = δ(E − E′)g(E,E) + δ(E − E′ − 2eV )

×g(E,E − eV ) + δ(E − E′ + 2eV )

×g(E,E + eV ). (A2)

The current is presented as a Fourier series J (t) =∑
n exp[i2eV t]Ĵn(2eV ). The zero component (n = 0) stands

for the averaged current which includes integration over
E,E′. Therefore, all δ functions in (A2) are integrated out,
and only functions g(E,E′) remain. If in these GFs we
replace E,E′ by E + 2eV m,E + 2eV n then it is convenient
to introduce the matrix notation: g(E + 2eV m,E + 2eV n) =
gm,n(E). Because g for every m,n is a 4 × 4 matrix itself we
use the indices i,k to designate the actual matrix element [47].

Let us consider 2N + 1 Floquet states. As the simplest
example we start with the zero-order retarded Majorana GF
[see Eq. (4)]. It has no 4 × 4 matrix structure and thus consists
of only diagonal matrix elements in Floquet space,

G−1R
M0p,q (E) = δp,q(E − 2eV N + 2eVp). (A3)

Definitions of GFs [Eq. (12)] show that the energy
difference between the initial and the final states is
the integer multiple of 2eV . To simplify notations we
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define I = integer[ i−1
4 ], K = integer[ k−1

4 ], and EK = E −
2eV (N − K), where i,k = 1,2, . . . ,4(2N + 1). Thus we have

gi,k(E) = gd [i,k] + g+[i,k] + g−[i,k],

gd [i,k] = δI,K{g11(EK − eV )s0P+
+ g22(EK + eV )s0P−}i−4K,k−4K, (A4)

g+[i,k] = δI,K−1g21(EK − eV ){s0τ+}i−4(K−1),k−4K,

g−[i,k] = δI,K+1g12(EK + eV ){s0τ−}i−4(K+1),k−4K.

The matrix structure of the 4(2N + 1) × 4(2N + 1) matrix
gi,k(E) consists of 4 × 4 diagonal boxes (gd ) and of 4 × 4
blocks g± on each side of the diagonal. The other Keldysh GFs
have similar representations. The dot GF [Eq. (6)] includes the
lead GF g as its nonequilibrium part, therefore, we can write
the total inverse dot GF in the form, such as g [Eq. (A4)],

G−1R
di,k (E) = G1[i,k] + G+[i,k] + G−[i,k],

G1[i,k] = δI,K{EKs0τ0 − εs0τz − Hszτ0

−�L[g11(EK − eV )s0P+
+ g22(EK + eV )s0P−]}i−4K,k−4K,

G+[i,k] = δI,K−1�Lg21(EK − eV ){s0τ+}i−4(K−1),k−4K,

G−[i,k] = δI,K+1�Lg12(EK + eV ){s0τ−}i−4(K+1),k−4K.

(A5)

The dot GF Gdi,k is obtained by taking the inverse of Eq. (A5).
The total Majorana GF, although, which depends on dot

function Gd [Eq. (A4)], has no spin and particle-hole
presentation. It is a matrix only in Floquet space
(2N + 1) × (2N + 1). Using the definition of spinor

ˆVϕ=0 [see Eqs. (1) and (4)] we find

G−1R
Mp,q(E) = G−1R

M0p,q (E) − �R
p,q(E), (A6)

�R
p,q(E)

= t2
R{GR

d1+4p,1+4q (E) + GR
d2+4p,2+4q (E)+GR

d3+4p,3+4q (E)

+GR
d4+4p,4+4q (E) + GR

d1+4p,3+4q (E) − GR
d2+4p,4+4q (E)

+GR
d3+4p,1+4q (E) − GR

d4+4p,2+4q (E) − GR
d1+4p,4+4q (E)

+GR
d2+4p,3+4q (E) + GR

d3+4p,2+4q (E) − GR
d4+4p,1+4q (E)

+GR
d1+4p,2+4q (E) + GR

d2+4p,1+4q (E)

−GR
d3+4p,4+4q (E) − GR

d4+4p,3+4q (E)}, (A7)

here p,q = 0,1,2, . . . ,2N . Inverting Eq. (A6) we arrive at the
effective Majorana GF.

