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Spin-orbit interaction in InSb nanowires
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We use magnetoconductance measurements in dual-gated InSb nanowire devices, together with a theoretical
analysis of weak antilocalization, to accurately extract spin-orbit strength. In particular, we show that
magnetoconductance in our three-dimensional wires is very different compared to wires in two-dimensional
electron gases. We obtain a large Rashba spin-orbit strength of 0.5–1 eV Å corresponding to a spin-orbit energy
of 0.25–1 meV. These values underline the potential of InSb nanowires in the study of Majorana fermions in
hybrid semiconductor-superconductor devices.
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Hybrid semiconductor nanowire-superconductor devices
are a promising platform for the study of topological supercon-
ductivity [1]. Such devices can host Majorana fermions [2,3],
bound states with non-Abelian exchange statistics. The real-
ization of a stable topological state requires an energy gap that
exceeds the temperature at which experiments are performed
(∼50 mK). The strength of the spin-orbit interaction (SOI) is
the main parameter that determines the size of this topological
gap [4] and thus the potential of these devices for the study of
Majorana fermions. The identification of nanowire devices
with a strong SOI is therefore essential. This entails both
performing measurements on a suitable material and device
geometry as well as establishing theory to extract the SOI
strength.

InSb nanowires are a natural candidate to create devices
with a strong SOI, since bulk InSb has a strong SOI [5,6].
Nanowires have been used in several experiments that showed
the first signatures of Majorana fermions [7–10]. Nanowires
are either fabricated by etching out wires in planar heterostruc-
tures or are grown bottom up. The strong confinement in
the growth direction makes etched wires two dimensional
(2D) even at high density. SOI has been studied in 2D InSb
wires [11] and in planar InSb heterostructures [12], from which
a SOI due to structural inversion asymmetry [13], a Rashba
SOI αR of 0.03 eV Å has been obtained [12]. Bottom-up
grown nanowires are three dimensional (3D) when the Fermi
wavelength is smaller than the wire diameter. In InSb wires of
this type, SOI has been studied by performing spectroscopy on
quantum dots [14,15], giving αR = 0.16–0.22 eV Å [15]. How-
ever, many (proposed) topological nanowires devices [16–18]
contain extended conducting regions, i.e., conductive regions
along the nanowire much longer than the nanowire diameter.
The SOI strength in these extended regions has not yet been
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determined. It is likely different from that in quantum dots,
as the difference in confinement between both geometries
results in a different effective electric field and thus a different
Rashba SOI. Measurements of SOI strength in extended
InSb nanowire regions are therefore needed to evaluate their
potential for topological devices. Having chosen a nanowire
material, further enhancement of Rashba SOI strength can
be realized by choosing a device geometry that enhances the
structural inversion asymmetry [19,20]. Our approach is to use
a high-k dielectric in combination with a top gate that covers
the InSb nanowire.

The standard method to extract SOI strength in extended
regions is through low-field magnetoconductance (MC) mea-
surements [21,22]. Quantum interference (see Fig. 1) in the
presence of a strong SOI results in an increased conductance,
called weak antilocalization (WAL) [23], that reduces to its
classical value when a magnetic field is applied [24]. From
fits of MC data to theory a spin relaxation length is extracted.
If spin relaxation results from inversion asymmetry, a spin
precession length and SOI strength can be defined. To extract
SOI strength in nanowires the theory should contain (1) the
length over which the electron dephases in the presence of
a magnetic field, the magnetic dephasing length [25], and
(2) the relation between spin relaxation and spin precession
length [26]. The magnetic dephasing and spin relaxation
length depend on, besides magnetic field and SOI strength,
respectively, dimensionality and confinement. For instance, in
nanowires, the spin relaxation length increases when the wire
diameter is smaller than the spin precession length [26–28].
Therefore, the spin relaxation length extracted from WAL
is not a direct measure of SOI strength. These effects have
been studied in 2D wires [25,26], but results for 3D wires
are lacking. As geometry and dimensionality are different (see
Fig. 1), using 2D results for 3D wires is unreliable. Thus, a
theory for 3D wires has to be developed.

