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Thermal transport across high-pressure semiconductor-metal transition in Si and Si0.991Ge0.009

Gregory T. Hohensee*

Department of Physics, Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA

Michael R. Fellinger, Dallas R. Trinkle, and David G. Cahill
Department of Materials Science and Engineering, Materials Research Laboratory, University of Illinois at Urbana-Champaign,

Urbana, Illinois 61801, USA
(Received 17 February 2015; revised manuscript received 14 April 2015; published 7 May 2015)

Time-domain thermoreflectance (TDTR) can be applied to metallic samples at high pressures in the diamond
anvil cell and provide noncontact measurements of thermal transport properties. We have performed regular and
beam-offset TDTR to establish the thermal conductivities of Si and Si0.991Ge0.009 across the semiconductor-metal
phase transition and up to 45 GPa. The thermal conductivities of metallic Si and Si(Ge) are comparable to
aluminum and indicative of predominantly electronic heat carriers. Metallic Si and Si(Ge) have an anisotropy
of approximately 1.4, similar to that of beryllium, due to the primitive hexagonal crystal structure. We used
the Wiedemann-Franz law to derive the associated electrical resistivity, and found it consistent with the Bloch-
Grüneisen model.
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I. INTRODUCTION

High-pressure thermal transport measurements can provide
information and reveal physics that is not otherwise clear from
ambient-pressure experiments. Geophysical models of plane-
tary heat flow, notably near the Earth’s core-mantle boundary
where the pressure reaches 130 GPa, rely on knowledge of
the thermal conductivity of minerals at high temperatures and
pressures [1,2]. Experimental data on the pressure scaling of
thermal transport in amorphous [3] and crystalline materials
[2,4–10] helps build a basis for extrapolation to more extreme
pressure-temperature conditions.

Similarly, high-pressure electrical transport experiments
have been invaluable in the study of the physics of super-
conductors, as they enable monitoring of superconductivity
as a function of atomic spacing and phase transitions under
compression [11,12]. The broad interest in carbon materials
also extends to electrical transport measurements at high
pressure [13], and metal-insulator transitions under pressure
in silicon [14], CS2 [15,16], MoS2 [17,18], and VO2-related
materials [19,20], among others [21], have received a great
deal of attention recently.

Silicon is an extensively studied material, as a template for
other materials and in its own right for its nanoscale thermal
transport dynamics [22–26]. Silicon also has several phase
transitions at moderately high pressures: from diamond cubic
to β-Sn above 11 GPa, to primitive hexagonal near 15 GPa, and
to hcp through an intermediate Cmca phase around 36–42 GPa
[27–29]. In 1962 Minomura and Drickamer observed an
abrupt, five to six orders of magnitude drop in two-point
electrical resistance in silicon above 20 GPa, concluding that it
had entered a metallic phase [30]. Since then, experiments have
used the resistance drop to map out the semiconductor-metallic
phase transition, either as a function of temperature [31] or as
a function of uniaxial pressure by local indentation of silicon
along different crystalline axes [32]. The superconducting
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phase transition for metallic Si under pressure has also been
mapped out as a function of pressure by electrical transport
measurements [33]. Si also shows a pronounced change in
optical reflectivity into the metallic phase [34]. Despite this
attention, we are not aware of any absolute electrical resistivity
or thermal conductivity reports for metallic silicon.

While there are a variety of techniques sensitive to the
onset of a metallic phase under pressure, absolute thermal
and electrical transport measurements often rely on physical
contact with the sample, such as the Angstrom method
[4] or four-point probe. The requisite metal leads must be
simultaneously protected from the high-pressure environment,
electrically insulated from the gasket, and in good contact
with the sample. Stress gradients can build under pressure to
damage or deform the metal leads, and the sample geometry
will also change under compression or across phase transitions
[35]. For experiments in the highest pressure ranges where the
diamond anvil cell (DAC) is necessary [36], researchers have
developed designer diamond anvils with embedded metal leads
to perform electrical measurements in the DAC [37,38].

Recently, all-optical techniques have been developed
for thermal transport measurements at high pressure
in the DAC. Optical techniques are less demanding in
that the diamond anvils double as optical windows. For
simultaneous high-pressure, high-temperature measurements
in particular, high-speed spectroradiometry is used to
sample blackbody radiation from intensely laser-heated DAC
samples. The resulting 2D temperature map is then fitted for
thermal conductivity [39–41]. Optical laser flash diffusivity
experiments have also measured the thermal diffusivity of a
variety of materials under pressure, including MgO, MgSiO3,
and Fe-doped variants [2,8,9].

Our approach has been to leverage time-domain ther-
moreflectance (TDTR), an established ultrafast pump-probe
technique for measuring thermal transport properties [42–44].
Over the past few years high-pressure TDTR experiments
have provided new insight into the role of weak interface
bonding in suppressing the thermal conductance of an interface
between two materials [45], as well as information about
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the mechanisms behind the enhanced heat conduction at
interfaces between dissimilar materials [46]. TDTR has also
verified theoretical predictions of the thermal conductivity in
amorphous and crystalline solids at high pressure [3,7,10].

In this paper, we report thermal conductivity measure-
ments of [001] Si and the mixed crystal Si0.991Ge0.009 up to
45 GPa. This spans multiple phase transitions, in particular
the semiconductor-metal transition which abruptly alters the
thermal transport. We then apply the Wiedemann-Franz law
to derive the anisotropic electrical resistivity of the metallic
phase.

II. EXPERIMENTAL METHOD

For measurements of thermal conductivity by TDTR, the
sample is typically coated with an approximately 80 nm metal
transducer film, the pump pulses heat the surface, and the
probe pulses monitor the change in reflectance over time due
to the temperature rise and subsequent cooling. A thermal
model for the TDTR signal is generated from a solution to
the heat diffusion equation for a multilayered sample, where
each layer is assigned a thickness, heat capacity, and thermal
conductivity [42]. The thermal model is fitted to the TDTR
signal by varying one or two unknown thermal parameters,
for example the thermal conductivity � of a bulk isotropic
substrate, and the interface thermal conductance G between
the metal transducer and the sample.

We performed TDTR measurements on Al-coated and
Au(Pd)-coated commercial undoped Si and Si(Ge) wafers,
where the Pd and Ge contents were established by Rutherford
backscattering spectroscopy to be 5% and 0.9%, respec-
tively. The Al and Au(Pd) thin films were deposited by
dc magnetron sputtering, with thicknesses of approximately
80 nm confirmed by picosecond acoustics [47]. We also
performed TDTR measurements on bare metallic Si and
Si(Ge) in the primitive hexagonal phase at high pressures, and
supplemented these measurements with beam-offset TDTR
as well.