The inverse GF of the Shiba states in the low-energy limit
close to the in-gap zero (at α̃ = 1) replaces the Majorana GF
GM0p,q (E) in the expressions for the tunneling current. The
effective Shiba state Green’s function [Eq. (15)] has the self-
energy part which is determined by interaction with the dot. In
the Floquet basis this GF is a 4(2N + 1) × 4(2N + 1) matrix

which has the form

G−1R
sp,q (E) = G−1R

s0i,k(E) − t2
RGR

di,k(E), (A8)

G−1R
s0i,k(E) = δI,K{EKs0τ0 − εs0τz − Hszτz + cos θszτ0

+ cos φ sin θsxτ0 + sin φ sin θsyτ0}i−4K,k−4K.

(A9)

2. The tunneling current

Let us at first consider the tunneling current in the S-QD-TS
(MBS) junction. We evaluate the current by taking derivatives
of the effective action with respect to α,

j (t)= e

4
Tr

∫
dt1

∫
dt2GM (t1t2)

(
δ�(αt2t1)

δα(t)

)
α→0

, (A10)

where Tr acts in the Keldysh space. Explicitly the derivative
acquires the form

δ�(αt2t1)

δα(t)
= t2

R�L

∫
dt3

∫
dt4V̂ †Gd (t2t3)

δgT (t3t4)

δα(t)

×Gd (t4t1)V̂ , (A11)

(
δgT (t3t4)

δα(t)

)
α→0

= 1

2
[g(t3,t)δ(t − t4)σxτz

− σxτzδ(t − t3)g(t,t4)]. (A12)

Performing the trace in the Keldysh space we obtain several
contributions to the current where, in addition to retarded
and advanced GFs, the Keldysh component of the GF is also
involved. From Eqs. (4) and (6) we obtain for these GFs,

GK
M = t2

RGR
MV̂ †τzG

K
d τzV̂ GA

M, (A13)

GK
d = �LGR

d τzg
KτzG

A
d . (A14)

We consider the time-averaged transport current. Only the
zero multiple of 2eV in the Fourier series contributes to the cur-
rent. In this case we use the Fourier-transform representation
of the GFs (A5) and (A6). The current is presented by a trace
of proper combinations of these functions in Floquet space.
Inserting the expressions Eq. (A11) and (A12) into Eq. (A10),
performing the trace in the Keldysh space we arrive at a final
form of current in the S-QD-TS (MBS) junction. The total dc
current is given by three contributions where for the last two
we use Green’s functions Eqs. (A13) and (A14),

j/j0 = t2
R�L

2�3
(j1 + j2 + j3), (A15)

where j0 = e/(2�) and j1, j2, and j3 acquire the forms

j1 = tr
∫

dE Re
[
GR

MV̄ +G̃R
d gKτzG̃

R
d V̄

]
, (A16)

j2 = �L

�
tr

∫
dE Re

[
GR

MV̄ +G̃R
d gKG̃A

d (gAτ3 − τ3g
R)G̃R

d V̄
]
,

(A17)
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j3 = �Lt2
R

2�3
tr

∫
dE Re

[
GR

MV̄ +G̃R
d gKG̃A

d V̄ GA
MV̄ +G̃A

d

×(gAτ3 − τ3g
R)G̃R

d V̄
]
. (A18)

Here G̃
R,A
d = τ3G

R,A
d τ3, tr stands for the trace over the Floquet

states, and G
R,A
M are the matrices in the Floquet basis of

dimension (1 + 2N ) × (1 + 2N ), the same as the blocks
[V̄ + · · · V̄ ].

This fact is principal: It distinguishes the topological case
(with the TS and the MBS) from the trivial normal zero level
states inside the gap (here AZBS and Shiba resonance). Indeed
the expression for the current in the case of Shiba zero states
(i.e., we consider a junction S-QD-S (with the Shiba state)
coincides with Eqs. (A17)–(A18) if: (i) We replace Majorana
GFs GM by GFs of Shiba zero states, (ii) drop spinors V̄ +,V̄ ,
and (iii) take the trace over the space 4(2N + 1) × 4(2N + 1).

We also calculate the current in the case of AZBSs. The
transport current through the dot in a setup, such as that shown
in Fig. 1 of the main text, is described by Eq. (A10) where
instead of GM and � we have Gt = [Gt0 − �g]−1 and �g =
�LgT correspondingly, and

δ�g(t2t1)

δα(t)
= �L

(
δgT (t2t1)

δα(t)

)
α→0

. (A19)

With the help of Eqs. (16) and (A19) we obtain

j/j0 = �L

�
tr

∫
dE Re

[
GR

t τzg
K
(
1 + �LG̃A

t gA
)]

, (A20)

where G̃A
t = τzG

A
t τz and the trace acts in the space 4(2N +

1) × 4(2N + 1).
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