In this Rapid Communication, we first theoretically study
both magnetic dephasing and spin relaxation due to a Rashba
SOI in 3D hexagonal nanowires. We then use this theory to
determine the spin-orbit strength from our measurements of
WAL in dual-gate InSb nanowire devices, finding a strong
Rashba SOI αR = 0.5–1 eV Å.
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(a) (b)

FIG. 1. (Color online) Quantum interference along
time-reversed paths in (a) 2D and (b) 3D nanowires. In both
cases an inversion symmetry induces spin precession in between
(boundary) scattering events.

The WAL correction to the classical conductivity can be
computed in the quasiclassical theory as [25,29,30]
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The length scales in this expression are the nanowire length
L, the mean free path le, the phase coherence length lϕ , the
magnetic dephasing length lB , and the spin relaxation length
lso. The mean free path le = vFτe, where τe is the mean
time between scattering events and vF the Fermi velocity.
In addition, the remaining length scales are also related to
corresponding time scales as

lB,ϕ,so = √
DτB,ϕ,so, (2)

where D = 1
d
vFle the diffusion constant in d dimensions (d =

3 for bottom-up grown nanowires).
In the quasiclassical theory, τϕ (and hence lϕ) is a phe-

nomenological parameter. In contrast, τB and τso are computed
from a microscopic Hamiltonian, by averaging the quantum
mechanical propagator over classical trajectories (a summary
of the quasiclassical theory is given in the Supplemental
Material [31]). τB and τso thus depend not only on microscopic
parameters (magnetic field B and SOI strength, respectively),
but through the average over trajectories also on dimen-
sionality, confinement, and le. We focus on the case where
Rashba SOI due to an effective electric field in the z direction,
perpendicular to the wire and substrate, dominates. Then the
microscopic SOI Hamiltonian is αR

�
(pxσy − pyσx), where σx,y

are Pauli matrices and px,y the momentum operators. The
corresponding spin-orbit precession length lR equals �

2/m∗αR.
In our treatment we neglect the Zeeman splitting EZ since we
concentrate on the regime of large Fermi wave vector kF such
that αRkF � EZ.

The quasiclassical description is valid if the Fermi wave-
length λF � le,lR, and much smaller than the transverse extent
W of the nanowire, i.e., for many occupied subbands. In
particular, the quasiclassical method remains valid even if
lR < le,W [32]. Additional requirements are given in Ref. [31].

We evaluate τB and τso numerically by averaging over
random classical paths for a given nanowire geometry. The
paths consist of piecewise linear segments of freely moving

(a) (b)

FIG. 2. (Color online) (a) Normalized dephasing time τBl4
e /τel

4
m

as a function of W/le for a hexagonal nanowire (see inset) for fields
parallel (black) and perpendicular (red) to the nanowire. Dots are nu-
merical data for different lm in the range 1–102.5 (10–20 points per W ),
and solid lines are a fit to Eq. (3). The dashed line is the 2D wire
result of [25]. (b) τso/τe as a function of spin-orbit strength lR/le and
different wire diameters in a 3D hexagonal nanowire.

electrons with constant speed [29,33], only scattered randomly
from impurities and specularly at the boundary (for numerical
details, see Ref. [31]). These assumptions imply a uniform
electron density in the nanowire. Specular boundary reflection
is expected as our wires have no surface roughness [34].