For a sample coated with a metal transducer layer, the
sensitivity of the TDTR measurement to the cross-plane
thermal conductivity �z comes from the out-of-phase temper-
ature response of the transducer surface relative to the pump
heating at the pump modulation frequency f . This phase lag
depends on the areal heat capacity of the transducer relative
to the volumetric heat capacity C of the substrate integrated
over the thermal penetration depth Lth = √

�z/(πCf ). Hence
conventional TDTR with a transducer layer is sensitive to the
thermal effusivity, since LthC ∝ √

�zC.
If TDTR is used to measure a bulk metallic sample

without a transducer layer, the measurement loses almost
all sensitivity to the �z of the substrate. However, with or
without a transducer, for sufficiently small pump and probe
laser spot sizes on the sample, the heat transport is no longer
in the one-dimensional limit and the TDTR measurement gains
sensitivity to thermal diffusion in the plane of the sample. For
an uncoated bulk metallic substrate, TDTR mainly probes the
in-plane thermal diffusion length relative to the pump and
probe laser spot sizes. As such, for sufficiently low pump
modulation frequency and small pump and probe spot sizes,

TDTR is sensitive to the in-plane thermal diffusivity of a bulk
metallic sample. In fact, since the areal heat capacity of a metal
transducer layer is a major source of systematic uncertainty in
conventional TDTR, measurements on an uncoated bulk metal
can be even more precise, assuming the laser spot size is also
measured precisely.

Our thermal model for metallic samples assumes that heat is
initially deposited in the electrons within an optical penetration
depth, that the electrons and phonons equilibrate over some
electron-phonon thermalization length, and that the thermal
penetration depth at our pump modulation frequency is much
longer than either of these lengths. We can calculate the
optical penetration depth in metallic Si because Hanfland et al.
[34] have measured the diamond/silicon reflectance R and
calculated the imaginary part of the silicon permittivity ε2 at
high pressures. At our center wavelength of 785 nm, they report
R ≈ 0.7 and ε2 ≈ 15 at 30 GPa. Since the optical properties
of diamond are comparatively insensitive to pressure, this
gives us enough information to back out the refractive index n

and absorption coefficient κ for metallic silicon. We find that
n ≈ 1.4 and κ ≈ 5.5 at this wavelength and pressure, for an
optical penetration depth of α−1 ≈ 11 nm.

The electron-phonon thermalization length in metals is
typically 10–100 nm, depending on electron-phonon cou-
pling strength. We estimate the relevance of electron-phonon
dynamics for TDTR measurement of bare metallic Si by
specifying in the model that energy deposition is uniform and
immediate in the top Lep nanometers of the sample. As for
any other model parameter, we can calculate the sensitivity of
the TDTR signal to Lep as a function of delay time. Taking
an extreme case where Lep ≈ 100 nm as in Au, and using
representative model parameters for metallic Si, we computed
sensitivities and found that the TDTR signal is five times less
sensitive to Lep than to the thermal conductivity � at 500 ps,
and ten times less at 1 ns delay time. From our experimental
data, the thermal penetration depth in metallic Si is already
≈270 nm or longer after 1 ns. By this reasoning we find that
we can fit the TDTR signal for � starting from 1 ns delay
time, without quantitative knowledge of the electron-phonon
coupling in the material.

We paired each TDTR measurement on bare metallic Si and
Si(Ge) with a beam-offset TDTR measurement at the same
position on the sample. Beam-offset TDTR is a variation of
TDTR where the pump beam spot is scanned across the probe
spot at a fixed delay time, typically along the two lateral axes
in the plane of the sample surface [48]. Taken at short positive
delay time, the V (in) signal of beam-offset TDTR provides a
precise measure of the correlated pump and probe spot sizes,
before heat has time to spread in the sample. We then take two
perpendicular beam offset scans in the plane of the sample at
short negative time delay, obtaining two V (out) profiles. The
width of each V (out) beam offset profile is determined by the
initial spot size and the thermal penetration depth along that
direction in the plane of the sample.

Because the TDTR pump modulation is in the MHz
frequency range, even high thermal conductivity samples
thin enough for DAC loading are essentially bulk or semi-
infinite for the thermal model. At 1 MHz, a sample with a
thermal conductivity of 200 W m−1 K−1 and a heat capacity
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on the order of 2 J cm−3 K−1 has a thermal penetration depth
Lth = √

�/(πCf ) ≈ 5.6 μm, much less than the 10–15 μm
thickness of typical DAC samples. In our experiments on Si and
Si0.991Ge0.009, the lowest modulation frequency was 3.35 MHz,
Lth was always less than 4 μm, and the sample thicknesses
between 8–16 μm. Therefore, because we measure the side
of the sample facing the silicone oil pressure medium, the
exact thickness of the sample and the thermal properties of the
diamond anvil are irrelevant to our measurement.

For the bare metallic Si and Si(Ge) data sets, we used a
3.35 MHz pump modulation frequency and a laser spot size of
approximately 3 μm e−2 radius, which we measured at each
pressure point. The resulting signal-to-noise and significant
lateral diffusion length relative to the spot size permitted beam-
offset TDTR fits to the thermal diffusivity to within 10%.
The only other relevant parameter in the thermal model is
the thermal effusivity of the silicone oil pressure medium in
the DAC, which is comparatively negligible. For conventional
TDTR on Al- or Au(Pd)-coated Si and Si(Ge), systematic
uncertainty in the transducer areal heat capacity yields the
usual 5%–10% uncertainty in the fitted thermal conductivities
for a given Si heat capacity.

Since TDTR has previously been used to measure the dy-
namic heat capacity across the metal-insulator transition (MIT)
in vanadium dioxide (VO2) [49], it is worthwhile to consider
whether our present TDTR experiment is sensitive to the
dynamic heat capacity across the various high-pressure silicon
phase transitions at room temperature. Deb et al. [50] studied
pressure-induced amorphization of porous silicon, and also
provided a calculated pressure-temperature phase diagram for
crystalline Si. In their Fig. 3(a), they portray the diamond cubic
to β-Sn phase boundary as having a slope of 103 K per GPa,
extending up to a melting temperature above 900 K. We do not
expect the few-K temperature excursions in our experiment to
create significant thermal pressure or cross a phase boundary
in temperature.

In TDTR, one can obtain sensitivity to the dynamic heat
capacity of a phase transition if the transition rate exceeds
the time scale of the TDTR pump modulation frequency.
In our experiment, the pump modulation time scale is
τ ≈ (2πf )−1 ≈ 16 ns. The TDTR study of the MIT of
VO2 [49] had sensitivity because the VO2 transition is sub-
picosecond, which is what makes it interesting for ultrafast
optical switching [51]. In silicon, all the pressure transitions
at room temperature involve changes in symmetry and atomic
bonding; it is not obvious that they would have nanosecond
transition rates, even if we were near a temperature phase
boundary.

Experimentally, the DAC pressure gradient that we describe
in Sec. III allowed us to avoid taking measurements on Si
within 1 GPa of any phase transition. The small pressure
gradient across our samples meant that we could observe the
wave front of a phase transition between higher and lower
pressure regions of the samples. These could be seen in visible
light by increased optical reflectivity in the metallic phases,
as well as volume collapse across the transitions. We always
applied an ≈1 GPa pressure increment after observing such
a wave front, so that the measurement was not taken near a
phase boundary.

III. DAC SAMPLE PREPARATION
AND PRESSURE CALIBRATION

We used commercial [001] Si [P-type (boron), 3–50 	 cm
resistivity] and Si0.991Ge0.009 wafers for our experiment. For
the samples measured with a metal film transducer, the
Al and Au0.95Pd0.05 films were deposited by dc magnetron
sputtering. The Si and Si(Ge) substrates were heated to
approximately 600 ◦C for 30 minutes in vacuum and allowed
to cool immediately before Al and Au(Pd) deposition in the
same chamber, without exposure to air. We deposited Au(Pd)
instead of pure Au because Au(Pd) yields a clear picosecond
acoustic signal from which we can extract the Au(Pd) film
thickness in situ, unlike Au [52]. After sputtering, the Si and
Si(Ge) samples were back-polished to 8–16 μm thickness,
and squares approximately 100 μm × 100 μm in size were
cleaved and loaded into the DAC with a low-viscosity silicone
oil (1 cSt octamethyltrisiloxane, molecular weight 237) as the
pressure-transmitting medium [53]. The bare Si and Si(Ge)
samples were back-polished and loaded into the DAC without
heating or sputter deposition.

One to three ruby spheres were included in the DAC sample
chamber for pressure calibration by ruby fluorescence [54].
The ruby fluorescence shift can be sensitive to nonhydrostatic
behavior of the pressure medium, but the range of variations is
small below 50 GPa [55]. We estimate ±0.5 GPa uncertainty
in the ruby pressure from spectrometer resolution [56].

An important aspect of using ruby as a pressure calibrant is
that the pressure experienced by the ruby is not necessarily the
pressure at the region of the sample measured by TDTR. For a
quasihydrostatic medium like silicone oil, pressure gradients
on the order of 10% can develop across the sample chamber
[57]. It is difficult to ensure that the spatial separation between
ruby and sample is small after loading a fluid medium, and
the gasket hole that forms the sample chamber can also drift
with increasing pressure. As a result the ruby can be at lower
pressure near the edge of the diamond culet, while the sample
remains at the culet center under slightly higher pressure.

Because TDTR also provides an in situ Brillouin frequency
measurement of the pressure medium [3], it is possible to
calibrate the medium’s Brillouin frequency versus pressure,
and later compare the measured Brillouin frequency against
the pressure reading from a distant ruby. We have recently
done this for silicone oil [46], and in Fig. 1 we make that
comparison for DAC loadings with the bare Si and Si(Ge)
samples. Above 15 GPa the pressure at the sample deviated
from the ruby pressure by approximately 15% (Fig. 1, dashed
green line), plus or minus 1 GPa (solid green lines). We can
extract the raw Brillouin frequencies from our TDTR signals to
within 2%, but systematic error in our frequency-to-pressure
calibration is expected to be somewhat larger, between 5%
and 10%. More data points from adjacent ruby and TDTR
measurements under pressure are needed for a more precise
silicone oil Brillouin frequency calibration, but even so we are
able to correct for significant differences between ruby and
sample pressures in this manner.

To judge whether this observed gradient is realistic, we
examine literature data for the ruby R1 linewidth as a function
of pressure in silicone oil pressure media. Increases in R1
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FIG. 1. (Color online) Observed pressure differential between
ruby and samples. Our TDTR signals contain normal-incidence
Brillouin frequency data from the pressure medium, and in prior
work we have calibrated these frequencies in 1 cSt silicone oil against
the ruby pressure standard [46]. We observed that when the ruby is
displaced relatively far from the Si or Si(Ge) sample, the pressure
gradient in the quasihydrostatic pressure medium caused the ruby
and sample pressures to differ significantly. The black solid line is
for 1:1 agreement between ruby pressure and the pressure at the
sample. The green dashed line marks sample pressures that are 15%
higher than the pressure at the ruby, and the green solid lines are ±1
GPa above and below the +15% line. The inset photo shows a view
into the DAC sample chamber, when this bare Si piece was on the
cusp of the β-Sn transition. The sample was centered on the 400 μm
diameter anvil culet, and the pressures at the sample were consistently
≈15% higher than the ruby pressure.

linewidth with pressure correlate with decreased hydrostaticity
in the pressure medium. Previous work with silicone oil
pressure media indicate that a 10% standard deviation or
gradient in pressure across a DAC sample chamber is not
unusual above 20 GPa [53,57]. The maximum deviation from
center to edge of a sample chamber that has drifted under
pressure, then, is likely to be comparable to the 15% that we
report in Fig. 1 for some of our DAC loadings.

IV. PRESSURE-DEPENDENT THERMAL MODELING

As in most TDTR experiments our thermal model is simply
an analytic solution to the heat diffusion equation through a
multilayer, as laid out for coaligned pump and probe beams
by Cahill in 2004 [42]. All high-pressure TDTR experiments
must additionally consider bidirectional heat flow from the
heated sample surface [58], both into the sample and into the
pressure medium, which is in this case silicone oil. Since very
few thermal properties have been experimentally measured at
high pressure, we must calculate most of these properties as
accurately as possible, leaving the most complex properties
such as thermal conductivity to be fitted by our experimental
data.

We model the pressure-dependent thermal properties of the
metal transducer films of Al and Au(Pd) in the same manner

as in our previous work [46]. Since we can only measure the
thermal diffusivity or effusivity of silicon, all of our reported
silicon thermal conductivity data are necessarily dependent on
the accuracy with which we calculate the silicon heat capacity
under pressure. Since our model includes heat transport in
the silicone oil pressure medium, we must also consider how
sensitive our measurement is to that heat transfer pathway,
and provide an adequate estimation for the silicone oil thermal
conductivity and heat capacity under pressure.