We apply our theory to nanowires with a hexagonal
cross section and diameter W [see the inset in Fig. 2(a)]
in the quasiballistic regime le � W . Figure 2(a) shows the
magnetic dephasing time τB (normalized by τel

4
m/l4

e with
lm = √

�/eB) as a function of wire diameter. Both parallel
and perpendicular fields give rise to magnetic dephasing due
to the three dimensionality of the electron paths, in contrast
to two-dimensional systems where only a perpendicular field
is relevant (see Fig. 1). The different field directions show a
different dependence on W , with, remarkably, τB (and thus lB)
independent of field orientation for W/le = 0.5. Our results
for τso as a function of lR are shown in Fig. 2(b). We find an
increase of τso as the wire diameter W is decreased, indicating
that confinement leads to increased spin relaxation times.

For lm,R,le � W we can fit our results reliably as

τB,so = C
l4
m,R

Wγ l
(4−γ )
e

. (3)

This is shown for τB in Fig. 2(a), where data for different lm
and W collapse to one line. In particular, for τB , we find C =
34.1 ± 0.1 and γ = 2.590 ± 0.002 for the parallel field, and
C = 22.3 ± 0.3 and γ = 3.174 ± 0.003 for the perpendicular
field. For τso we find C = 8.7 ± 0.5 and γ = 3.2 ± 0.1. Note
that our numerics is valid beyond the range where the fit (3)
is applicable. For example, for lR � W , the numerical result
deviates from the power law of (3) as seen in Fig. 2(b); in this
regime only the numerical result can be used.

The fit (3) allows for a quantitative comparison of our 3D
wire results to 2D wires: Both are similar in that there is flux
cancellation (γ > 2) [25] and suppressed spin relaxation due
to confinement. However, they exhibit a significantly different
power law. As an example, in Fig. 2(a) we compare to the 2D
wire result for weak fields from Ref. [25] (C = 10.8, γ = 3)
that can differ by an order of magnitude from our results. This
emphasizes the need for an accurate description of geometry
for a quantitative analysis of WAL.
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FIG. 3. (Color online) (a) False color scanning electron mi-
croscopy image of device I. The contact spacing is 2 μm. Device
fabrication is described in Ref. [31]. (b) Conductance G as a function
of top-gate voltage VTG and back-gate voltage VBG. Arrows and
dashed lines indicate cross sections shown in (c) and (d). Dots indicate
voltages (VBG,VTG) at which traces in Fig. 4(a) were taken (the same
dot color corresponds to the same G). Data taken with a 10 mV
voltage bias at a temperature of 4.2 K. (c) G as a function of VTG

at VBG = 0 V. Inset: Radial cross section of the device. The blue
layer is HfO2. (d) G as a function of VBG at VTG = −0.15 V. Inset:
Axial cross section of the device. (e) Conductance, as a function of
magnetic field, at several values of device conductance controlled by
VTG, VBG = 0 V. Data taken with ac excitation Vac = 100 μVrms.

We continue with the experiment. InSb nanowires [35] with
diameter W ≈ 100 nm are deposited onto a substrate with a
global back gate. A large (�2 μm) contact separation ensures
sufficient scattering between the source and drain. After
contact deposition a HfO2 dielectric layer is deposited and
the device is then covered by metal, creating an 	-shaped top
gate [Fig. 3(a) and the insets of Figs. 3(c) and 3(d)]. Nanowire
conductance is controlled with the top- and back-gate voltage,
reaching a conductance up to ∼5e2/h [Fig. 3(b)]. The device
design leads to a strong top-gate coupling [Fig. 3(c)], while
back gate coupling is weaker [Fig. 3(d)]. From a field-effect
mobility of ∼11 000 cm2/V s a ratio of the mean free path to
the wire diameter le/W = 1–2 is estimated [31,36].

At large G the magnetoconductance, measured with con-
ductance controlled by the top gate at a temperature T = 4.2 K
and with B perpendicular to the nanowire and substrate plane,
shows an increase of conductance of ∼0.2 to ∼0.3e2/h

around B = 0 [Fig. 3(e)]. G(B) is, apart from reproducible
conductance fluctuations, flat at B > 200 mT, which is further
evidence of specular boundary scattering [33]. On reducing
conductance below ∼1.5e2/h, WAL becomes less pronounced
and a crossover to weak localization (WL) is seen.