First, we perform ab initio lattice dynamics calculations
for Si in the diamond cubic, primitive hexagonal, and hcp
phases at high pressure due to the absence of experimental
heat capacity data. Density functional theory (DFT) computes
forces on displaced atoms for input to the direct force-constant
approach to phonon thermodynamics [59,60]. The DFT cal-
culations utilize the plane-wave basis program VASP [61]. The
Perdew-Burke-Ernzerhof generalized gradient approximation
functional [62] accounts for electron exchange and correlation,
and a projector augmented wave potential [63] with electronic
configuration [Ne]3s23p6 generated by Kresse and Joubert
[64] represents the Si nuclei and core electrons. Forces on
atoms displaced from their ideal lattice sites by 0.02 Å
determine the force constants for Si in the diamond cubic phase
at 11 GPa (DFT lattice parameter a = 5.289 Å), the primitive
hexagonal phase at 15, 27, and 38 GPa (DFT lattice parameters
a = 2.549 Å and c = 2.402 Å, a = 2.494 Å and c = 2.360 Å,
and a = 2.452 Å and c = 2.239 Å, respectively), and the hcp
phase at 42 GPa (DFT lattice parameters a = 2.467 Å and
c = 4.182 Å). The diamond cubic and primitive hexagonal
calculations require a plane-wave energy cutoff of 400 eV, and
the energy cutoff for the hcp calculation requires 450 eV. Force
calculations are carried out in a 4×4×4 supercell for diamond
cubic (128 atoms), 5×5×5 supercells for primitive hexagonal
(125 atoms), and a 5×5×3 supercell for hcp (150 atoms). The
corresponding k-point meshes for each supercell are 4×4×4,
6×6×6, and 6×6×6. For the insulating diamond cubic phase
at 11 GPa we use the linear tetrahedron method [65,66] with
Blöchl corrections [67] for the Brillouin zone integration,

FIG. 2. Phonon density of states (DOS) for primitive hexagonal
Si at high pressure. Density functional theory computes the phonon
DOS at 15, 27, and 38 GPa. The DOS broadens with pressure, causing
an increase in the Debye frequency which is computed from the first
frequency moment of the DOS [88]. The Debye frequencies shown
as vertical lines determine Debye temperatures 
 for the Bloch-
Grüneisen model of electrical resistivity.
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FIG. 3. (Color online) Computed Si and silicone oil heat ca-
pacities. The Si heat capacity (magenta points and interpolation
line) used to extract the thermal conductivity � from our TDTR
data is computed using the phonon densities of states from density
functional theory (Fig. 2). The point at 38 GPa in the mixed-
phase (Cmca + hcp) region is computed for the primitive hexagonal
structure. By comparing the classical limit C = 3NkB for Si (blue
lines) to our computation, we see that most of the change in heat
capacity is driven by the change in density. The heat capacity for
silicone oil (dashed brown line) is extrapolated on the assumption that
the heat capacity per molecule is constant, so that the only pressure
dependence is from changes in density.

while for the metallic primitive hexagonal and hcp phases, we
use order-one Methfessel-Paxton smearing [68] with energy
smearing widths of 0.6 eV (hexagonal) and 0.5 eV (hcp). These
settings ensure energy convergence of less than 1 meV/atom
for each phase. Figure 2 shows the computed phonon density
of states (DOS) for the primitive hexagonal phase at 15, 27,
and 38 GPa.

Figure 3 plots the calculated C(P ) for Si and the silicone oil
pressure medium. The ab initio Si heat capacity was calculated
at six pressures (magenta points), and for the thermal model
we simply use a linear interpolation between these points
(magenta line) for the Si heat capacity at all pressures. As can
be seen by comparing the ab initio curve against the classical
(high temperature) C = 3NkB limit (black lines), the jumps in
heat capacity across the phase transitions are largely density
driven. Our use of interpolation rather than direct calculation
for the β-Sn heat capacity may underestimate the heat capacity
in that phase, following the behavior of the classical limit. This
would mean we are overestimating the cross-plane �z from
our transducer-coated samples.

For silicone oil, we extrapolated C(P ) assuming that
the silicone oil heat capacity per molecule is constant with
pressure, and that the volumetric heat capacity is solely
a function of density. We derived the change in density

with pressure in our previous work from the Lorentz-Lorenz
relation and a pressure-volume equation of state (EOS) fitted
to our own Brillouin frequency versus pressure data [46].

We have previously extrapolated the silicone oil thermal
conductivity �(P ) from low-pressure data [69] using the
minimum thermal conductivity model, with the assumption
that the ratio of the longitudinal and transverse speeds of
sound is constant with pressure [46]. This assumption has
been previously used to successfully replicate the pressure
dependence of PMMA [3].

For conventional TDTR, the sensitivity to the silicone oil
relative to the Si and Si(Ge) samples is approximately the ratio
of their thermal effusivities

√
�C. Our calculations in Ref. [46]

showed that the silicone oil thermal conductivity remains of
order 1 W m−1 K to 50 GPa. Since the thermal conductivity
of both Si and Si(Ge) are 1–2 orders of magnitude larger than
that of silicone oil, and the Si and Si(Ge) heat capacities are
larger than that of silicone oil, our measurements are 10 to 100
times more sensitive to the Si and Si(Ge) effusivity than to the
silicone oil effusivity. The same argument holds for the bare Si
and Si(Ge) measurements, for which the measured parameter
is thermal diffusivity rather than effusivity.

V. INTERFACE THERMAL CONDUCTANCE

Figure 4 shows the measured interface thermal conduc-
tances between the Al and Au(Pd) transducers and their
Si and Si(Ge) substrates. Blue symbols represent data for
Al/Si interfaces, while open and closed brown symbols are

FIG. 4. (Color online) Si and Si(Ge) interface thermal conduc-
tances. Blue symbols represent data for interfaces between Al and
Si with ≈2.2 nm native oxide, determined by ellipsometry. Open
and closed brown symbols are for Au(Pd)/Si and Au(Pd)/Si(Ge)
interfaces with ≈2.2 and ≈3.1 nm native oxide, respectively. The
Al/Si data showed signs of hot electron transport into the metallic Si
substrate, indicating direct metal-metal contact over some fraction of
the interfacial surface area. This invalidated our thermal model, so
our Al/Si data stop as Si becomes metallic.
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for Au(Pd)/Si and Au(Pd)/Si(Ge) interfaces, respectively. It
is important to note that all of the Si and Si(Ge) samples
have a native oxide of 2–3 nm on their surface, so the
Al/Si, Au(Pd)/Si, and Au(Pd)/Si(Ge) interface conductances
all include the thermal resistance of the native oxide. We
measured the native oxide thicknesses on untreated Si and
Si(Ge) wafers by ellipsometry, obtaining approximately 2.2
and 3.1 nm, respectively.

The difference in initial thermal conductances between
Au(Pd)/Si and Au(Pd)/Si(Ge) is likely due to weak interfacial
bonding in the latter sample, although both were heated to
approximately 600 ◦C in vacuum prior to Au(Pd) deposition.
The difference is suppressed by 10 GPa, as expected from
prior work on weakly bonded Al/SiC interfaces under pressure
[45]. Meanwhile the Al/Si sample conductance is high and
reversible up to 13 GPa (open and filled blue triangles), just
before the β-Sn to primitive hexagonal phase transition. The
initial Al/native oxide/Si conductance is typical of a clean
interface on Si with native oxide, so we expect the pressure
dependence is intrinsic to Al/native oxide/Si interfaces with
≈2 nm of native SiO2. The Al/native oxide/Si thermal
conductance increases from 260 to 380 MW m−2 K between
0 and 10 GPa, a nearly 50% increase.

We can use the radiation limit for Al to estimate the
maximum possible increase in thermal conductance due to
elastic phonon processes [46]. In the radiation limit picture,
the ≈20% increase in Al phonon cutoff frequency with
pressure [46] would suggest an ≈75% increase in thermal
conductance. As this limit is larger than the observed increase,
elastic processes can explain the increase in Al/native oxide/Si
interface conductance that we observe under pressure. This is
consistent with recent theoretical work [70].

We can also compare the observed increase in interface
conductance to the change in the theoretical maximum
conductance Gmax for Al, which is defined as the interface
conductance assuming 100% transmission of all Al phonon
modes incident on the interface [71]. Figure 4 of Ref. [71]
plots Gmax for Al as a function of pressure up to 60 GPa, and
predicts an ≈6% increase in Gmax for Al between 0 and 10
GPa, much smaller than the nearly 50% increase in G that we
observe for Al/native oxide/Si. The authors of Ref. [71] made
a similar observation when comparing Gmax for Al against
the G of an Al/MgO interface between 0 and 10 GPa. We make
the same inference as they made: that interfacial stiffness is an
influential parameter for interfacial conductance, even when
the interface is relatively clean.

We did not remove the Si and Si(Ge) native oxides prior
to Al or Au(Pd) deposition because we were interested in
how the thermal conductance of phonons might change across
the semiconductor-metal transition starting near 15 GPa. We
observed the following changes in the Al/native oxide/Si
interface thermal conductance as we increased the pressure
into the metallic Si phase. First, the hot-electron peak in the
picosecond acoustics disappeared when Si became metallic,
and returned on decompression back to nonmetallic Si [47].
Hot electrons from a pump pulse cause a hot-electron peak
in the TDTR signal by generating a stress discontinuity
at the interface between the transducer and an electrically
insulating surface, such as an oxide layer or a nonmetallic
substrate. Second, the decay rate of the in-phase TDTR signal,

which determines the apparent interface thermal conductance,
increased sharply after Si became metallic. Fits to the interface
conductance G yielded values of 1–3 GW m−2 K−1, at
the upper limit of the TDTR measurement sensitivity to
G. These values are 10% of what is typical for electronic
thermal transport between two metals at ambient pressure.
The fitted G was also not reversible on decompression to
ambient pressure. An Al/native oxide/Si sample compressed
to just below the metallic transition returned to about 260
MW m−2 K−1 conductance, whereas decompression from the
metallic phase yielded 500 MW m−2 K−1 at ambient, similar
to the interface conductance between Al and a Si wafer that
was HF dipped to remove the native oxide. These results are
suggestive of direct metal-metal contact between Al and Si
after Si becomes metallic. We do not know how this comes
about. One possibility may be the mechanics of the phase
transition, another may be chemistry between the Al and native
oxide.

We have chosen not to include the Al/Si TDTR results for
metallic Si for two reasons. First, the TDTR measurement
lacks significant sensitivity to interface conductances on the
order of a GW m−2 K−1. Second, our thermal model predicted
thermal conductivities for metallic Si from the Al/Si data
that were far in excess of the values we obtained from our
Au(Pd)/Si and our bare metallic Si data, which were consistent
with one another. An assumption of our thermal model is
that heat is initially deposited only in the transducer layer; if
there is appreciable direct metal-metal contact at the interface,
energy from hot electrons may deposit directly in the substrate,
which violates that assumption. Conversely, we do include the
Au(Pd)/Si and Au(Pd)/Si(Ge) results because the interface
thermal conductances were measurable, and the obtained
thermal conductivities were consistent with the results from
the bare metallic Si TDTR data, for which interfacial transport
is a nonissue. We do not know why the Au(Pd) results were
consistent with bare metallic Si and the Al results were not. It
could possibly have to do with differences in the mechanical
properties or chemical reactivities of Al versus Au(Pd) at high
pressures.

After the semiconductor-metal transition, the thermal
conductances for Au(Pd) on Si and Si(Ge) have average
values of 750 and 470 MW m−2 K−1, respectively. The ratios
of the oxide thicknesses and interfacial thermal resistances
were both approximately 1.6. The interfacial conductances
were equivalent to the thermal resistance of oxides with a
thermal conductivity of approximately ≈1.5 MW m−2 K−1

and initial thicknesses given in Fig. 4. We note that the interface
conductances between Au(Pd) and metallic Si and Si(Ge) are
of a similar magnitude to the electron-phonon conductance for
Au that we extrapolated to high pressure in our previous work
[46], which would act as a limiting interface conductance if
the Au electrons cannot propagate or deposit energy into the
substrate [46,72].