Reproducible conductance fluctuations, most clearly seen
at larger B [Fig. 3(e)], affect the WAL peak shape. To suppress
these fluctuations, several (7–11) MC traces are taken at the
same device conductance [see Fig. 3(b)]. After averaging
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FIG. 4. (Color online) (a) Magnetoconductance (MC) obtained
after averaging MC traces taken at the same G. For G = 3.5, 1.3,
and 0.3e2/h the voltages at which these MC traces were taken are
indicated in Fig. 3(b). Averaged MC traces have been centered to
�G = 0 at B = 0 T. G(B = 1 T) is indicated on the right. Red curves
are fits to the data assuming le

W
= 1. (b) Spin relaxation length lso

obtained from the fits of (a) ( le
W

= 1, blue points) and obtained from
fits with le

W
= 2 (red points). Standard deviation of the fit outcomes is

indicated. The distribution around the blue and red points (green and
gray bands, respectively) is given by the spin-orbit lengths obtained
from fits with an effective width 15 nm smaller (resulting in longer
lso) or larger (resulting in shorter lso) than the expected wire width
W = 90 nm. (c) Phase coherence length lϕ and (d) spin precession
length lR as a function of device conductance. Figure formatting is as
in (b).

these traces, WAL remains while the conductance fluctuations
are greatly suppressed [Fig. 4(a)]. Also here on reduction
of conductance, a crossover from WAL to WL is seen.
Very similar results are obtained when averaging MC traces
obtained as a function of top-gate voltage with VBG = 0 V [31].
We expect that several (∼10) subbands are occupied at a
device conductance G � 2e2/h (see Ref. [31]). Hence, our
quasiclassical approach is valid and we fit the averaged MC
traces to Eq. (1) with lso,lϕ and the conductance at a large
magnetic field �G(B → ∞) as fit parameters. lB is extracted
from Eq. (3). The wire diameter and mean free path are fixed in
each fit, but we extract fit results for a wire diameter deviating
from its expected value and for both le

W
= 1 and le

W
= 2. We

find good agreement between data and fits [see Fig. 4(a)].
While showing fit results covering the full range of G, we
base our conclusions on results obtained in the quasiclassical
transport regime G � 2e2/h.

On increasing conductance, the spin relaxation length first
decreases to lso ≈ 100–200 nm, and then increases again to
lso ≈ 200–400 nm when G � 2.5e2/h [Fig. 4(b)]. The phase
coherence length [Fig. 4(c)] shows a monotonous increase
with device conductance. This increase can be explained by
the density dependence of either the diffusion constant or the
electron-electron interaction strength [37], often reported as
the dominant source of dephasing in nanowires [11,38].

Spin relaxation [39] in our device can possibly occur via
the Elliot-Yafet [40] or the D’yakonov-Perel’ mechanism [41],
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FIG. 5. (Color online) (a) Magnetoconductance (MC) at T =
0.4 K. Each MC trace is obtained after averaging 21 MC traces
taken along the top-gate controlled pinch-off trace shown in Fig. 3(c)
(VBG = 0 V). The black (blue) trace is the average of traces taken
between VTG = 0.34 V and VTG = 0.14 V (VTG = 0.12 V and VTG =
−0.08 V) with steps of 20 mV. The voltage excitation Vac was
10 μVrms. G(B = 0.5 T) is indicated on the right. Phase coherence
and spin relaxation length obtained from fits (in red) to the traces
is 1078 ± 32 (1174 ± 39) nm and of 95 ± 18 (205 ± 16) nm,
respectively, for le