VI. THERMAL CONDUCTIVITY—SEMICONDUCTING

Figure 5(a) shows the measured thermal conductivities
for the Al- and Au(Pd)-coated Si and Si(Ge) samples, by
conventional TDTR. Blue squares and triangles are Al/Si data,
open and closed brown circles are Au(Pd) on Si and Si(Ge),
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FIG. 5. (Color online) Si and Si(Ge) thermal conductivities �. Panel (a) shows � extracted from the thermal effusivity versus pressure
measured by TDTR on Al- and Au(Pd)-coated samples, and panel (b) shows � from conventional and beam-offset TDTR on uncoated metallic
Si and Si(Ge) samples. In panel (a), the blue squares and triangles are from Al-coated Si, and the brown open and filled circles are from
Au(Pd)-coated Si and Si(Ge), respectively. The vertical lines denote phase transition pressures. In panel (b), the cyan and orange triangles are
TDTR measurements on bare metallic Si and Si(Ge), respectively. The corresponding pairs of beam-offset measurements for each TDTR point
are represented by cyan and orange diamonds. Blue symbols are decompression (decreasing pressure) data from the bare metallic Si sample.
The equivalence between Si and Si(Ge) � in the metallic primitive hexagonal phase suggests that the phonon contribution to �, which we
expect to be different in Si versus Si(Ge), is negligible. All of the metallic Si and Si(Ge) thermal conductivities are confined to a band of values,
indicating that this hexagonal phase is both polycrystalline and anisotropic in its thermal transport.

respectively. The filled blue square and triangle at 0 GPa are
the thermal conductivities of the recovered Al/Si sample after
decompression from the β-Sn and primitive hexagonal phases
near 13 and 16 GPa, respectively. Vertical lines mark phase
transition pressures [27–29].

The thermal conductivity of amorphous [3] and crystalline
materials [10] will generally increase with pressure due to
bond stiffening. In a crystal the pressure scaling is stronger
due to the reduction in the phonon density of states and
associated reduction in the rate of three-phonon scattering.
The thermal conductivity is expected to scale with powers
of the bulk modulus KT, specifically K

1/2
T , K

3/2
T , and KT for

amorphous, crystalline, and mixed crystalline materials. The
Si(Ge) data in the diamond cubic phase are not inconsistent
with this expectation, although they are also consistent with no
pressure scaling. The diamond cubic Si thermal conductivity,
however, is lower than its zero pressure value and constant in
the diamond cubic phase.

At ambient pressure, the diamond cubic phase of Si is
known to exhibit non-Fourier thermal transport when heated at
sufficiently small length scales [23–25]. In particular, Wilson
and Cahill measured an approximately 15% reduction in the
apparent thermal conductivity of bulk Si by conventional
TDTR as the laser spot size is decreased from 10 to 3 μm e−2

radius due to nondiffusive transport [25]. We performed
spot-size-dependent measurements down to 3 μm spot size on
Al/Si samples across the entire diamond cubic high-pressure
phase. We obtained an expected 146 W/m K at 0 GPa for the
largest spot size, but above 1 GPa, we measured conductivities

of 115–130 W m−1 K−1 for all spot sizes with no discernible
pressure or spot-size dependence. As such we distinguished
symbols [blue open triangles and squares, Fig. 4(a)] for
different samples, but not different spot sizes. The scatter in
our current high-pressure data is comparable to the spot-size
dependence in ambient Si down to a 3 μm spot size. It is
conceivable that a more precise series of measurements down
to a 1 μm spot size could resolve a trend.

The lack of pressure dependence that we observe in the
thermal conductivity of the diamond-cubic phase of Si is
unusual: more typical behavior can be seen in diamond, which
has the same crystal structure and is predicted to have an
increasing trend in its thermal conductivity under pressure
[73]. A recent first-principles calculation by Parrish et al.
for Si up to ±3% strain (equivalent to ≈4 GPa for Si)
reports a similar lack of pressure dependence in the thermal
conductivity of compressed Si [74]. Parrish et al. observed that
Si atoms had shorter phonon lifetimes and were allowed greater
root-mean-square (rms) displacement under compression.
Along the same lines, Soma [75] and Shen et al. [76] have
produced theoretical and experimental work indicating that
the transverse acoustic modes in diamond cubic Si soften as
the pressure approaches the β-Sn phase transition. This is in
contrast to the behavior of diamond, as Broido et al. calculated
no significant alteration in the transverse acoustic modes of
diamond up to 400 GPa [73]. Softening of the transverse
phonons in silicon increases their occupation number and
increases their umklapp scattering rates. The softening also
reduces the transverse mode group velocities, which further
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suppresses the thermal conductivity. Apparently, these factors
act to cancel out the factors that would otherwise increase the
thermal conductivity, as predicted for diamond and observed
for ice [7] and MgO [10].

We measured a thermal conductivity of 34 W m−1 K−1

from an Al/Si sample decompressed from the primitive hexag-
onal Si-V phase near 16 GPa [Fig. 5(a), filled blue square].
Decompression of Si-V is known to yield polycrystalline
metastable Si-III (BC8 structure) [77]. The measured Si-III
thermal conductivity is comparable to that of our Si(Ge)
with 0.9% Ge. Decompression from the β-Sn Si-II phase is
also known to yield Si-III [77], but we measure a somewhat
higher thermal conductivity of 72 W m−1 K−1 on recovery
of Al-coated Si-II to ambient pressure [Fig. 5(a), filled blue
triangle] [78]. This may be because decompressing from Si-II
avoids the additional grain and defect formation that occurs
when entering Si-V.

It is interesting to compare these Si-III thermal conductiv-
ities against those obtained in recent uniaxial high-pressure
torsion experiments by Harish et al. [79]. In their experiment,
two opposing anvils applied 24 GPa of pressure on single-
crystalline Si wafers, and explored the resulting thermal
conductivity as a function of torsion under pressure, before
and after annealing at 600 ◦C. Our 72 W m−1 K−1 sample
decompressed from Si-II has a similar thermal conductivity
to that of samples by Harish et al. obtained from their zero
torsion, post-anneal experiment. The 34 W m−1 K−1 sample
released from 16 GPa Si-V likewise has a similar thermal
conductivity to those of Harish et al.’s post-anneal samples
after 10 revolutions of torsion at 24 uniaxial GPa. Evidently,
entry into the Si-V phase by hydrostatic pressure reduces the
thermal conductivity of recovered Si-III by a factor comparable
to the effect of high-pressure torsion on Si post-anneal. For
Harish et al., the higher post-anneal thermal conductivities
were attributed to three factors: thermal relaxation to Si-I,
increased grain sizes, and reduced lattice defects. Since our
samples were maintained at room temperature, it seems likely
that the reduced thermal conductivity of our Si-III recovered
from Si-V was due to grain and defect formation across the
Si-II to Si-V phase transition.

VII. THERMAL CONDUCTIVITY—METALLIC

There was no visible roughening or grain formation across
the diamond cubic to β-Sn transition. According to Shen
et al. [76], the diamond cubic to β-Sn transition occurs
by fast lattice fluctuations rather than static nucleation.
However, the transition to primitive hexagonal Si is marked
by simultaneous surface roughening and an abrupt increase
in optical reflectivity. As shown in Fig. 5(a), between the
diamond cubic and primitive hexagonal phases the Si and
Si(Ge) thermal conductivities both increase sharply to similar
values as the materials become metallic. Also, it is in the
primitive hexagonal phase that we observe discrepancies
between the thermal conductivities measured along orthogonal
in-plane directions and in the [001] cross-plane direction of our
samples, by beam offset and conventional TDTR, respectively.

Our beam offset data on bare metallic Si and Si(Ge) were
taken along two perpendicular axes in the plane of the sample,
so at each pressure point we have two beam offset data points,

representing the in-plane thermal conductivities along two
orthogonal axes. These are the diamond symbols in Fig. 5(b).
The cyan and brown triangles are TDTR measurements on
bare metallic Si and Si(Ge), respectively. We emphasize
that TDTR on metallic samples without a transducer is not
sensitive to the cross-plane thermal transport, but rather the
in-plane thermal diffusivity, and then only if the lateral
thermal penetration depth is a significant fraction of the laser
spot size. Upward and rightward triangles are for increasing
pressure, downward triangles for decreasing pressure. Overall
the thermal conductivities for metallic Si and Si(Ge), including
those using the Au(Pd) transducer, are consistently scattered
within a band that increases with pressure up to the next phase
transition near 36 GPa. The equivalence in Si and Si(Ge)
metallic thermal conductivities within this band indicates that
the phonon thermal conductivity, which should be strongly
affected by the Ge defects in Si(Ge), is negligible compared to
the electronic thermal conductivity in the metallic phase. This
electronic dominance is typical for high thermal conductivity
metals.

We were unable to measure bare Si or Si(Ge) above the
Cmca/hcp transition, or to measure Au(Pd)-coated Si(Ge)
on decompression from the hcp phase, because of excessive
sample surface roughness. The large volume changes and grain
nucleation across different Si phase transitions causes surface
roughening that compounds with each transition. Excessive
roughness prevents reliable TDTR measurement due to an
excess of diffuse light scattering and thermoacoustic effects
that distort the TDTR signal from the sample surface [44].
Our data for Au(Pd)-coated Si(Ge) above 36 GPa indicate a
sharp loss in thermal conductivity in the mixed intermediate
Cmca/hcp phase, followed by a rapid recovery into the hcp
phase. Our measurements above 36 GPa for bare Si and Si(Ge)
are suggestive of similar behavior, but are not reliable enough
to report.

To properly understand the scattered band of thermal con-
ductivities that we measure in the primitive hexagonal phase,
we must revisit the geometry of the beam offset measurement
and the symmetries involved in the semiconducting to metallic
structural phase transitions in silicon. A conventional TDTR
measurement, with or without a transducer, measures the
temperature response of a sample due to radially symmetric
heating at one point. Defining the plane of the sample as the
xy plane, such a measurement can only sample the geometric
mean thermal transport along the x and y in-plane axes.

Beam offset TDTR, however, breaks radial symmetry by
displacing the probe beam relative to the pump. In beam offset
the signal is the temperature profile along a line crossing the
center of pump heat source. Over the time scale of the pump
modulation frequency, an elliptical Gaussian temperature
profile develops from the circular Gaussian pump heat source,
due to the in-plane anisotropy of the sample. If the crystalline
axes are known, two perpendicular beam offset line scans
are sufficient to obtain the major and minor in-plane thermal
conductivities [80].

We recall that the crystalline orientations of the diamond
cubic, β-Sn, and primitive hexagonal phases are related to one
another in a specific manner. The β-Sn tetragonal phase occurs
as a 45◦ rotation about one of the cubic symmetry axes, for a
threefold degeneracy in the orientations β-Sn can take relative
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to the polished [001] Si face of our sample [76]. Either the
β-Sn [001] is perpendicular to the polished surface, or the
β-Sn [001] and [110] axes are parallel to that surface.

Next, the c axis of the primitive hexagonal phase forms
along either the [100] or [010] axis of the β-Sn phase by a 90◦
rotation about the [010] or [100] axis, respectively [81,82].
Relating this back to our polished [001] diamond cubic surface,
there are two scenarios. In the first scenario where the β-Sn c
axis forms perpendicular to the sample surface, the primitive
hexagonal c axis lies 45◦ out of the plane, along [011] and
[01̄1], or [011̄] and [01̄1̄]. Alternately, the hexagonal c axis
lies in the sample plane, along [110], [11̄0], [101], or [101̄]. In
each scenario, the hexagonal ab plane cuts across one of the
lateral or diagonal in-plane directions, respectively.

Due to how Si wafers cleave along the cubic symmetry
axes, we know which orthogonal in-plane axes we measured
by beam-offset TDTR. For bare Si and Si(Ge), we measured
along the diagonal ([110], [11̄0]) and lateral ([100], [010])
in-plane axes of the diamond cubic phase, respectively. Finally,
the conventional TDTR measurements in Fig. 5(a) on Au(Pd)-
coated metallic Si and Si(Ge) were sensitive to the cross-plane
thermal conductivity.

Since the primitive hexagonal phase has so much degen-
eracy in its choice of c axis, it is no surprise that the sample
surface roughens on entering this phase. The samples become
polycrystalline, and the scattered thermal conductivities imply
significant anisotropy between the hexagonal ab-plane and
c-axis thermal transport. However there is no clear trend to
distinguish the beam offset and conventional data sets from
bare Si and Si(Ge), so we do not know whether one or another
set of orientations is preferred.

Regardless, we can say that the in-plane measurements
had access to grain orientations varying from the hexagonal
c axis to one of the planar hexagonal axes. The cross-
plane data in Fig. 5(a), meanwhile, could conceivably probe
orientations ranging from the c axis to 45◦ off the c axis. These
ranges would be continuous for grain sizes smaller than the
3 μm e−2 radius laser spot for the bare Si, Si(Ge) mea-
surements, or the 6 μm e−2 radius laser spot used on the
Au(Pd)-coated samples.

If the c-axis thermal conductivity is higher than the in-plane
thermal conductivity, as is typical for hexagonal metals, this
may partly explain how the conventional TDTR measurements
on Au(Pd)-coated Si and Si(Ge) [Fig. 5(a)] yielded above-
average thermal conductivities within the range presented in
the bare Si, Si(Ge) data [Fig. 5(b)]. That said, since the data
sets in Figs. 5(a) and 5(b) have different sensitivities to the Si
heat capacity C, that slight difference could just originate in a
small systematic error in our calculated C.