W
= 1 (2). Values obtained at G = 2.6e2/h are given

in Ref. [31]. (b) False color scanning electron microscope image of
device II with different magnetic field orientations indicated by the
arrows. The scale bar is 1 μm. (c) MC obtained with B parallel to
the nanowire (in-plane angle with respect to the nanowire θ ≈ 5◦,
black), B perpendicular to the nanowire in the plane of the substrate
(θ ≈ 95◦, red), and B perpendicular to the substrate plane (blue).
VTG = 0.2 V, VBG = 0 V. Smaller �G compared to the preceding
data is due to a larger contact resistance (∼10 k	) of this device for
which no correction was made.

corresponding to spin randomization at or in between
scattering events, respectively. The Elliot-Yafet contribu-

tion can be estimated as lso,EY =
√

3
8

EG

EF
le

(EG+�so)(3EG+2�so)
�so(2EG+�so) �

300–600 nm [42], with band gap EG = 0.24 eV, Fermi energy
EF � 100 meV, spin-orbit gap �so = 0.8 eV, and le

W
= 1–2.

For the D’yakonov-Perel’ mechanism, we note that our
nanowires have a zinc-blende crystal structure, grown in the
[111] direction, where the Dresselhaus SOI is absent for
momentum along the nanowire [43]. We therefore expect that
the Rashba SOI is the dominant source of spin relaxation, in
agreement with previous experiments [15]. As found in our
theoretical analysis, it is then crucial to capture confinement
effects accurately. Our lso correspond to τso

τe
= 2 –15 that are

captured well by our simulations [44]. Given that W ≈ lR,
we extract the lR corresponding to our τso

τe
directly from

Fig. 2(b). We extract spin precession lengths lR of 50–100 nm,
shown in Fig. 4(d), corresponding to αR = 0.5–1.0 eV Å. MC
measurements on a second device show very similar lR [31].

To confirm the interpretation of our MC measurements we
extract MC at a lower temperature T = 0.4 K [Fig. 5(a)].
We find larger WAL amplitudes of up to �G ∼ 0.5e2/h,
while the width of the WAL peak remains approximately
the same as at T = 4.2 K, corresponding to a longer lϕ at
lower temperature, with approximately constant lso. A longer
lϕ is expected at lower temperature, as the rate of inelastic
scattering, responsible for the loss of phase coherence, is
reduced in this regime.

Our theoretical analysis found similar dephasing times for
magnetic fields perpendicular and parallel to the nanowire
for our estimated mean free paths, le/W = 1–2. Indeed,
we observe virtually identical WAL for fields parallel and
perpendicular to the nanowire in our second device [see
Figs. 5(b) and 5(c)]. WAL in the first device is also very
similar for both field directions [31]. This is in striking
contrast to MC measurements in two-dimensional systems
where only a perpendicular magnetic field gives strong
dephasing due to orbital effects. It also provides strong support
for the assumptions made in our theory, and emphasizes
the importance of including the three-dimensional nature of
nanowires to understand their MC properties. In contrast,
WL is anisotropic [31], which we attribute to a different
density distribution at low conductance compared to the high
conductance at which WAL is seen.

Relevant to Majorana fermion experiments is the spin-

orbit energy ESO = mα2
R

2�2 , which is 0.25–1 meV in our de-
vices. These values compare favorably to InAs nanowires
that yield αInAs

R = 0.1–0.3 eV Å [38,45] and corresponding
EInAs

SO = 15–135 μeV. EInSb
SO is similar or slightly larger than

the reported spin-orbit energies in Ge/Si core-shell nanowires
(EGe/Si

SO = 90–600 μeV [46]), while αInSb
R is larger than

αGe/Si
R = 0.07–0.18 eV Å). Note that the device geometries

and expressions for αR(lso) used by different authors vary and
that often only lso, not lR, is evaluated. With our ESO we
then find, following the analysis of Ref. [4], a topological gap
of ∼0.1–1 K [31] even for our moderate mobilities of order
10 000 cm2/V s. This gap largely exceeds the temperature and
previous estimates. Hence, our findings underline the potential
of InSb nanowires in the study of Majorana fermions.
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