We cannot simply take pairs of TDTR measurements with
and without transducers in order to fit for C because the
hexagonal metallic silicon is thermally anisotropic. Conven-
tional TDTR with a transducer measures cross-plane thermal
conductivity, TDTR without a transducer measures mean in-
plane thermal conductivity, and beam offset TDTR measures
two orthogonal in-plane thermal conductivities. All of these
are different if the material is anisotropic. At best, we can only
note the overlap in the thermal conductivity bands from the
Au(Pd)-coated and bare metallic Si samples, and state that our
ab initio silicon heat capacity is accurate to within the thermal

anisotropy of the polycrystalline hexagonal metallic Si. But
we cannot claim that it is experimentally verified to within
less than the anisotropy of the sample.

VIII. ELECTRICAL RESISTIVITY

If we assume that the phonon contribution to the thermal
conductivity of metallic Si and Si(Ge) is negligible, then we
can take our analysis a step further by converting the electronic
thermal conductivity � to an electrical resistivity ρ using the
Wiedemann-Franz law, ρ = L0T/�, where T ≈ 300 K is the
temperature and L0 is the Sommerfeld value of the Lorenz
number L0 = 2.44×10−8 W 	 K−2. The result is shown in
Fig. 6 for metallic Si and Si(Ge), in comparison to the
ambient electrical resistivities of pure Al, Au, Zn, Cd, and
Be [83,84]. The electrical resistivity in metallic Si and Si(Ge)
is comparable to highly conductive metals such as Al and Au,
with an electrical anisotropy of approximately 1.4, very similar
to that of ambient hcp Be.

We compare our simple Wiedemann-Franz conversion to
a more sophisticated electronic transport model to better
understand the pressure dependence. In pure metals at room
temperature, electron-phonon scattering controls the electrical
resistivity. The Bloch-Grüneisen law gives the electrical resis-
tivity due to electron-phonon scattering, with several assump-
tions. The assumptions include a spherical Fermi surface, no

FIG. 6. (Color online) Wiedemann-Franz derived electrical re-
sistivities. The Wiedemann-Franz law relates the electron-mediated
thermal conductivity �e to the electrical resistivity ρ of a metal
according to �e = L0T/ρ. Here T is the temperature and L0 is
the Sommerfeld value of the Lorenz number. We assume that the
metallic thermal conductivities presented in Fig. 5(b) are equal to
�e. The resulting electrical resistivity for primitive hexagonal Si
is comparable to that of highly conductive metals such as Al and
Au, and very similar in magnitude and anisotropy (upper and lower
bounds in data) to ambient Be, which is also a hexagonal metal. The
symbols are the same as those in Fig. 5(b). The magenta dashed
lines are upper and lower bound Bloch-Grüneisen models assuming
purely anharmonicity-driven pressure dependence (d ln K/d ln V ≡
β = 0), and the black solid lines are the same, except β = 1
[Eqs. (1) and (2)].
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resistivity from umklapp processes, and a Debye model for the
phonon spectrum [85]. Because of the spherical Fermi surface,
there are no normal electron-phonon processes for transverse
phonons, leaving only N processes involving longitudinal
acoustic phonons. None of these assumptions are strictly valid
for Si, which becomes a tetravalent hexagonal metal under
pressure. Umklapp processes in particular are known to be
significant for other tetravalent metals, Sn and Pb [86].

Even so, we are encouraged by the work of Hanfland et al.,
who measured the optical reflectivity of primitive hexagonal
Si as a function of pressure, calculated the electronic band
structure, and found their results consistent with Si being a
nearly free electron metal in this phase [34]. Therefore we
proceed with the Bloch-Grüneisen equation for the electrical
resistivity:

ρBG = K




(
T




)5 ∫ 
/T

0

z5ezdz

(ez − 1)2
. (1)

Here K represents the combined factors relating to the
Fermi surface geometry and electron-phonon scattering matrix
elements, but which are assumed to be independent of
temperature. The pressure dependence of K = K0(V/V0)β ,
where β ≡ d ln K/d ln V , is generally not important unless
the volume change causes the Fermi energy to cross an
unpopulated band, which is not evident from Hanfland et al.’s
band structure calculations [34]. The main part of the pressure
dependence of the resistivity is expected to come from the
lattice through the Debye temperature parameter 
 [85,87].
To calculate the pressure dependence of the Bloch-Grüneisen
resistivity, we first formally differentiate Eq. (1):

d ln ρBG

d ln V
= β + 2γ. (2)

Note that γ ≡ d ln 
/d ln V is the Grüneisen parameter. We
then use our Wiedemann-Franz electrical resistivities to fit K0

and β, and derive 
 ≡ (4/3)〈E〉/kB from the first moment 〈E〉
of the same phonon densities of states that we calculated for the
Si heat capacity. The frequencies corresponding to 
 across
the primitive hexagonal phase are shown by vertical lines in
Fig. 2. The resulting 
 varies from 505 to 607 K between 15
and 38 GPa, and γ is calculated from 
 and the Si equation
of state.

Two Bloch-Grüneisen models are plotted in Fig. 6; the red
line is for β = 0, and the black dot-dashed line is for β = 1.
Much of the pressure dependence in our Wiedemann-Franz ρ

can be explained by the pressure dependence of γ . Meanwhile
we fit K0 by the magnitudes of the upper and lower bounds
of the measured ρ band near 15 GPa: K0 = 2.1×104 and
K0 = 1.4×104 K μ	 cm, respectively. We notice that β ≈ 1
is consistent with our pressure dependence, and that it is similar
in magnitude to the β values of 0.87 and 0.78 for the other
tetravalent metals, Pb and Sn [87].

IX. CONCLUSION

We have used conventional and beam-offset TDTR to es-
tablish the thermal conductivities of [001] Si and Si0.991Ge0.009

across the semiconductor-metal phase transition and up to
45 GPa. We performed measurements sensitive to alternately
the thermal effusivity �C and the thermal diffusivity �/C,
and obtained consistent fits for � with the same C that
we derived from our ab initio phonon densities of states.
The polycrystallinity of the primitive hexagonal Si phase,
combined with our beam-offset TDTR technique, allowed
us to measure the anisotropy in the thermal transport for
hexagonal Si. We found that the metallic Si and Si(Ge)
thermal conductivities are predominantly electronic in origin.
Thus we applied the Wiedemann-Franz law to derive the
associated electrical resistivity, and found it consistent with
the Bloch-Grüneisen model.
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